首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The family 10 xylanase from Streptomyces olivaceoviridis E-86 contains a (beta/alpha)(8)-barrel as a catalytic domain, a family 13 carbohydrate binding module (CBM) as a xylan binding domain (XBD) and a Gly/Pro-rich linker between them. The crystal structure of this enzyme showed that XBD has three similar subdomains, as indicated by the presence of a triple-repeated sequence, forming a galactose binding lectin fold similar to that found in the ricin toxin B-chain. Comparison with the structure of ricin/lactose complex suggests three potential sugar binding sites in XBD. In order to understand how XBD binds to the xylan chain, we analyzed the sugar-complex structure by the soaking experiment method using the xylooligosaccharides and other sugars. In the catalytic cleft, bound sugars were observed in the xylobiose and xylotriose complex structures. In the XBD, bound sugars were identified in subdomains alpha and gamma in all of the complexes with xylose, xylobiose, xylotriose, glucose, galactose and lactose. XBD binds xylose or xylooligosaccharides at the same sugar binding sites as in the case of the ricin/lactose complex but its binding manner for xylose and xylooligosaccharides is different from the galactose binding mode in ricin, even though XBD binds galactose in the same manner as in the ricin/galactose complex. These different binding modes are utilized efficiently and differently to bind the long substrate to xylanase and ricin-type lectin. XBD can bind any xylose in the xylan backbone, whereas ricin-type lectin recognizes the terminal galactose to sandwich the large sugar chain, even though the two domains have the same family 13 CBM structure. Family 13 CBM has rather loose and broad sugar specificities and is used by some kinds of proteins to bind their target sugars. In such enzyme, XBD binds xylan, and the catalytic domain may assume a flexible position with respect to the XBD/xylan complex, inasmuch as the linker region is unstructured.  相似文献   

2.
Cell surface and intracellular functions for ricin galactose binding.   总被引:4,自引:0,他引:4  
The role of the two galactose binding sites of ricin B chain in ricin toxicity was evaluated by studying a series of ricin point mutants. Wild-type (WT) ricin and three ricin B chain point mutants having mutations in either 1) the first galactose binding domain (site 1 mutant, Met in place of Lys-40 and Gly in place of Asn-46), 2) the second galactose binding domain (site 2 mutant, Gly in place of Asn-255), or 3) both galactose binding domains (double site mutant containing all three amino acid replacements formerly stated) were expressed in Xenopus oocytes and then reassociated with recombinant ricin A chain. The different ricin B chains were mannosylated to the same extent. Cytotoxicity of these toxins was evaluated when cell entry was mediated either by galactose-containing receptors or through an alternate receptor, the mannose receptor of macrophages. WT ricin and each of the single domain mutants was able to kill Vero cells following uptake by galactose containing receptors. Lactose blocked the toxicity of each of these ricins. Site 1 and 2 mutants were 20-40 times less potent than WT ricin, and the double site mutant had no detectable cytotoxicity. WT ricin, the site 1 mutant, and the site 2 mutant also inhibited protein synthesis of mannose receptor-containing cells. Ricin can enter these cells through either a cell-surface galactose-containing receptor or through the mannose receptor. By including lactose in the cell medium, galactose-containing receptor-mediated uptake is blocked and cytotoxicity occurs solely via the mannose receptor. WT ricin, site 1, and site 2 mutants were cytotoxic to macrophages in the presence of lactose with the relative potency, WT greater than site 2 mutant greater than site 1 mutant. The double site mutant lacked cytotoxicity either in the absence or presence of lactose. Thus, even for mannose receptor-mediated toxicity of ricin, at least one galactose binding site remains necessary for cytotoxicity and two galactose binding sites further increases potency. These results are consistent with the model that the ricin B chain galactose binding activity plays a role not only in cell surface binding but also intracellularly for ricin cytotoxicity.  相似文献   

3.
Deleted forms of ricin B chain (RTB) containing only one of the two galactose binding sites were produced inE. coli and targeted to the periplasm by fusion to theompA orompF signal sequences. The proteins were then isolated from the periplasm and their sugar binding properties assessed. Previous studies investigating the properties of such proteins produced inXenopus laevis oocytes suggested that deleted forms of RTB, when not glycosylated, retain their ability to bind simple sugars, unlike the full-length unglycosylated proteins. When produced inE. coli however we found that only one, EB733, of a number of deleted forms of RTB closely related to those previously produced inXenopus laevis oocytes, bound to simple sugars. All of the deletion forms of RTB were found to bind in the asialofetuin binding assay; an assay which has been previously utilized to measure binding of lectins to the terminal galactose residues of glycoprotein oligosaccharides. However, in contrast to glycosylated RTB, binding of the deletion mutants could be competed to only a small degree or not at all with galactose. The only deletion mutant observed to bind to free galactose when produced inE. coli corresponded closely to the complete domain 2 of RTB. It is assumed that this mutant forms a stable structure similar to that of the C-terminal domain in the full-length protein. The structural integrity of EB733 was not only suggested by its sugar binding properties and solubility but also by its consistently higher level of expression and the absence of any apparent susceptibility toE. coli proteases.Abbreviations RTA ricin toxin A chain - RTB ricin toxin B chain - ER endoplasmic reticulum - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - IPTG isopropyl -d-thiogalactopyranoside  相似文献   

4.
Ebulin l is a type-II ribosome-inactivating protein (RIP) isolated from the leaves of Sambucus ebulus L. As with other type-II RIP, ebulin is a disulfide-linked heterodimer composed of a toxic A chain and a galactoside-specific lectin B chain. A normal level of ribosome-inactivating N-glycosidase activity, characteristic of the A chain of type-II RIP, has been demonstrated for ebulin l. However, ebulin is considered a nontoxic type-II RIP due to a reduced cytotoxicity on whole cells and animals as compared with other toxic type-II RIP like ricin. The molecular cloning, amino acid sequence, and the crystal structure of ebulin l are presented and compared with ricin. Ebulin l is shown to bind an A-chain substrate analogue, pteroic acid, in the same manner as ricin. The galactoside-binding ability of ebulin l is demonstrated crystallographically with a complex of the B chain with galactose and with lactose. The negligible cytotoxicity of ebulin l is apparently due to a reduced affinity for galactosides. An altered mode of galactoside binding in the 2gamma subdomain of the lectin B chain primarily causes the reduced affinity.  相似文献   

5.
Ricin B chains treated with chloramine-T in the presence or absence of NaI show a 100-fold to 200-fold reduction in their ability to bind to the galactose-containing protein asialofetuin. Such treated B chains do not form covalently associated homodimers with treated B chains or heterodimers with native ricin A chains. Furthermore, they cannot enhance the toxicity of a ricin A chain-containing rabbit anti-human immunoglobulin (RAHIg-A) for Daudi cells. However, when such B chains are coupled to goat anti-rabbit Ig (GARIg), they potentiate the killing of RAHIg-A-treated Daudi cells only slightly less effectively than GARIg coupled to native B chains. Furthermore, if GARIg-B chain conjugates are treated with chloramine-T after coupling, they fail to bind to asialofetuin but enhance the killing of Daudi cells treated with RAHIg-A. These results demonstrate that the ability of ricin B chains to bind to galactose and to enhance the toxicity of ricin A chains (in the form of an antibody-A chain) can be operationally separated. Thus, the two functions of the B chain may reside on separate domains of the molecule.  相似文献   

6.
The three-dimensional structure of ricin at 2.8 A   总被引:22,自引:0,他引:22  
The x-ray crystallographic structure of the heterodimeric plant toxin ricin has been determined at 2.8-A resolution. The A chain enzyme is a globular protein with extensive secondary structure and a reasonably prominent cleft assumed to be the active site. The B chain lectin folds into two topologically similar domains, each binding lactose in a shallow cleft. In each site a glutamine residue forms a hydrogen bond to the OH-4 of galactose, accounting for the epimerimic specificity of binding. The interface between the A and B chains shows some hydrophobic contacts in which proline and phenylalanine side chains play a prominent role.  相似文献   

7.
8.
The type XIII xylan-binding domain (XBD) of a family F/10 xylanase (FXYN) from Streptomyces olivaceoviridis E-86 was found to be structurally similar to the ricin B chain which recognizes the non-reducing end of galactose and specifically binds to galactose containing sugars. The crystal structure of XBD [Fujimoto, Z. et al. (2000) J. Mol. Biol. 300, 575-585] indicated that the whole structure of XBD is very similar to the ricin B chain and the amino acids which form the galactose-binding sites are highly conserved between the XBD and the ricin B chain. However, our investigation of the binding abilities of wt FXYN and its truncated mutants towards xylan demonstrated that the XBD bound xylose-based polysaccharides. Moreover, it was found that the sugar-binding unit of the XBD was a trimer, which was demonstrated in a releasing assay using sugar ranging in size from xylose to xyloheptaose. These results indicated that the binding specificity of the XBD was different from those of the same family lectins such as the ricin B chain. Somewhat surprisingly, it was found that lactose could release the XBD from insoluble xylan to a level half of that observed for xylobiose, indicating that the XBD also possessed the same galactose recognition site as the ricin B chain. It appears that the sugar-binding pocket of the XBD has evolved from the ancient ricin super family lectins to bind additional sugar targets, resulting in the differences observed in the sugar-binding specificities between the lectin group (containing the ricin B chain) and the enzyme group.  相似文献   

9.
Conformation-dependent antigenic determinants in the toxic lectin ricin.   总被引:2,自引:0,他引:2  
The major part of the ricin-precipitable antibodies in sera produced by immunizing rabbits with formaldehyde-treated ricin is precipitated also by the isolated ricin A and B chains. In contrast, in antisera produced by immunizing with formaldehyde-treated ricinus agglutinin only a small part of the antibodies cross-reacting with ricin can be precipitated by the isolated A and B chains, or bound to immunoabsorbents containing the isolated ricin chains. In immunodiffusion studies with anti-ricinus agglutinin sera, a star-shaped precipitate was formed when isolated A and B chains recombined to form intact ricin. Both anti-ricin and anti-ricinus agglutinin sera neutralized effectively the ability of ricin to inhibit protein synthesis in HeLa cells. Anti-ricin serum also neutralized the inhibitory effect of the isolated A chain on protein synthesis in a cell-free system and the ability of the isolated B chain to induce indirect hemagglutination. In contrast, antiricinus agglutinin serum did not neutralize the biologic activities of the isolated ricin A and B chains. Anti-ricinus agglutinin serum formed a precipitate with the hybrid ricin A chain/abrin B chain, and protected against the toxic effect on HeLa cells of this hybrid, indicating conformational changes of ricin A chain upon binding to the B chain. It is concluded that the anti-ricinus agglutinin serum contains antibodies directed against conformational determinants present on intact ricin, but not present or exposed in the isolated A and B chains. At least part of these conformational determinants appears to be carried by the A chain.  相似文献   

10.
11.
A glycopeptide containing a triantennary N-linked oligosaccharide from fetuin was modified by a series of chemical and enzymic reactions to afford a reagent that contained a terminal residue of 6-(N-methylamino)-6-deoxy-D-galactose on one branch of the triantennary structure and terminal galactose residues on the other two branches. Binding assays and gel filtration experiments showed that this modified glycopeptide could bind to the sugar-binding sites of ricin. The ligand was activated at the 6-(N-methylamino)-6-deoxy-D-galactose residue by reaction with cyanuric chloride. The resulting dichlorotriazine derivative of the ligand reacts with ricin, forming a stable covalent linkage. The reaction was confined to the B-chain and was inhibited by lactose. Bovine serum albumin and ovalbumin were not modified by the activated ligand under similar conditions, and we conclude, therefore, that the reaction of the ligand with ricin B-chain was dependent upon specific binding to sugar-binding sites. Ricin that had its galactose-binding sites blocked by the covalent reaction with the activated ligand was purified by affinity chromatography. The major species in this fraction was found to contain 2 covalently linked ligands per ricin B-chain, while a minor species contained 3 ligands per B-chain. The cytotoxicity of blocked ricin was at least 1000-fold less than that of native ricin for cultured cells in vitro, even though the activity of the A-chain in a cell-free system was equal to that from native ricin. Modified ricin that contained only 1 covalently linked ligand was also purified. This fraction retained an ability to bind to galactose affinity columns, although with a lower affinity than ricin, and was only 5- to 20-fold less cytotoxic than native ricin.  相似文献   

12.
The nature of the saccharide-binding site of ricin D, which is a galactose- and N-acetylgalactosamine-specific lectin, was studied by chemical modification and spectroscopy. With excitation at 290 nm, ricin D displayed a fluorescence spectrum with a maximum at 335 nm. Upon binding of the specific saccharides, the spectrum shifted to shorter wavelength by 3 nm. However, binding of galactosamine and N-acetylgalactosamine failed to induce such a change in the fluorescence spectrum. The interaction of ricin D with its specific saccharides was analyzed in terms of the variation of the intensity at 320 nm as a function of saccharide concentration. The results indicate that the change in the fluorescence spectrum induced by saccharide binding is attributable to the binding of saccharide to the low-affinity (LA-) binding site of ricin D. The cytoagglutinating activity of ricin D decreased to 2% upon modification of two tryptophan residues/mol with N-bromosuccinimide at pH 4.0, but in the presence of galactose or lactose one tryptophan residue/mol remained unmodified, and a fairly high cytoagglutinating activity was retained. Galactosamine and N-acetylgalactosamine did not show such a protective effect. Spectroscopic analyses indicate that the decrease in the cytoagglutinating activity of ricin D upon tryptophan modification is principally due to the loss of the saccharide binding activity of the LA-binding site. The results suggest that one tryptophan residue is essential for saccharide binding at the LA-binding site, which can bind galactose and lactose but lacks the ability to bind N-acetylgalactosamine and galactosamine.  相似文献   

13.
Structure of ricin B-chain at 2.5 A resolution   总被引:2,自引:0,他引:2  
E Rutenber  J D Robertus 《Proteins》1991,10(3):260-269
The heterodimeric plant toxin ricin has been refined to 2.5 A resolution. The B-chain lectin (RTB) is described in detail. The protein has two major domains, each of which has a galactose binding site. RTB has no regular secondary structure but displays several omega loops. Each RTB domain is made of three copies of a primitive 40 residue folding unit, which pack around a pseudo threefold axis. In each domain, galactose binds in a shallow cleft formed by a three residue peptide kink on the bottom and an aromatic ring on the top. At the back of the cleft, an aspartate forms hydrogen bonds to the C3 and C4 hydroxyls of galactose, whereas a glutamine bonds to the C4 alcohol, helping to define specific epimer binding. In addition to analyzing the sugar binding mechanism, the assembly of subdomain units around the pseudo threefold axis of each domain is described. The subdomains contribute conserved Trp, Leu, and Ile residues to a compact central hydrophobic core. This tight threefold binding probably drives the peptide folding and stabilizes the protein structure.  相似文献   

14.
Desmosomes are intercellular junctions in which cadherin cell adhesion molecules are linked to the intermediate filament (IF) system. Desmoplakin is a member of the plakin family of IF-binding proteins. The C-terminal domain of desmoplakin (DPCT) mediates binding to IFs in desmosomes. The DPCT sequence contains three regions, termed A, B and C, consisting of 4.5 copies of a 38-amino acid repeat motif. We demonstrate that these regions form discrete subdomains that bind to IFs and report the crystal structures of domains B and C. In contrast to the elongated structures formed by other kinds of repeat motifs, the plakin repeats form a globular structure with a unique fold. A conserved basic groove found on the domain may represent an IF-binding site.  相似文献   

15.
This paper describes a protocol for the preparation of highly purified A (A1 and A2) and B chains of the plant toxin, ricin, and biochemical and biological characterization of these proteins. Intact ricin was bound to acid-treated Sepharose 4B and was split on the column into A and B chains with 2-mercaptoethanol. The A chains were eluted with borate buffer containing 2-mercaptoethanol. A1 and A2 were then partially separated by cation exchange chromatography and the contaminating B chain was removed by affinity chromatography on Sepharose-asialofetuin and Sepharose-monoclonal anti-B chain. The B chain was eluted from the Sepharose 4B column by treatment with galactose and was further purified by cation and anion exchange chromatography; contaminating A chains were removed by affinity chromatography on Sepharose-monoclonal anti-A chain. The purified A and B chains were active as determined by their ability to inhibit protein synthesis in a cell-free assay and their binding to asialofetuin, respectively. Furthermore, by polyacrylamide gel electrophoresis, toxicity in mice, and toxicity on several different cell types, both A and B chains were shown to be minimally cross-contaminated. Finally, it was shown that ammonium chloride significantly enhanced the nonspecific toxicity of B chains for cells in vitro. In contrast, ammonium chloride did not enhance either the nonspecific toxicity of A chains in vitro or the specific toxicity of A chain-containing immunotoxins prepared with the highly purified A1, A2 chains.  相似文献   

16.
Carbohydrate-binding module (CBM) family 13 includes the "R-type" or "ricin superfamily" beta-trefoil lectins. The C-terminal CBM, CBM13, of xylanase 10A from Streptomyces lividans is a family 13 CBM that is not only structurally similar to the "R-type" lectins but also somewhat functionally similar. The primary function of CBM13 is to bind the polysaccharide xylan, but it retains the ability of the R-type lectins to bind small sugars such as lactose and galactose. The association of CBM13 with xylan appears to involve cooperative and additive participation of three binding pockets in each of the three trefoil domains of CBM13, suggesting a novel mechanism of CBM-xylan interaction. Thus, the interaction of CBM13 with sugars displays considerable plasticity for which we provide a structural rationale. The high-resolution crystal structure of CBM13 was determined by multiple anomalous dispersion from a complex of CBM13 with a brominated ligand. Crystal structures of CBM13 in complex with lactose and xylopentaose revealed two distinct mechanisms of ligand binding. CBM13 has retained its specificity for lactose via Ricin-like binding in all of the three classic trefoil binding pockets. However, CBM13 has the ability to bind either the nonreducing galactosyl moiety or the reducing glucosyl moiety of lactose. The mode of xylopentaose binding suggests adaptive mutations in the trefoil sugar binding scaffold to accommodate internal binding on helical polymers of xylose.  相似文献   

17.
The role of the high mannose carbohydrate chains in the mechanism of action of ricin toxin was investigated. Ricin is taken up by two routes in macrophages, by binding to cell surface mannose receptors, or by binding of the ricin galactose receptor to cell surface glycoproteins. Removal of carbohydrate from ricin by periodate oxidation led to a large loss in toxicity via both routes of uptake by an effect on the B chain not due to a loss of galactose binding affinity. These data suggest that the carbohydrate chains of ricin B chain may be required for full toxicity. The pathway of uptake of ricin by the macrophage mannose receptor was found to differ in several respects from uptake via the galactose-specific pathway. Analysis of intoxication of macrophages by ricin in the presence of ammonium chloride suggested that mannose receptor bound ligand passes through acidic vesicles prior to translocation, unlike galactose bound ligand. Intoxication by ricin via galactose-specific uptake was potentiated by swainsonine but not by castanospermine, suggesting that ricin may be attacked by an endogenous mannosidase within the cell, and that ricin passes through either a lysosomal or a Golgi compartment prior to translocation.  相似文献   

18.
Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that a component of reconstituted powdered milk has a high binding affinity to ricin. We discovered that milk can competitively bind to and reduce the amount of toxin available to asialofetuin type II, which is used as a model to study the binding of ricin to galactose cell-surface receptors. Milk also removes ricin bound to the microtiter plate. In parallel experiments, we demonstrated by activity assay and by immuno-PCR that milk can bind competitively to 1 ng/ml ricin, reducing the amount of toxin uptake by the cells, and thus inhibit the biological activity of ricin. The inhibitory effect of milk on ricin activity in Vero cells was at the same level as by anti-ricin antibodies. We also found that (a) milk did not inhibit ricin at concentrations of 10 or 100 ng/ml; (b) autoclaving 10 and 100 ng/ml ricin in DMEM at 121 °C for 30 min completely abolished activity; and (c) milk did not affect the activity of another ribosome inactivating protein, Shiga toxin type 2 (Stx2), produced by pathogenic Escherichia coli O157:H7. Unlike ricin, which is internalized into the cells via a galactose-binding site, Stx2 is internalized through the cell surface receptor glycolipid globotriasylceramides Gb3 and Gb4. These observations suggest that ricin toxicity may possibly be reduced at room temperature by a widely consumed natural liquid food.  相似文献   

19.
4-Azidophenyl-beta-D-galactopyranoside and 4-diazophenyl-beta-D-galactopyranoside were used to inactivate ricin. Galactose, but not glucose, protected against inactivation as measured by the retention of the ability of ricin to bind to Bio-Gel A, a galactose-containing gel. Nearly complete inhibition of binding to Bio-Gel A, to monosaccharides, or to cell surface receptors could be achieved by reaction of ricin with either label, but neither label impaired the ability of the A chain to inhibit translation in vitro. The diazonium salt-modified ricin still inhibited cellular protein synthesis, but ricin modified by the photoactivated label was 280 times less efficient than ricin in inhibition of cellular protein synthesis.  相似文献   

20.
Ricin toxin is a glycoprotein which catalytically inactivates eukaryotic ribosomes by depurination of a single adenosine residue from the 28S ribosomal RNA. The enzymatic activity is present in the A chain of the toxin molecule, whereas the B chain contains two binding sites for galactose. Since it is highly potent in inhibiting protein synthesis, the A chain is used to prepare cytotoxic conjugates effective against tumor cells. Such chimeric proteins are highly selective and have a wide range of clinical applications. Extensive preclinical studies on these conjugates require large amounts of purified A chain. Native ricin A chain is heterogeneous, since plants produce a number of isoforms of ricin toxin. Purified, native preparations often contain two types of ricin A chain which differ in the extent of glycosylation. By cloning and expressing the gene of A chain, one could obtain homogeneous toxin molecules devoid of carbohydrates. In addition, structural changes in the toxin polypeptide could be introduced by in vitro mutagenesis, which can improve the pharmacological properties and antitumor activity. Earlier methods of expression strategies using Escherichia coli have yielded only moderate levels of expression. In the present study, the coding region of ricin A chain was cloned into pET3b, a high-level expression vector under the control of the T7 promoter. Recombinant ricin A chain produced by this construct has an additional 14 amino acid residues at the NH2 terminus. Subsequently, a NdeI site was created at the 5' end of the gene by oligonucleotide-directed mutagenesis. The modified fragment was then introduced into pET3b vector to produce toxin polypeptide identical to the native sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号