首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulatory T cells play a major role in modulating the immune response. However, most information on these cells centers on autoimmunity, and there is also considerable controversy on the functional characteristics of these cells. Here we provide direct in vitro and in vivo evidence that CD4+CD25+ regulatory T cells inhibit the differentiation and functions of both Th1 and Th2 cells. Importantly, CD4+CD25+ T cells suppressed the disease development of Leishmania major infection in SCID mice reconstituted with naive CD4+CD25- T cells. Furthermore, CD4+CD25+ T cells inhibited the development of colitis induced by both Th1 and Th2 cells in SCID mice. Our results therefore document that CD4+CD25+ regulatory T cells suppress both Th1 and Th2 cells and that these regulatory T cells have a profound therapeutic potential against diseases induced by both Th1 and Th2 cells in vivo.  相似文献   

2.
3.
BALB/c IL-4Ralpha(-/-) mice, despite the absence of IL-4/IL-13 signaling and potent Th2 responses, remain highly susceptible to Leishmania major substain LV39 due exclusively to residual levels of IL-10. To address the contribution of CD4(+)CD25(+) T regulatory (Treg) cells to IL-10-mediated susceptibility, we depleted CD4(+)CD25(+) cells in vivo and reconstituted IL-4Ralpha x RAG2 recipients with purified CD4(+)CD25(-) T cells. Although anti-CD25 mAb treatment significantly decreased parasite numbers in IL-4Ralpha(-/-) mice, treatment with anti-IL-10R mAb virtually eliminated L. major parasites in both footpad and dermal infection sites. In addition, IL-4Ralpha x RAG2 mice reconstituted with CD4(+) cells depleted of CD25(+) Treg cells remained highly susceptible to infection. Analysis of L. major-infected BALB/c and IL-4Ralpha(-/-) inflammatory sites revealed that the majority of IL-10 was secreted by the CD4(+)Foxp3(-) population, with a fraction of IL-10 coming from CD4(+)Foxp3(+) Treg cells. All T cell IFN-gamma production was also derived from the CD4(+)Foxp3(-) population. Nevertheless, the IL-4Ralpha(-/-)-infected ear dermis, but not draining lymph nodes, consistently displayed 1.5- to 2-fold greater percentages of CD4(+)CD25(+) and CD4(+)Foxp3(+) Treg cells compared with the BALB/c-infected dermis. Thus, CD4(+)Foxp3(-) T cells are a major source of IL-10 that disrupts IFN-gamma activity in L. major-susceptible BALB/c mice. However, the increase in CD4(+)Foxp3(+) T cells within the IL-4Ralpha(-/-) dermis implies a possible IL-10-independent role for Treg cells within the infection site, and may indicate a novel immune escape mechanism used by L. major parasites in the absence of IL-4/IL-13 signaling.  相似文献   

4.
5.
Effector responses induced by polarized CD4+ T helper 2 (Th2) cells drive nonhealing responses in BALB/c mice infected with Leishmania major. Th2 cytokines IL-4 and IL-13 are known susceptibility factors for L. major infection in BALB/c mice and induce their biological functions through a common receptor, the IL-4 receptor alpha chain (IL-4Ralpha). IL-4Ralpha-deficient BALB/c mice, however, remain susceptible to L. major infection, indicating that IL-4/IL-13 may induce protective responses. Therefore, the roles of polarized Th2 CD4+ T cells and IL-4/IL-13 responsiveness of non-CD4+ T cells in inducing non-healer or healer responses have yet to be elucidated. CD4+ T cell-specific IL-4Ralpha (Lck(cre)IL-4Ralpha(-/lox)) deficient BALB/c mice were generated and characterized to elucidate the importance of IL-4Ralpha signaling during cutaneous leishmaniasis in the absence of IL-4-responsive CD4+ T cells. Efficient deletion was confirmed by loss of IL-4Ralpha expression on CD4+ T cells and impaired IL-4-induced CD4+ T cell proliferation and Th2 differentiation. CD8+, gammadelta+, and NK-T cells expressed residual IL-4Ralpha, and representative non-T cell populations maintained IL-4/IL-13 responsiveness. In contrast to IL-4Ralpha(-/lox) BALB/c mice, which developed ulcerating lesions following infection with L. major, Lck(cre)IL-4Ralpha(-/lox) mice were resistant and showed protection to rechallenge, similar to healer C57BL/6 mice. Resistance to L. major in Lck(cre)IL-4Ralpha(-/lox) mice correlated with reduced numbers of IL-10-secreting cells and early IL-12p35 mRNA induction, leading to increased delayed type hypersensitivity responses, interferon-gamma production, and elevated ratios of inducible nitric oxide synthase mRNA/parasite, similar to C57BL/6 mice. These data demonstrate that abrogation of IL-4 signaling in CD4+ T cells is required to transform non-healer BALB/c mice to a healer phenotype. Furthermore, a beneficial role for IL-4Ralpha signaling in L. major infection is revealed in which IL-4/IL-13-responsive non-CD4+ T cells induce protective responses.  相似文献   

6.
7.
We used a TCR-transgenic mouse to investigate whether Th2-mediated airway inflammation is influenced by Ag-specific CD4+CD25+ regulatory T cells. CD4+CD25+ T cells from DO11.10 mice expressed the transgenic TCR and mediated regulatory activity. Unexpectedly, depletion of CD4+CD25+ T cells before Th2 differentiation markedly reduced the expression of IL-4, IL-5, and IL-13 mRNA and protein when compared with unfractionated (total) CD4+ Th2 cells. The CD4+CD25--derived Th2 cells also expressed decreased levels of IL-10 but were clearly Th2 polarized since they did not produce any IFN-gamma. Paradoxically, adoptive transfer of CD4+CD25--derived Th2 cells into BALB/c mice induced an elevated airway eosinophilic inflammation in response to OVA inhalation compared with recipients of total CD4+ Th2 cells. The pronounced eosinophilia was associated with reduced levels of IL-10 and increased amounts of eotaxin in the bronchoalveolar lavage fluid. This Th2 phenotype characterized by reduced Th2 cytokine expression appeared to remain stable in vivo, even after repeated exposure of the animals to OVA aerosols. Our results demonstrate that the immunoregulatory properties of CD4+CD25+ T cells do extend to Th2 responses. Specifically, CD4+CD25+ T cells play a key role in modulating Th2-mediated pulmonary inflammation by suppressing the development of a Th2 phenotype that is highly effective in vivo at promoting airway eosinophilia. Conceivably, this is partly a consequence of regulatory T cells facilitating the production of IL-10.  相似文献   

8.
9.
Regulatory T cells are critical in regulating the immune response, and therefore play an important role in the defense against infection and control of autoimmune diseases. However, a therapeutic role of regulatory T cells in an established disease has not been fully established. In this study, we provide direct evidence that CD4(+)CD25(+) regulatory T cells can cure an established, severe, and progressive colitis. SCID mice developed severe colitis when adoptively transferred with naive CD4(+)CD25(-) T cells and infected with the protozoan parasite Leishmania major. The disease development can be completely halted and symptoms reversed, with a healthy outcome, by transferring freshly isolated or activated CD4(+)CD25(+) T cells from syngeneic donors. The therapeutic effect of the regulatory T cells was completely blocked by treatment of the recipients with anti-IL-10R, anti-CTLA4, or anti-TGF-beta Ab. However, the resurgence of colitis under these treatments was not accompanied by the reactivation of Th1 or Th2 response nor was it correlated to the parasite load. These results therefore demonstrate that CD4(+)CD25(+) T cells are therapeutic and that the effect is mediated by both IL-10/TGF-beta-dependent and independent mechanisms. Furthermore, colitis can manifest independent of Th1 and Th2 responses.  相似文献   

10.
The role of T lymphocyte subpopulations in the protection against intraperitoneal (i.p.) and peroral Encephalitozoon cuniculi infections was compared in adoptive-transfer experiments using severe combined immunodeficient mice. Whereas CD8+ T cell-depleted, but not CD4+ T cell-depleted, BALB/c splenocytes failed to protect the mice against i.p. infection, only SCID mice reconstituted with both CD4+ T lymphocyte- and CD8+ T lymphocyte-depleted splenocytes succumbed to peroral infection. The results indicate that whereas CD8+ T cells are critical for the protection against an i.p. E. cuniculi infection, both CD4+ and CD8+ T lymphocyte subpopulations play a substantive protective role in a peroral infection, i.e., natural route of infection.  相似文献   

11.
Leishmania major disseminates in genetically susceptible BALB/c mice to cause fatal disease. Progressive infection has been linked to the failure of parasite-specific Th1, IFN-gamma-producing, CD4+ T lymphocytes to expand and direct macrophage activation and control of intracellular parasitism. In contrast, Th2 CD4+ cell expansion accompanies disease progression. Immunomodulation using CD4 cell depletion at the time of infection results in control of infection and Th1 CD4+ cell expansion. A Th1-like cell line, H1A, was established from the draining lymph nodes of an anti-CD4-pretreated BALB/c mouse infected with L. major, H1A was CD4, TCR(+)-alpha/beta, and released IL-2 and IFN-gamma in response to parasite Ag. A Th2-like cell line, U1A, was established from the lymph node cells of an infected BALB/c mouse that was also CD4, TCR(+)-alpha/beta but released IL-4 and IL-5 after stimulation. Mice with severe combined immunodeficiency were reconstituted with H1A and U1A before infection with L. major. Non-reconstituted mice were unable to restrict parasite growth. Mice reconstituted with H1A healed infection, whereas mice reconstituted with U1A suffered exacerbation of disease. Analysis of spleen cells by flow cytometry confirmed the reconstitution of CD4+ cells in both instances, and stimulation with mitogen established that the lymphokine profile of the donor cells had been maintained during 6 to 8 wk of infection. Histologic analysis of the lesions confirmed migration of donated cells to sites of infection. Neutralization of IFN-gamma in H1A-reconstituted mice and IL-4 in U1A-reconstituted mice reversed the disease phenotype mediated by the two cell lines. These data demonstrate the capacity of CD4+ T cells alone to modulate both positively and negatively the course of leishmaniasis in a lymphokine-dependent manner.  相似文献   

12.
Rapid production of IL-4 by Leishmania homolog of mammalian RACK1 (LACK)-reactive CD4(+) T cells expressing the V beta 4-V alpha 8 TCR chains has been shown to drive aberrant Th2 cell development and susceptibility to Leishmania major in BALB/c mice. In contrast, mice from resistant strains fail to express this early IL-4 response. However, administration of either anti-IL-12 or -IFN-gamma at the initiation of infection allows the expression of this early IL-4 response in resistant mice. In this work we show that Leishmania homolog of mammalian RACK1-reactive CD4(+) T cells also expressing the V beta 4-V alpha 8 TCR chains are the source of the early IL-4 response to L. major in resistant mice given anti-IL-12 or -IFN-gamma Abs only at the onset of infection. Strikingly, these cells were found to be required for the reversal of the natural resistance of C57BL/6 mice following a single administration of anti-IL-12 or -IFN-gamma Abs. Together these results suggest that a deficiency in mechanisms capable of down-regulating the early IL-4 response to L. major contributes to the exquisite susceptibility of BALB/c mice to L. major.  相似文献   

13.
In BALB/c mice infected with Leishmania major, early secretion of IL-4 leads to a Th2-type response and nonhealing. We explored the role of IL-4-induced down-regulation of the IL-12Rbeta2 chain in the establishment of this Th2 response. First, we showed that the draining lymph nodes of resistant C57BL/6 mice infected with L. major were enriched in CD4+/IL-12Rbeta2 chain+ cells producing IFN-gamma. Next, we demonstrated that BALB/c background mice bearing an IL-12Rbeta2-chain transgene manifested a nonhealing phenotype similar to wild-type littermates despite the persistence of their ability to undergo STAT4 activation. Finally, we found that such transgenic mice display more severe infection than wild-type littermates when treated with IL-12 7 days after infection, and under this condition, the mice display increased Leishmania Ag-induced IL-4 secretion. These studies indicate that although CD4+/IL-12Rbeta2 chain+ T cells are important components of the Th1 response, maintenance of IL-12Rbeta2 chain expression is not sufficient to change a Th2 response to a Th1 response in vivo and thus to allow BALB/c mice to heal L. major infection.  相似文献   

14.
Limiting dilution analysis was used to estimate the frequency of clonogenic Ag-specific CD4+ T lymphocytes in draining lymph nodes of mice over the course of infection with Leishmania major, and to measure the production of IL-2, IL-3, IL-4, IFN-gamma, and TNF by the resultant clones. Infection of both genetically susceptible BALB/c ("non-healer") and resistant C57BL/6 ("healer") mice resulted in at least a fourfold increase in the frequency (to about 0.3%) and at least a 10-fold increase in the total number of lymph node CD4+ cells that formed clones when cultured with L. major Ag in vitro. At 1 wk after infection, the majority of clones from BALB/c mice secreted IL-4 (precursor frequency 0.15%) and fewer secreted IFN-gamma (0.05%); this pattern remained constant for at least 8 wk after infection. In C57BL/6 mice, however, a high precursor frequency of IL-4-secreting clones was measured in the first 1 to 2 wk when the mice had lesions, but resolution of infection was associated with a decrease in the frequency of IL-4-secreting clones (from 0.13% at 2 wk to 0.03% at 4 wk) and an increase in the frequency of IFN-gamma-secreting clones (from 0.08% to 0.22%). At all stages of infection, most clones from either mouse strain secreted IL-3 and very few secreted TNF. Analysis of PCR-amplified cDNA from draining lymph nodes of infected mice also revealed that IL-4 and IFN-gamma mRNA were expressed in both mouse strains early in infection. IL-4 mRNA was the major species at 2 and 6 wk after infection in BALB/c mice, but declined relative to IFN-gamma mRNA over this time in C57BL/6 lymph nodes. Precursor frequency estimates of lymphokine-secreting CD4+ cells in draining lymph nodes therefore correlated with lymphokine expression patterns in vivo. Analysis of a panel of individual short term clones derived from mice 1 wk after infection revealed marked heterogeneity in lymphokine production patterns. In BALB/c mice, 49% secreted IL-4 without IFN-gamma, 18% secreted IFN-gamma without IL-4, and 14% secreted both IL-4 and IFN-gamma. Similarly in C57BL/6 mice, 39% secreted IL-4, 20% secreted IFN-gamma, and 17% secreted both lymphokines. Many of the clones also produced IL-3 and/or IL-2. Together the data suggest that both IL-4 and IFN-gamma are synthesized early in infection of susceptible and resistant mice as assessed by mRNA and precursor frequency analyses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The first experimental evidence for the development of polarized CD4+ Th1 and Th2 responses in vivo has been obtained using the murine model of infection with Leishmania major, an intracellular parasite of macrophages in their vertebrate host. Genetically determined resistance and susceptibility to infection with this parasite have been clearly demonstrated to result from the development of polarized Th1 and Th2 responses, respectively. Using this model system, the dominant role of cytokines in the induction of polarized CD4+ responses has been validated in vivo. The requisite role of IL-4 in mediating both Th2 differentiation and susceptibility to infection in BALB/c mice has directed interest towards the search for evidence of IL-4 production early after infection and identification of its cellular source. We have been able to demonstrate a burst of IL-4 production in susceptible BALB/c mice within the first day of infection with L. major and could establish that this rapidly produced IL-4 instructed Th2 lineage commitment of subsequently activated CD4+ T cells and stabilized this commitment by downregulating IL-12 Rbeta2 chain expression, resulting in susceptibility to infection. Strikingly, this early IL-4 response to infection resulted from the cognate recognition of a single epitope in a distinctive antigen, LACK, from this complex microorganism by a restricted population of CD4+ T cells that express Vbeta4-Valpha8 T cell receptors.  相似文献   

16.
We studied the induction, severity and rate of progression of inflammatory bowel disease (IBD) induced in SCID mice by the adoptive transfer of low numbers of the following purified BALB/c CD4+ T cell subsets: 1) unfractionated, peripheral, small (resting), or large (activated) CD4+ T cells; 2) fractionated, peripheral, small, or large, CD45RBhigh or CD45RBlow CD4+ T cells; and 3) peripheral IL-12-unresponsive CD4+ T cells from STAT-4-deficient mice. The adoptive transfer into SCID host of comparable numbers of CD4+ T cells was used to assess the colitis-inducing potency of these subsets. Small CD45RBhigh CD4+ T lymphocytes and activated CD4+ T blasts induced early (6-12 wk posttransfer) and severe disease, while small resting and unfractionated CD4+ T cells or CD45RBlow T lymphocytes induced a late-onset disease 12-16 wk posttransfer. SCID mice transplanted with STAT-4-/- CD4+ T cells showed a late-onset IBD manifest > 20 wk posttransfer. In SCID mice with IBD transplanted with IL-12-responsive CD4+ T cells, the colonic lamina propria CD4+ T cells showed a mucosa-seeking memory/effector CD45RBlow Th1 phenotype abundantly producing IFN-gamma and TNF-alpha. In SCID mice transplanted with IL-12-unresponsive STAT-4-/- CD4+ T cells, the colonic lamina propria, mesenteric lymph node, and splenic CD4+ T cells produced very little IFN-gamma but abundant levels of TNF-alpha. The histopathologic appearance of colitis in all transplanted SCID mice was similar. These data indicate that CD45RBhigh and CD45RBlow, IL-12-responsive and IL-12-unresponsive CD4+ T lymphocytes and lymphoblasts have IBD-inducing potential though of varying potency.  相似文献   

17.
18.
Intraperitoneal proliferation of the metacestode stage of Echinococcus multilocularis in experimentally infected mice is followed by an impaired host immune response favoring parasite survival. We here demonstrate that infection in chronically infected mice was associated with a 3-fold increase of the percentages of CD4+ and CD8+ peritoneal T (pT) cells compared to uninfected controls. pT cells of infected mice expressed high levels of IL-4 mRNA, while only low amounts of IFN-γ mRNA were detected, suggesting that a Th2-biased immune response predominated the late stage of disease. Peritoneal dendritic cells from infected mice (AE-pDCs) expressed high levels of TGF-β mRNA and very low levels of IL-10 and IL-12 (p40) mRNA, and the expression of surface markers for DC-maturation such as MHC class II (Ia) molecules, CD80, CD86 and CD40 was down-regulated. In contrast to pDCs from non-infected mice, AE-pDCs did not enhance Concanavalin A (ConA)-induced proliferation when added to CD4+ pT and CD8+ pT cells of infected and non-infected mice, respectively. In addition, in the presence of a constant number of pDCs from non-infected mice, the proliferation of CD4+ pT cells obtained from infected animals to stimulation with ConA was lower when compared to the responses of CD4+ pT cells obtained from non-infected mice. This indicated that regulatory T cells (Treg) may interfere in the complex immunological host response to infection. Indeed, a subpopulation of regulatory CD4+ CD25+ pT cells isolated from E. multilocularis-infected mice reduced ConA-driven proliferation of CD4+ pT cells. The high expression levels of Foxp3 mRNA by CD4+ and CD8+ pT cells suggested that subpopulations of regulatory CD4+ Foxp3+ and CD8+ Foxp3+ T cells were involved in modulating the immune responses within the peritoneal cavity of E. multilocularis-infected mice.  相似文献   

19.
The outcome of experimental murine infection with different strains of malaria parasites, ranging from spontaneous cure to death, depends largely on the establishment of effective Th1 responses during the early stages of infection. Here we describe the disparity in CD4(+)CD25(+) regulatory T cell (Treg) responses during the early stages of infection with the highly virulent Plasmodium yoelii 17XL strain in susceptible (BALB/c) and resistant (DBA/2) mice. An increased proportion of Tregs 3-4 days post inoculation, co-occurring with elevated IL-10 levels, is observed in BALB/c but not in DBA/2 mice. These findings suggest that Treg proliferation might be causally associated with the suppression of Th1 responses during early malaria infection, leading to increase parasitemia and mortality in BALB/c mice, possibly in an IL-10-dependent manner.  相似文献   

20.
Inflammatory bowel disease (IBD), which is characterized by a dysregulated intestinal immune response, is postulated to be controlled by intestinal self-antigens and bacterial Ags. Fecal extracts called cecal bacterial Ag (CBA) have been implicated in the pathogenesis of IBD. In this study, we identified a major protein of CBA related to the pathogenesis of IBD and established a therapeutic approach using Ag-pulsed regulatory dendritic cells (Reg-DCs). Using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry, carbonic anhydrase I (CA I) was identified as a major protein of CBA. Next, we induced colitis by transfer of CD4(+)CD25(-) T cells obtained from BALB/c mice into SCID mice. Mice were treated with CBA- or CA I-pulsed Reg-DCs (Reg-DCs(CBA) or Reg-DCs(CA1)), which expressed CD200 receptor 3 and produced high levels of IL-10. Treatment with Reg-DCs(CBA) and Reg-DCs(CA1) ameliorated colitis. This effect was shown to be Ag-specific based on no clinical response of irrelevant Ag (keyhole limpet hemocyanin)-pulsed Reg-DCs. Foxp3 mRNA expression was higher but RORγt mRNA expression was lower in the mesenteric lymph nodes (MLNs) of the Reg-DCs(CA1)-treated mice compared with those in the MLNs of control mice. In the MLNs, Reg-DCs(CA1)-treated mice had higher mRNA expression of IL-10 and TGF-β1 and lower IL-17 mRNA expression and protein production compared with those of control mice. In addition, Reg-DCs(CBA)-treated mice had higher Foxp3(+)CD4(+)CD25(+) and IL-10-producing regulatory T cell frequencies in MLNs. In conclusion, Reg-DCs(CA1) protected progression of colitis induced by CD4(+)CD25(-) T cell transfer in an Ag-specific manner by inducing the differentiation of regulatory T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号