首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Landscape features such as mountains, rivers, and ecological gradients may strongly affect patterns of dispersal and gene flow among populations and thereby shape population dynamics and evolutionary trajectories. The landscape may have a particularly strong effect on patterns of dispersal and gene flow in amphibians because amphibians are thought to have poor dispersal abilities. We examined genetic variation at six microsatellite loci in Columbia spotted frogs (Rana luteiventris) from 28 breeding ponds in western Montana and Idaho, USA, in order to investigate the effects of landscape structure on patterns of gene flow. We were particularly interested in addressing three questions: (i) do ridges act as barriers to gene flow? (ii) is gene flow restricted between low and high elevation ponds? (iii) does a pond equal a ‘randomly mating population’ (a deme)? We found that mountain ridges and elevational differences were associated with increased genetic differentiation among sites, suggesting that gene flow is restricted by ridges and elevation in this species. We also found that populations of Columbia spotted frogs generally include more than a single pond except for very isolated ponds. There was also evidence for surprisingly high levels of gene flow among low elevation sites separated by large distances. Moreover, genetic variation within populations was strongly negatively correlated with elevation, suggesting effective population sizes are much smaller at high elevation than at low elevation. Our results show that landscape features have a profound effect on patterns of genetic variation in Columbia spotted frogs.  相似文献   

2.
Understanding metapopulation dynamics requires knowledge about local population dynamics and movement in both space and time. Most genetic metapopulation studies use one or two study species across the same landscape to infer population dynamics; however, using multiple co‐occurring species allows for testing of hypotheses related to different life history strategies. We used genetic data to study dispersal, as measured by gene flow, in three ambystomatid salamanders (Ambystoma annulatum , A. maculatum , and A. opacum ) and the Central Newt (Notophthalmus viridescens louisianensis ) on the same landscape in Missouri, USA . While all four salamander species are forest dependent organisms that require fishless ponds to reproduce, they differ in breeding phenology and spatial distribution on the landscape. We use these differences in life history and distribution to address the following questions: (1) Are there species‐level differences in the observed patterns of genetic diversity and genetic structure? and (2) Is dispersal influenced by landscape resistance? We detected two genetic clusters in A. annulatum and A. opacum on our landscape; both species breed in the fall and larvae overwinter in ponds. In contrast, no structure was evident in A. maculatum and N. v. louisianensis , species that breed during the spring. Tests for isolation by distance were significant for the three ambystomatids but not for N. v. louisianensis . Landscape resistance also contributed to genetic differentiation for all four species. Our results suggest species‐level differences in dispersal ability and breeding phenology are driving observed patterns of genetic differentiation. From an evolutionary standpoint, the observed differences in dispersal distances and genetic structure between fall breeding and spring breeding species may be a result of the trade‐off between larval period length and size at metamorphosis which in turn may influence the long‐term viability of the metapopulation. Thus, it is important to consider life history differences among closely related and ecologically similar species when making management decisions.  相似文献   

3.
Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond‐breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata; and Southern Leopard frogs, Lithobates sphenocephalus) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond‐breeding amphibian species.  相似文献   

4.
A species' genetic structure often varies in response to ecological and landscape processes that differ throughout the species' geographic range, yet landscape genetics studies are rarely spatially replicated. The Cope's giant salamander (Dicamptodon copei) is a neotenic, dispersal‐limited amphibian with a restricted geographic range in the Pacific northwestern USA. We investigated which landscape factors affect D. copei gene flow in three regions spanning the species' range, which vary in climate, landcover and degree of anthropogenic disturbance. Least cost paths and Circuitscape resistance analyses revealed that gene flow patterns vary across the species' range, with unique combinations of landscape variables affecting gene flow in different regions. Populations in the northern coastal portions of the range had relatively high gene flow, largely facilitated by stream and river networks. Near the southeastern edge of the species' range, gene flow was more restricted overall, with relatively less facilitation by streams and more limitation by heat load index and fragmented forest cover. These results suggested that the landscape is more difficult for individuals to disperse through at the southeastern edge of the species' range, with terrestrial habitat desiccation factors becoming more limiting to gene flow. We suggest that caution be used when attempting to extrapolate landscape genetic models and conservation measures from one portion of a species' range to another.  相似文献   

5.
In this article, we applied demographic and genetic approaches to assess how landscape features influence dispersal patterns and genetic structure of the common frog Rana temporaria in a landscape where anthropogenic perturbations are pervasive (urbanization and roads). We used a combination of GIS methods that integrate radiotracking and landscape configuration data, and simulation techniques in order to estimate the potential dispersal area around breeding patches. Additionally, genetic data provided indirect measures of dispersal and allowed to characterise the spatial genetic structure of ponds and the patterns of gene flow across the landscape. Although demographic simulations predicted six distinct groups of habitat patches within which movement can occur, genetic analyses suggested a different configuration. More precisely, BAPS5 spatial clustering method with ponds as the analysis unit detected five spatial clusters. Individual-based analyses were not able to detect significant genetic structure. We argue that (1) taking into account that each individual breeds in specific breeding patch allowed for better explanation of population functioning, (2) the discrepancy between direct (radiotracking) and indirect (genetic) estimates of subpopulations (breeding patches) is due to a recent landscape fragmentation (e.g. traffic increase). We discuss the future of this population in the face of increasing landscape fragmentation, focusing on the need for combining demographic and genetic approaches when evaluating the conservation status of population subjected to rapid landscape changes.  相似文献   

6.
JL Richardson 《Molecular ecology》2012,21(18):4437-4451
The physical and environmental attributes of landscapes often shape patterns of population connectivity by influencing dispersal and gene flow. Landscape effects on movement are typically evaluated for single species. However, inferences from multiple species are required for multi‐species management strategies increasingly being applied in conservation. In this study, I compared the spatial genetic patterns of two amphibian species across the northeastern United States and estimated the influence of specific landscape features on the observed genetic structure. The spotted salamander (Ambystoma maculatum) and wood frog (Rana sylvatica) share many ecological attributes related to habitat use, phenology and site fidelity. However, I hypothesized that important differences in their movement patterns and life history would create distinct genetic patterns for each species. Using 14 microsatellite loci, I tested for differences in the level of genetic differentiation between the two species across 22 breeding ponds. The effects of eight landscape features were also estimated by evaluating 32 landscape resistance models. Spotted salamanders exhibited significantly higher genetic differentiation than wood frogs. Different landscape features were also identified as potential drivers of the genetic patterns in each species, with little overlap in model support between species. Collectively, these results provide strong evidence that these two amphibian species interact with the landscape in measurably different ways. The distinct genetic patterns observed are consistent with key differences in movement ability and life history between A. maculatum and R. sylvatica. These results highlight the importance of considering more than one species when assessing the impacts of the landscape matrix on population connectivity, even for ecologically similar species within the same habitats.  相似文献   

7.
Adaptive ecological differentiation among sympatric populations is promoted by environmental heterogeneity, strong local selection and restricted gene flow. High gene flow, on the other hand, is expected to homogenize genetic variation among populations and therefore prevent local adaptation. Understanding how local adaptation can persist at the spatial scale at which gene flow occurs has remained an elusive goal, especially for wild vertebrate populations. Here, we explore the roles of natural selection and nonrandom gene flow (isolation by breeding time and habitat choice) in restricting effective migration among local populations and promoting generalized genetic barriers to neutral gene flow. We examined these processes in a network of 17 breeding ponds of the moor frog Rana arvalis, by combining environmental field data, a common garden experiment and data on variation in neutral microsatellite loci and in a thyroid hormone receptor (TRβ) gene putatively under selection. We illustrate the connection between genotype, phenotype and habitat variation and demonstrate that the strong differences in larval life history traits observed in the common garden experiment can result from adaptation to local pond characteristics. Remarkably, we found that haplotype variation in the TRβ gene contributes to variation in larval development time and growth rate, indicating that polymorphism in the TRβ gene is linked with the phenotypic variation among the environments. Genetic distance in neutral markers was correlated with differences in breeding time and environmental differences among the ponds, but not with geographical distance. These results demonstrate that while our study area did not exceed the scale of gene flow, ecological barriers constrained gene flow among contrasting habitats. Our results highlight the roles of strong selection and nonrandom gene flow created by phenological variation and, possibly, habitat preferences, which together maintain genetic and phenotypic divergence at a fine‐grained spatial scale.  相似文献   

8.
Fragmented landscapes resulting from anthropogenic habitat modification can have significant impacts on dispersal, gene flow, and persistence of wildlife populations. Therefore, quantifying population connectivity across a mosaic of habitats in highly modified landscapes is critical for the development of conservation management plans for threatened populations. Endangered populations of the eastern tiger salamander (Ambystoma tigrinum) in New York and New Jersey are at the northern edge of the species’ range and remaining populations persist in highly developed landscapes in both states. We used landscape genetic approaches to examine regional genetic population structure and potential barriers to migration among remaining populations. Despite the post-glacial demographic processes that have shaped genetic diversity in tiger salamander populations at the northern extent of their range, we found that populations in each state belong to distinct genetic clusters, consistent with the large geographic distance that separates them. We detected overall low genetic diversity and high relatedness within populations, likely due to recent range expansion, isolation, and relatively small population sizes. Nonetheless, landscape connectivity analyses reveal habitat corridors among remaining breeding ponds. Furthermore, molecular estimates of population connectivity among ponds indicate that gene flow still occurs at regional scales. Further fragmentation of remaining habitat will potentially restrict dispersal among breeding ponds, cause the erosion of genetic diversity, and exacerbate already high levels of inbreeding. We recommend the continued management and maintenance of habitat corridors to ensure long-term viability of these endangered populations.  相似文献   

9.
Comparative landscape genetics studies can provide key information to implement cost‐effective conservation measures favouring a broad set of taxa. These studies are scarce, particularly in Mediterranean areas, which include diverse but threatened biological communities. Here, we focus on Mediterranean wetlands in central Iberia and perform a multi‐level, comparative study of two endemic pond‐breeding amphibians, a salamander (Pleurodeles waltl) and a toad (Pelobates cultripes). We genotyped 411 salamanders from 20 populations and 306 toads from 16 populations at 18 and 16 microsatellite loci, respectively, and identified major factors associated with population connectivity through the analysis of three sets of variables potentially affecting gene flow at increasingly finer levels of spatial resolution. Topographic, land use/cover, and remotely sensed vegetation/moisture indices were used to derive optimized resistance surfaces for the two species. We found contrasting patterns of genetic structure, with stronger, finer scale genetic differentiation in Pleurodeles waltl, and notable differences in the role of fine‐scale patterns of heterogeneity in vegetation cover and water content in shaping patterns of regional genetic structure in the two species. Overall, our results suggest a positive role of structural heterogeneity in population connectivity in pond‐breeding amphibians, with habitat patches of Mediterranean scrubland and open oak woodlands (“dehesas”) facilitating gene flow. Our study highlights the usefulness of remotely sensed continuous variables of land cover, vegetation and water content (e.g., NDVI, NDMI) in conservation‐oriented studies aimed at identifying major drivers of population connectivity.  相似文献   

10.
We examined fine-scale genetic variation among breeding aggregations of the spotted salamander (Ambystoma maculatum) to quantify dispersal, interpopulation connectivity and population genetic structure. Spotted salamanders rely on temporary ponds or wetlands for aggregate breeding. Adequate breeding sites are relatively isolated from one another and field studies suggest considerable adult site fidelity; therefore, we expected to find population structure and differentiation at small spatial scales. We used microsatellites to estimate population structure and dispersal among 29 breeding aggregations in Tompkins County, New York, USA, an area encompassing 1272 km(2). Bayesian and frequency-based analyses revealed fine-scale genetic structure with two genetically defined demes: the North deme included seven breeding ponds, and the South deme included 13 ponds. Nine ponds showed evidence of admixture between these two genetic pools. Bayesian assignment tests for detection of interpopulation dispersal indicate that immigration among ponds is common within demes, and that certain populations serve as sources of immigrants to neighbouring ponds. Likewise, spatial genetic correlation analyses showed that populations < or = 4.8 km distant from each other show significant genetic correlation that is not evident at higher scales. Within-population levels of relatedness are consistently larger than expected if mating were completely random across ponds, and in the case of a few ponds, within-population processes such as inbreeding or reproductive skew contribute significantly to differentiation from neighbouring ponds. Our data underscore the importance of these within-population processes as a source of genetic diversity across the landscape, despite considerable population connectivity. Our data further suggest that spotted salamander breeding groups behave as metapopulations, with population clusters as functional units, but sufficient migration among demes to allow for potential rescue and recolonization. Amphibian habitats are becoming increasingly fragmented and a clear understanding of dispersal and patterns of population connectivity for taxa with different ecologies and life histories is crucial for their conservation.  相似文献   

11.
Local enhancement is an underexplored social learning mechanism that is often observed in organisms that live in groups. This mechanism occurs when individuals are attracted to areas where conspecifics have previously been, but which are not present when the animal actually moves into the area. We tested for local enhancement in wood frog tadpoles (Lithobates sylvatica) and spotted salamander larvae (Ambystoma maculatum) in three experiments that exposed individuals to one side of a test chamber which was empty and another that contained a group of three conspecifics. Side preference of the focal individual was recorded once the conspecifics were removed. Tadpoles showed a clear preference for moving to areas where a group of tadpoles had previously been located. Conversely, this preference was not observed in salamander larvae. In addition, salamander larvae took significantly more time to initially choose a side. These results indicate that tadpoles exhibit local enhancement, whereas aquatic salamander larvae do not. This difference in social learning could be largely due to differences in aquatic ecology between tadpoles and salamander larvae.  相似文献   

12.
Maintaining genetic diversity and population viability in endangered and threatened species is a primary concern of conservation biology. Genetic diversity depends on population connectivity and effective population size (Ne), both of which are often compromised in endangered taxa. While the importance of population connectivity and gene flow has been well studied, investigating effective population sizes in natural systems has received far less attention. However, Ne plays a prominent role in the maintenance of genetic diversity, the prevention of inbreeding depression, and in determining the probability of population persistence. In this study, we examined the relationship between breeding pond characteristics and Ne in the endangered California tiger salamander, Ambystoma californiense. We sampled 203 individuals from 10 breeding ponds on a local landscape, and used 11 polymorphic microsatellite loci to quantify genetic structure, gene flow, and effective population sizes. We also measured the areas of each pond using satellite imagery and classified ponds as either hydrologically-modified perennial ponds or naturally occurring vernal pools, the latter of which constitute the natural breeding habitat for A. californiense. We found no correlation between pond area and heterozygosity or allelic diversity, but we identified a strong positive relationship between breeding pond area and Ne, particularly for vernal pools. Our results provide some of the first empirical evidence that variation in breeding habitat can be associated with differences in Ne and suggest that a more complete understanding of the environmental features that influence Ne is an important component of conservation genetics and management.  相似文献   

13.
A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape‐scale habitat availability and distribution, (2) water body‐scale habitat associations, and (3) resource management‐identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species’ range. Within these suitable areas, native and non‐native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper‐ and lower‐elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non‐native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator‐free refugia, and a commensalistic interaction with an ecosystem engineer. Beaver‐induced changes to habitat quality, stability, and connectivity may increase spotted frog population resistance and resilience to seasonal drought, grazing, non‐native predators, and climate change, factors which threaten local or regional persistence.  相似文献   

14.
15.
Understanding how gene flow shapes contemporary population structure requires the explicit consideration of landscape composition and configuration. New landscape genetic approaches allow us to link such heterogeneity to gene flow within and among populations. However, the attribution of cause is difficult when landscape features are spatially correlated, or when genetic patterns reflect past events. We use spatial Bayesian clustering and landscape resistance analysis to identify the landscape features that influence gene flow across two regional populations of the eastern massasauga rattlesnake, Sistrurus c. catenatus. Based on spatially explicit simulations, we inferred how habitat distribution modulates gene flow and attempted to disentangle the effects of spatially confounded landscape features. We found genetic clustering across one regional landscape but not the other, and also local differences in the effect of landscape on gene flow. Beyond the effects of isolation‐by‐distance, water bodies appear to underlie genetic differentiation among individuals in one regional population. Significant effects of roads were additionally detected locally, but these effects are possibly confounded with the signal of water bodies. In contrast, we found no signal of isolation‐by‐distance or landscape effects on genetic structure in the other regional population. Our simulations imply that these local differences have arisen as a result of differences in population density or tendencies for juvenile rather than adult dispersal. Importantly, our simulations also demonstrate that the ability to detect the consequences of contemporary anthropogenic landscape features (e.g. roads) on gene flow may be compromised when long‐standing natural features (e.g. water bodies) co‐exist on the landscape.  相似文献   

16.
Gene flow has historically been thought to constrain local adaptation; yet, recent research suggests that populations can diverge despite exchanging genes. Here I use a common garden experiment to assess the combined effects of gene flow and natural selection on morphological variation of 16 wood frog (Rana sylvatica) populations, a species known to experience divergent selection pressures in open‐ and closed‐canopy ponds across relatively small geographic scales. Wood frog tadpoles from different ponds showed significant morphological variation associated with canopy type with a trade‐off between tail length and body depth consistent with previous research. In contrast, neutral genetic differentiation of nine microsatellite loci as measured by Jost's D was not associated with canopy type, indicating no pattern of isolation by environment. Genetic structure analyses indicated some substructure across the 16 ponds (= 4); however, three out of four assigned clusters included both open‐ and closed‐canopy ponds. Together, these results suggest that morphological divergence among these wood frog populations is occurring despite gene flow and that selection within these environments is strong. Furthermore, morphological variation among ponds differed across two sampling periods during larval development, demonstrating the importance of evaluating phenotypic divergence over multiple time periods and at a time relevant to the processes being studied.  相似文献   

17.
Breeding aggregations are a reproductive strategy to increase mate finding opportunity. However, because aggregations skew the distribution of mature animals through conspecific attraction, rather than resource availability, the distribution of breeding sites may be reduced, so that not all suitable breeding sites are used. To examine the relationship between landscape and reproductive strategies of a threatened frog, Litoria aurea, we studied its distribution at Sydney Olympic Park over two breeding seasons. We aimed to: (i) determine the distribution and predictors of breeding ponds; and (ii) assess the significance of dispersal in the juvenile age‐class. We found that the distribution of the calling males was highly skewed and occurred in large, well‐connected ponds. Despite this, breeding ponds were not aggregated; pond size was the single factor explaining the distribution of breeding ponds. Juvenile frogs dispersed from breeding ponds and were not associated with a specific pond characteristic. Less breeding occurred in the second season during which fewer ponds were used for breeding including many different ponds from the previous year. These changes suggest that breeding effort and breeding pond choice are dynamic and therefore knowledge of the factors that drive breeding events will be a powerful tool in managing species, particularly in light of changing climatic regimes.  相似文献   

18.
Recent agricultural intensification threatens global biodiversity with amphibians being one of the most impacted groups. Because of their biphasic life cycle, amphibians are particularly vulnerable to habitat loss and fragmentation that often result in small, isolated populations and loss of genetic diversity. Here, we studied how landscape heterogeneity affects genetic diversity, gene flow and demographic parameters in the marbled newt, Triturus marmoratus, over a hedgerow network landscape in Western France. While the northern part of the study area consists of preserved hedged farmland, the southern part was more profoundly converted for intensive arable crops production after WWII. Based on 67 sampled ponds and 10 microsatellite loci, we characterized regional population genetic structure and evaluated the correlation between landscape variables and (i) local genetic diversity using mixed models and (ii) genetic distance using multiple regression methods and commonality analysis. We identified a single genetic population characterized by a spatially heterogeneous isolation-by-distance pattern. Pond density in the surrounding landscape positively affected local genetic diversity while arable crop land cover negatively affected gene flow and connectivity. We used demographic inferences to quantitatively assess differences in effective population density and dispersal between the contrasted landscapes characterizing the northern and southern parts of the study area. Altogether, results suggest recent land conversion affected T. marmoratus through reduction in both effective population density and dispersal due to habitat loss and reduced connectivity.  相似文献   

19.
Understanding the impacts of landscape-level processes on the population biology of amphibians is critical, especially for species inhabiting anthropogenically modified landscapes. Many pond-breeding amphibians are presumed to exist as metapopulations, but few studies demonstrate the extent and consequences of this metapopulation structure. Gene flow measures may facilitate the construction of more realistic models of population structure than direct measures of migration. This is especially true for species that are cryptic, such as many amphibians. We used eight polymorphic microsatellite loci to determine the genetic population structure of spotted salamanders ( Ambystoma maculatum ) breeding at 17 ponds in northeastern Ohio, a landscape fragmented by roads, agriculture, urban areas and the Cuyahoga River. Using a variety of analyses (Bayesian clustering, F -statistics, AMOVA) we generated a model of salamander population genetic structure. Our data revealed patterns of genetic connectivity that were not predicted by geographical distances between ponds (no isolation by distance). We also tested for a relationship between population structure and several indices of landscape resistance, but found no effect of potential barriers to dispersal on genetic connectivity. Strong overall connectivity among ponds, despite the hostile habitat matrix, may be facilitated by a network of riparian corridors associated with the Cuyahoga River; however, high gene flow in this system may indicate a general ability to disperse and colonize beyond particular corridors.  相似文献   

20.
The Eastern Afromontane Biodiversity Hotspot is known for microendemism and exceptional population genetic structure. The region's landscape heterogeneity is thought to limit gene flow between fragmented populations and create opportunities for regional adaptation, but the processes involved are poorly understood. Using a combination of phylogeographic analyses and circuit theory, I investigate how characteristics of landscape heterogeneity including regional distributions of slope, rivers and streams, habitat and hydrological basins (drainages) impact genetic distance among populations of the endemic spotted reed frog (Hyperolius substriatus), identifying corridors of connectivity as well as barriers to dispersal. Results show that genetic distance among populations is most strongly correlated to regional and local hydrologic structure and the distribution of suitable habitat corridors, not isolation by distance. Contrary to expectations, phylogeographic structure is not coincident with the two montane systems, but instead corresponds to the split between the region's two major hydrological basins (Zambezi and East Central Coastal). This results in a paraphyletic relationship for the Malawian Highlands populations with respect to the Eastern Arc Mountains and implies that the northern Malawian Highlands are the diversity centre for H. substriatus. Although the Malawian Highlands collectively hold the greatest genetic diversity, individual populations have lower diversity than their Eastern Arc counterparts, with an overall pattern of decreasing population diversity from north to south. Through the study of intraspecific differentiation across a mosaic of ecosystem and geographic heterogeneity, we gain insight into the processes of diversification and a broader understanding of the role of landscape in evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号