首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many actions of cyclooxygenase-2 in cellular dynamics and in cancer   总被引:84,自引:0,他引:84  
Cyclooxygenase-2 (COX-2) is the inducible isoform of cyclooxygenase, the enzyme that catalyzes the rate-limiting step in prostaglandin synthesis from arachidonic acid. Various prostaglandins are produced in a cell type-specific manner, and they elicit cellular functions via signaling through G-protein coupled membrane receptors, and in some cases, through the nuclear receptor PPAR. COX-2 utilization of arachidonic acid also perturbs the level of intracellular free arachidonic acid and subsequently affects cellular functions. In a number of cell and animal models, induction of COX-2 has been shown to promote cell growth, inhibit apoptosis and enhance cell motility and adhesion. The mechanisms behind these multiple actions of COX-2 are largely unknown. Compelling evidence from genetic and clinical studies indicates that COX-2 upregulation is a key step in carcinogenesis. Overexpression of COX-2 is sufficient to cause tumorigenesis in animal models and inhibition of the COX-2 pathway results in reduction in tumor incidence and progression. Therefore, the potential for application of non-steroidal anti-inflammatory drugs as well as the recently developed COX-2 specific inhibitors in cancer clinical practice has drawn tremendous attention in the past few years. Inhibition of COX-2 promises to be an effective approach in the prevention and treatment of cancer, especially colorectal cancer.  相似文献   

2.
3.
Aspirin consumption has been reported to be able to reduce colorectal cancer risk in humans and in animal models of colon carcinogenesis. Although the mechanism involved in such an effect is not yet clear, both prostaglandin-dependent and -independent effects have been proposed. Using HT-29 Glc(-/+)cells, which originate from a human colon adenocarcinoma, we demonstrated in this study a dose-dependent effect of millimolar concentration of aspirin on cell growth that was concomitant with a rapid accumulation of the cells in the G0/G1 phase, followed by an accumulation in the G2/M phase and by a minor increase in the proportion of cells undergoing nuclear condensation. Cell membrane integrity and cell release into the culture medium were not affected by this treatment. The aspirin effects were apparently unrelated to prostaglandin biosynthesis inhibition, since although these cells were found to express high levels of cyclooxygenase 1 (COX-1) and low levels of COX-2 proteins, they did not produce any measurable net amounts of prostaglandins, based on both utilization of radiolabelled arachidonic acid and the radioimmunoassay of prostaglandins E2 and F2 alpha. In contrast, we identified polyamine biosynthesis as a cellular target of aspirin, since the treatment of HT-29 Glc(-/+) cells with aspirin reduced the flux of L-ornithine through ornithine decarboxylase, an effect that could not be explained by an acute action of the drug on the ornithine decarboxylase catalytic activity. Since polyamine biosynthesis is strictly necessary for HT-29 cell growth, our data suggest that reduced flux through ornithine decarboxylase may participate in the antiproliferative activity of aspirin towards colonic tumoral cells. It is concluded that in HT-29 Glc(-/+) cells that are not functional for prostaglandin production, aspirin can affect cell growth, cell cycle, and polyamine biosynthesis without affecting cell membrane integrity.  相似文献   

4.
Arachidonic acid is metabolized to prostaglandin H(2) (PGH(2)) by cyclooxygenase (COX). COX-2, the inducible COX isozyme, has a key role in intestinal polyposis. Among the metabolites of PGH(2), PGE(2) is implicated in tumorigenesis because its level is markedly elevated in tissues of intestinal adenoma and colon cancer. Here we show that homozygous deletion of the gene encoding a cell-surface receptor of PGE(2), EP2, causes decreases in number and size of intestinal polyps in Apc(Delta 716) mice (a mouse model for human familial adenomatous polyposis). This effect is similar to that of COX-2 gene disruption. We also show that COX-2 expression is boosted by PGE(2) through the EP2 receptor via a positive feedback loop. Homozygous gene knockout for other PGE(2) receptors, EP1 or EP3, did not affect intestinal polyp formation in Apc(Delta 716) mice. We conclude that EP2 is the major receptor mediating the PGE2 signal generated by COX-2 upregulation in intestinal polyposis, and that increased cellular cAMP stimulates expression of more COX-2 and vascular endothelial growth factor in the polyp stroma.  相似文献   

5.
Colorectal cancer is a major cause of mortality and whilst up to 80% of sporadic colorectal tumours are considered preventable, trends toward increasing obesity suggest the potential for a further increase in its worldwide incidence. Novel methods of colorectal cancer prevention and therapy are therefore of considerable importance. Non-steroidal anti-inflammatory drugs (NSAIDs) are chemopreventive against colorectal cancer, mainly through their inhibitory effects on the cyclooxygenase isoform COX-2. COX enzymes represent the committed step in prostaglandin biosynthesis and it is predominantly increased COX-2-mediated prostaglandin-E2 (PGE2) production that has a strong association with colorectal neoplasia, by promoting cell survival, cell growth, migration, invasion and angiogenesis. COX-1 and COX-2 inhibition by traditional NSAIDs (for example, aspirin) although chemopreventive have some side effects due to the role of COX-1 in maintaining the integrity of the gastric mucosa. Interestingly, the use of COX-2 selective NSAIDs has also shown promise in the prevention/treatment of colorectal cancer while having a reduced impact on the gastric mucosa. However, the prolonged use of high dose COX-2 selective inhibitors is associated with a risk of cardiovascular side effects. Whilst COX-2 inhibitors may still represent viable adjuvants to current colorectal cancer therapy, there is an urgent need to further our understanding of the downstream mechanisms by which PGE2 promotes tumorigenesis and hence identify safer, more effective strategies for the prevention of colorectal cancer. In particular, PGE2 synthases and E-prostanoid receptors (EP1-4) have recently attracted considerable interest in this area. It is hoped that at the appropriate stage, selective (and possibly combinatorial) inhibition of the synthesis and signalling of those prostaglandins most highly associated with colorectal tumorigenesis, such as PGE2, may have advantages over COX-2 selective inhibition and therefore represent more suitable targets for long-term chemoprevention. Furthermore, as COX-2 is found to be overexpressed in cancers such as breast, gastric, lung and pancreatic, these investigations may also have broad implications for the prevention/treatment of a number of other malignancies.  相似文献   

6.
Hepatic stellate cells (HSC) are central to liver fibrosis. The eicosanoid pathway and cyclooxygenase-2 (COX-2) may be an important signaling mechanism in HSC. We investigated the role of COX-2, prostaglandin E(2) (PGE(2)) and prostaglandin I(2) (PGI(2)) in proliferation of LI90, an immortalized cell line of HSC. Our results showed that COX-2 was upregulated by platelet-derived growth factor (PDGF), a mitogen in HSC. COX-2 was responsible for the production of PGE(2) and PGI(2) in PDGF-stimulated LI90 cells. Furthermore, we demonstrated that COX-2 and PGE(2) mediated the proliferative response of LI90 to PDGF while synthetic analogue of PGI(2) exhibited anti-proliferative effect. Our findings suggest complex interactions of prostaglandins in liver fibrogenesis. In vivo studies using animal models are needed to elucidate the effect of COX-2 inhibition by non-steroidal anti-inflammatory drugs or COX-2 inhibitor in hepatic fibrosis.  相似文献   

7.
Colorectal cancer is a major cause of mortality and whilst up to 80% of sporadic colorectal tumours are considered preventable, trends toward increasing obesity suggest the potential for a further increase in its worldwide incidence. Novel methods of colorectal cancer prevention and therapy are therefore of considerable importance. Non-steroidal anti-inflammatory drugs (NSAIDs) are chemopreventive against colorectal cancer, mainly through their inhibitory effects on the cyclooxygenase isoform COX-2. COX enzymes represent the committed step in prostaglandin biosynthesis and it is predominantly increased COX-2-mediated prostaglandin-E2 (PGE2) production that has a strong association with colorectal neoplasia, by promoting cell survival, cell growth, migration, invasion and angiogenesis. COX-1 and COX-2 inhibition by traditional NSAIDs (for example, aspirin) although chemopreventive have some side effects due to the role of COX-1 in maintaining the integrity of the gastric mucosa. Interestingly, the use of COX-2 selective NSAIDs has also shown promise in the prevention/treatment of colorectal cancer while having a reduced impact on the gastric mucosa. However, the prolonged use of high dose COX-2 selective inhibitors is associated with a risk of cardiovascular side effects. Whilst COX-2 inhibitors may still represent viable adjuvants to current colorectal cancer therapy, there is an urgent need to further our understanding of the downstream mechanisms by which PGE2 promotes tumorigenesis and hence identify safer, more effective strategies for the prevention of colorectal cancer. In particular, PGE2 synthases and E-prostanoid receptors (EP1–4) have recently attracted considerable interest in this area. It is hoped that at the appropriate stage, selective (and possibly combinatorial) inhibition of the synthesis and signalling of those prostaglandins most highly associated with colorectal tumorigenesis, such as PGE2, may have advantages over COX-2 selective inhibition and therefore represent more suitable targets for long-term chemoprevention. Furthermore, as COX-2 is found to be overexpressed in cancers such as breast, gastric, lung and pancreatic, these investigations may also have broad implications for the prevention/treatment of a number of other malignancies.  相似文献   

8.
Blockade of angiogenesis is a promising strategy to suppress tumor growth, invasion, and metastasis. Vascular endothelial growth factor (VEGF), which binds to tyrosine kinase receptors [VEGF receptors (VEGFR) 1 and 2], is the mediator of angiogenesis and mitogen for endothelial cells. Cyclooxygenase-2 (COX-2) plays an important role in the promoting action of nicotine on gastric cancer growth. However, the action of nicotine and the relationship between COX-2 and VEGF/VEGFR system in tumorigenesis remain undefined. In this study, the effects of nicotine in tumor angiogenesis, invasiveness, and metastasis were studied with sponge implantation and Matrigel membrane models. Nicotine (200 microg/mL) stimulated gastric cancer cell proliferation, which was blocked by SC-236 (a highly selective COX-2 inhibitor) and CBO-P11 (a VEGFR inhibitor). This was associated with decreased VEGF levels as well as VEGFR-2 but not VEGFR-1 expression. Topical injection of nicotine enhanced tumor-associated vascularization, with a concomitant increase in VEGF levels in sponge implants. Again, application of SC-236 (2 mg/kg) and CBO-P11 (0.4 mg/kg) partially attenuated vascularization by approximately 30%. Furthermore, nicotine enhanced tumor cell invasion through the Matrigel membrane by 4-fold and promoted migration of human umbilical vein endothelial cells in a cocultured system with gastric cancer cells. The activity of matrix metalloproteinases 2 and 9 and protein expressions of plasminogen activators (urokinase-type plasminogen activator and its receptor), which are the indicators of invasion and migration processes, were increased by nicotine but blocked by COX-2 and VEGFR inhibitors. Taken together, our results reveal that the promoting action of nicotine on angiogenesis, tumor invasion, and metastasis is COX-2/VEGF/VEGFR dependent.  相似文献   

9.
We previously demonstrated that angiotensin II (Ang II) receptor signaling is involved in azoxymethane-induced mouse colon tumorigenesis. In order to clarify the role of Ang II in COX-2 expression in the intestinal epithelium, the receptor subtype-specific effect on COX-2 expression in a rat intestinal epithelial cell line (RIE-1) has been investigated. Ang II dose- and time-dependently increased the expression of COX-2, but not COX-1 mRNA and protein. This stimulation was completely blocked by the AT(1) receptor antagonist but not the AT(2) receptor antagonist. Ang II and lipopolysaccharide (LPS) additively induced COX-2 protein in RIE-1 cells, whereas the LPS-induced COX-2 expression was significantly attenuated by low concentrations of Ang II or the AT(2) agonistic peptide CGP-42112A only in AT(2) over-expressed cells. These data indicate that Ang II bi-directionally regulates COX-2 expression via both AT(1) and AT(2) receptors. Control of COX-2 expression through Ang II signaling may have significance in cytokine-induced COX-2 induction and colon tumorigenesis.  相似文献   

10.
Cyclooxygenase-2 (COX-2) is a cellular enzyme in the eicosanoid synthetic pathway that mediates the synthesis of prostaglandins from arachidonic acid. The eicosanoids function as critical regulators of a number of cellular processes, including the acute and chronic inflammatory response, hemostasis, and the innate immune response. Human cytomegalovirus (HCMV), which does not encode a viral COX-2 isoform, has been shown to induce cellular COX-2 expression. Importantly, although the precise role of COX-2 in CMV replication is unknown, COX-2 induction was shown to be critical for normal HCMV replication. In an earlier study, we identified an open reading frame (Rh10) within the rhesus cytomegalovirus (RhCMV) genome that encoded a putative protein (designated vCOX-2) with high homology to cellular COX-2. In the current study, we show that vCOX-2 is expressed with early-gene kinetics during RhCMV infection, resulting in production of a 70-kDa protein. Consistent with the expression of a viral COX-2 isoform, cellular COX-2 expression was not induced during RhCMV infection. Finally, analysis of growth of recombinant RhCMV with vCOX-2 deleted identified vCOX-2 as a critical determinant for replication in endothelial cells.  相似文献   

11.
Potential role of microsomal prostaglandin E synthase-1 in tumorigenesis   总被引:8,自引:0,他引:8  
Microsomal prostaglandin E2 synthase-1 (mPGES-1) is a stimulus-inducible enzyme that functions downstream of cyclooxygenase (COX)-2 in the PGE2-biosynthetic pathway. Given the accumulating evidence that COX-2-derived PGE2 participates in the development of various tumors, including colorectal cancer, we herein examined the potential involvement of mPGES-1 in tumorigenesis. Immunohistochemical analyses demonstrated the expression of both COX-2 and mPGES-1 in human colon cancer tissues. HCA-7, a human colorectal adenocarcinoma cell line that displays COX-2- and PGE2-dependent proliferation, expressed both COX-2 and mPGES-1 constitutively. Treatment of HCA-7 cells with an mPGES-1 inhibitor or antisense oligonucleotide attenuated, whereas overexpression of mPGES-1 accelerated, PGE2 production and cell proliferation. Moreover, cotransfection of COX-2 and mPGES-1 into HEK293 cells resulted in cellular transformation manifested by colony formation in soft agar culture and tumor formation when implanted subcutaneously into nude mice. cDNA array analyses revealed that this mPGES-1-directed cellular transformation was accompanied by changes in the expression of a variety of genes related to proliferation, morphology, adhesion, and the cell cycle. These results collectively suggest that aberrant expression of mPGES-1 in combination with COX-2 can contribute to tumorigenesis.  相似文献   

12.
Squamous cell carcinoma is the second most common form of skin cancer with the incidence expected to double over the next 20 years. Inflammation is believed to be a critical component in skin cancer progression. Therefore, understanding genes involved in the regulation of inflammatory pathways is vital to the design of targeted therapies. Numerous studies show cyclooxygenases (COXs) play an essential role in inflammation-associated cancers. Tpl2 (MAP3K8) is a protein kinase in the MAP Kinase signal transduction cascade. Previous research using a two-stage skin carcinogenesis model revealed that Tpl2 −/− mice have significantly higher tumor incidence and inflammatory response than wild-type (WT) controls. The current study investigates whether cyclooxygenase-2 (COX-2) and COX-2- regulated prostaglandins and prostaglandin receptors drive the highly tumorigenic state of Tpl2−/− mice by investigating the relationship between Tpl2 and COX-2. Keratinocytes from newborn WT or Tpl2 −/− mice were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) for various times over 24 hours. Western analysis revealed significant differences in COX-2 and COX-2 dependent prostanoids and prostanoid receptors. Additionally, in vivo experiments confirmed that COX-2 and COX-2 downstream factors were elevated in TPA-treated Tpl2−/− skin, as well as in papillomas from Tpl2 −/− mice. Use of the selective COX-2 inhibitor Celecoxib showed the increased tumorigenesis in the Tpl2−/− mice to primarily be mediated through COX-2. These experiments illustrate COX-2 induction in the absence of Tpl2 may be responsible for the increased tumorigenesis found in Tpl2 −/− mice. Defining the relationship between Tpl2 and COX-2 may lead to new ways to downregulate COX-2 through the modulation of Tpl2.  相似文献   

13.
Cyclooxygenases (COX) play an important role in lipid signaling by oxygenating arachidonic acid to endoperoxide precursors of prostaglandins and thromboxane. Two cyclooxygenases exist which differ in tissue distribution and regulation but otherwise carry out identical chemical functions. The neutral arachidonate derivative, 2-arachidonylglycerol (2-AG), is one of two described endocannabinoids and appears to be a ligand for both the central (CB1) and peripheral (CB2) cannabinoid receptors. Here we report that 2-AG is a substrate for COX-2 and that it is metabolized as effectively as arachidonic acid. COX-2-mediated 2-AG oxygenation provides the novel lipid, prostaglandin H(2) glycerol ester (PGH(2)-G), in vitro and in cultured macrophages. PGH(2)-G produced by macrophages is a substrate for cellular PGD synthase, affording PGD(2)-G. Pharmacological studies reveal that macrophage production of PGD(2)-G from endogenous sources of 2-AG is calcium-dependent and mediated by diacylglycerol lipase and COX-2. These results identify a distinct function for COX-2 in endocannabinoid metabolism and in the generation of a new family of prostaglandins derived from diacylglycerol and 2-AG.  相似文献   

14.
15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes NAD(+)-linked oxidation of 15 (S)-hydroxyl group of prostaglandins and lipoxins and is the key enzyme responsible for the biological inactivation of these eicosanoids. The enzyme was found to be under-expressed as opposed to cyclooxygenase-2 (COX-2) being over-expressed in lung and other tumors. A549 human lung adenocarcinoma cells were used as a model system to study the role of 15-PGDH in lung tumorigenesis. Up-regulation of COX-2 expression by pro-inflammatory cytokines in A549 cells was accompanied by a down-regulation of 15-PGDH expression. Over-expression of COX-2 but not COX-1 by adenoviral-mediated approach also attenuated 15-PGDH expression. Similarly, over-expression of 15-PGDH by the same strategy inhibited IL-1beta-induced COX-2 expression. It appears that the expression of COX-2 and 15-PGDH is regulated reciprocally. Adenoviral-mediated transient over-expression of 15-PGDH in A549 cells resulted in apoptosis. Xenograft studies in nude mice also showed tumor suppression with cells transiently over-expressing 15-PGDH. However, cells stably over-expressing 15-PGDH generated tumors faster than those control cells. Examination of different clones of A549 cells stably expressing different levels of 15-PGDH indicated that the levels of 15-PGDH expression correlated positively with those of mesenchymal markers, and negatively with those of epithelial markers. It appears that the stable expression of 15-PGDH induces epithelial-mesenchymal transition (EMT) which may account for the tumor promotion in xenograft studies. A number of anti-cancer agents, such as transforming growth factor-beta1 (TGF-beta1), glucocorticoids and some histone deacetylase inhibitors were found to induce 15-PGDH expression. These results suggest that tumor suppressive action of these agents may, in part, be related to their ability to induce 15-PGDH expression.  相似文献   

15.
16.
In recent years the study of fibroblast growth factor receptors (FGFRs) in normal development and human genetic disorders has increased our understanding of some complex cellular processes. At least fifteen genetic disorders result from mutations within FGFR genes including skeletal dysplasias such as Apert syndrome and achondroplasia. In vitro experiments and the generation of animal models indicate that these mutations result in activation of the receptors and that FGFRs act as negative regulators of bone growth. FGFRs also play a role in wound healing and cancer. In this article, we review the expression of FGFRs in human development, the phenotypes resulting from FGFR mutations, and recent data identifying pathways downstream of the activated receptors.  相似文献   

17.
During parturition, uterine-derived prostaglandins (PG) play an outstanding role regarding the functional elimination of the corpus luteum and the promotion of uterine contraction. The rate-limiting enzyme cyclooxygenase-2 (COX-2), highly regulated in a cell-type and localization specific manner throughout pregnancy, is involved in uterine prostanoid production. Prostaglandins exert their effects via G-protein-coupled receptors. Distribution and cellular localization of these receptors are decisive factors for prostaglandin-mediated actions. Since both COX-2 and PG receptors have only been assessed during pregnancy in the cow, these parameters were localized immunohistochemically near term to evaluate their specific role at parturition. Thus, during two periods, segments of the intercaruncular uterine wall were collected from cows at slaughter being eight and nine months pregnant, from cattle during caesarean section, and after spontaneous calving.

Results reveal that COX-2 was mainly localized in the cytoplasm of surface epithelial cells with a high expression in animals with induced parturition. The enzyme could also be found in lower concentrations within the glandular epithelium without any effect of gestational time or labour. In contrast to relaxant prostaglandin E receptor type 2 (EP2), not showing any change in all tissue layers observed, contractile prostaglandin F2 receptor (FP) was modulated during the peripartal period revealing a peak expression in animals with induced parturition. FP was localized in surface and glandular epithelial cells as well as in endometrial stroma and myometrial smooth muscle cells.

Our study indicates that labour and induction of parturition may have an effect on amounts of immunohistochemically detectable COX-2 and FP. EP2 remains rather unchanged during the peripartal period. COX-2 and FP thus contribute via changes in amount and distribution to mechanisms associated with parturition.  相似文献   


18.
Inducible cyclooxygenase (COX-2) and its metabolites have diverse and potent biological actions that are important for both physiological and disease states of lung. The wide variety of prostaglandin (PG) products are influenced by the level of cellular activation, the exact nature of the stimulus, and the specific cell type involved in their production. In turn, the anti- and proinflammatory response of PG is mediated by a blend of specific surface and intracellular receptors that mediate diverse cellular events. The complexity of this system is being at least partially resolved by the generation of specific molecular biological research tools that include cloning and characterization of the enzymes distal to COX-2 and the corresponding receptors to the final cellular products of arachidonic metabolism. The most informative of these approaches have employed genetically modified animals and specific receptor antagonists to determine the exact role of specific COX-2-derived metabolites on specific cell types of the lung in the context of inflammatory models. These data have suggested a number of cell-specific, pathway-specific, and receptor-specific approaches that could lead to effective therapeutic interventions for most inflammatory lung diseases.  相似文献   

19.
Chronic hypoxia-induced pulmonary hypertension results partly from proliferation of smooth muscle cells in small peripheral pulmonary arteries. Previously, we demonstrated that hypoxia modulates the proliferation of human peripheral pulmonary artery smooth muscle cells (PASMCs) by induction of cyclooxygenase-2 (COX-2) and production of antiproliferative prostaglandins. The transforming growth factor (TGF)-beta superfamily plays a critical role in the regulation of pulmonary vascular remodeling, although to date an interaction with hypoxia has not been examined. We therefore investigated the pathways involved in the hypoxic induction of COX-2 in peripheral PASMCs and the contribution of TGF-beta1 and bone morphogenetic protein (BMP)-4 in this response. In the present study, we demonstrate that hypoxia induces activation of p38MAPK, ERK1/2, and Akt in PASMCs and that these pathways are involved in the hypoxic regulation of COX-2. Whereas inhibition of p38(MAPK) or ERK1/2 activity suppressed hypoxic induction of COX-2, inhibition of the phosphoinositide 3-kinase pathway enhanced hypoxic induction of COX-2. Furthermore, exogenous TGF-beta1 induced COX-2 mRNA and protein expression, and our findings demonstrate that release of TGF-beta1 by PASMCs during hypoxia contributes to the hypoxic induction of COX-2 via the p38MAPK pathway. In contrast, BMP-4 inhibited the hypoxic induction of COX-2 by an MAPK-independent pathway. Together, these findings suggest that the TGF-beta superfamily is part of an autocrine/paracrine system involved in the regulation of COX-2 expression in the distal pulmonary circulation, and this modulates hypoxia-induced pulmonary vascular cell proliferation.  相似文献   

20.
15-Hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes NAD(+)-dependent oxidation of 15(S)-hydroxyl group of prostaglandins and has been considered a key enzyme involved in biological inactivation of prostaglandins. This enzyme is markedly induced by androgens in hormone-sensitive human prostate cancer cells (Tong M., Tai H. H. Biochem Biophys Res Commun 2000; 276: 77-81) and may be involved in tumorigenesis. Inhibition of this enzyme may be of value in anticancer therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) which inhibit cyclooxygenases (COXs) have been shown to be chemopreventive in epidemiological and animal-model studies. However, chemoprevention by these drugs may not be directly related to their inhibition of COXs. Other targets may be also involved in their chemopreventive activity. We have examined a variety of NSAIDs including COX-2 selective inhibitors, peroxisome proliferator-activated receptor (PPAR) gamma agonists and phytophenolic compounds which have been shown to be chemopreventive for their effect on 15-PGDH. It was found that most of these compounds were potent inhibitors of 15-PGDH. Among these compounds, ciglitazone appeared to be the most powerful inhibitor (IC(50)=2.7 microM). Inhibition by ciglitazone was non-competitive with respect to NAD(+) and uncompetitive with respect to PGE(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号