首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background  

Global climatic oscillations, glaciation cycles and the unique geographic topology of China have profoundly influenced species population distributions. In most species, contemporary distributions of populations cannot be fully understood, except in a historical context. Complex patterns of Pleistocene glaciations, as well as other physiographic changes have influenced the distribution of bat species in China. Until this study, there had been no phylogeographical research on Myotis davidii, an endemic Chinese bat. We used a combination of nuclear and mitochondrial DNA markers to investigate genetic diversity, population structure, and the demographic history of M. davidii. In particular, we compared patterns of genetic variation to glacial oscillations, topography, and environmental variation during the Pleistocene in an effort to explain current distributions in light of these historical processes.  相似文献   

2.
The genetic structure of contemporary populations can be shaped by both their history and current ecological conditions. We assessed the relative importance of postglacial colonization history and habitat type in the patterns and degree of genetic diversity and differentiation in northern European nine‐spined sticklebacks (Pungitius pungitius), using mitochondrial DNA (mtDNA) sequences and 12 nuclear microsatellite and insertion/deletion loci. The mtDNA analyses identified – and microsatellite analyses supported – the existence of two historically distinct lineages (eastern and western). The analyses of nuclear loci among 51 European sites revealed clear historically influenced and to minor degree habitat dependent, patterns of genetic diversity and differentiation. While the effect of habitat type on the levels of genetic variation (coastal > freshwater) and differentiation (freshwater > coastal) was clear, the levels of genetic variability and differentiation in the freshwater sites were independent of habitat type (viz. river, lake and pond). However, levels of genetic variability, together with estimates of historical effective population sizes, decreased dramatically and linearly with increasing latitude. These geographical patterns of genetic variability and differentiation suggest that the contemporary genetic structure of freshwater nine‐spined sticklebacks has been strongly impacted by the founder events associated with postglacial colonization and less by current ecological conditions (cf. habitat type). In general, the results highlight the strong and persistent effects of postglacial colonization history on genetic structuring of northern European fauna and provide an unparalleled example of latitudinal trends in levels of genetic diversity.  相似文献   

3.
The fragmentation of a population may have important consequences for population genetic diversity and structure due to the effects of genetic drift and reduced gene flow. We studied the genetic consequences of the fragmentation of the Spanish imperial eagle (Aquila adalberti) population into small patches through a temporal analysis. Thirty‐four museum individuals representing the population predating the fragmentation were analysed for a 345‐bp segment of the mitochondrial control region and a set of 10 nuclear microsatellite loci. Data from a previous study on the current population (N = 79) were re‐analysed for this subset of 10 microsatellite markers and results compared to those obtained from the historical sample. Three shared mitochondrial haplotypes were found in both populations, although fluctuations in haplotype frequencies and the occurrence of a fourth haplotype in the historical population resulted in lower current levels of haplotype and nucleotide diversity. However, microsatellite markers revealed undiminished levels of nuclear diversity. No evidence for genetic structure was observed for the historical Spanish imperial eagle population, suggesting that the current pattern of structure is the direct consequence of population fragmentation. Temporal fluctuations in mitochondrial and microsatellite allelic frequencies were found between the historical and the current population as well as for each pairwise comparison between historical and current Centro and historical and current Parque Nacional de Doñana nuclei. Our results indicate an ancestral panmictic situation for the species that management policies should aim to restore. A historical analysis like the one taken here provides the baseline upon which the relative role of recent drift in shaping current genetic patterns in endangered species can be evaluated and this knowledge is used to guide conservation actions.  相似文献   

4.
The mummichog, Fundulus heteroclitus, exhibits extensive latitudinal clinal variation in a number of physiological and biochemical traits, coupled with phylogeographical patterns at mitochondrial and nuclear DNA loci that suggest a complicated history of spatially variable selection and secondary intergradation. This species continues to serve as a model for understanding local and regional adaptation to variable environments. Resolving the influences of historical processes on the distribution of genetic variation within and among extant populations of F. heteroclitus is crucial to a better understanding of how populations evolve in the context of contemporary environments. In this study, we analysed geographical patterns of genetic variation at eight microsatellite loci among 15 populations of F. heteroclitus distributed throughout the North American range of the species from Nova Scotia to Georgia. Genetic variation in Northern populations was lower than in Southern populations and was strongly correlated with latitude throughout the species range. The most common Northern alleles at all eight loci exhibited concordant latitudinal clinal patterns, and the existence of an abrupt transition zone in allele frequencies between Northern and Southern populations was similar to that observed for mitochondrial DNA and allozyme loci. A significant pattern of isolation by distance was observed both within and between northern and southern regions. This pattern was unexpected, particularly for northern populations, given the recent colonization history of post-Pleistocene habitats, and was inconsistent with either a recent northward population expansion or a geographically restricted northern Pleistocene refugium. The data provided no evidence for recent population bottlenecks, and estimates of historical effective population sizes suggest that post-Pleistocene populations have been large throughout the species distribution. These results suggest that F. heteroclitus was broadly distributed throughout most of its current range during the last glacial event and that the abrupt transition in allele frequencies that separate Northern and Southern populations may reflect regional disequilibrium conditions associated with the post-Pleistocene colonization history of habitats in that region.  相似文献   

5.
Identifying historic patterns of population genetic diversity and connectivity is a primary challenge in efforts to re‐establish the processes that have generated and maintained genetic variation across natural landscapes. The challenge of reconstructing pattern and process is even greater in highly altered landscapes where population extinctions and dramatic demographic fluctuations in remnant populations may have substantially altered, if not eliminated, historic patterns. Here, we seek to reconstruct historic patterns of diversity and connectivity in an endangered subspecies of woodrat that now occupies only 1–2 remnant locations within the highly altered landscape of the Great Central Valley of California. We examine patterns of diversity and connectivity using 14 microsatellite loci and sequence data from a mitochondrial locus and a nuclear intron. We reconstruct temporal change in habitat availability to establish several historical scenarios that could have led to contemporary patterns of diversity, and use an approximate Bayesian computation approach to test which of these scenarios is most consistent with our observed data. We find that the Central Valley populations harbour unique genetic variation coupled with a history of admixture between two well‐differentiated species of woodrats that are currently restricted to the woodlands flanking the Valley. Our simulations also show that certain commonly used analytical approaches may fail to recover a history of admixture when populations experience severe bottlenecks subsequent to hybridization. Overall our study shows the strength of combining empirical and simulation analyses to recover the history of populations occupying highly altered landscapes.  相似文献   

6.
Studies that span entire species ranges can provide insight into the relative roles of historical contingency and contemporary factors that influence population structure and can reveal patterns of genetic variation that might otherwise go undetected. American shad is a wide ranging anadromous clupeid fish that exhibits variation in demographic histories and reproductive strategies (both semelparity and iteroparity) and provides a unique perspective on the evolutionary processes that govern the genetic architecture of anadromous fishes. Using 13 microsatellite loci, we examined the magnitude and spatial distribution of genetic variation among 33 populations across the species' range to (i) determine whether signals of historical demography persist among contemporary populations and (ii) assess the effect of different reproductive strategies on population structure. Patterns of genetic diversity and differentiation among populations varied widely and reflect the differential influences of historical demography, microevolutionary processes and anthropogenic factors across the species' range. Sequential reductions of diversity with latitude among formerly glaciated rivers are consistent with stepwise postglacial colonization and successive population founder events. Weak differentiation among U.S. iteroparous populations may be a consequence of human‐mediated gene flow, while weak differentiation among semelparous populations probably reflects natural gene flow. Evidence for an effect of reproductive strategy on population structure suggests an important role for environmental variation and suggests that the factors that are responsible for shaping American shad life history patterns may also influence population genetic structure.  相似文献   

7.
The study of the neutral and/or selective processes driving genetic variation in natural populations is central to determine the evolutionary history of species and lineages and understand how they interact with different historical and contemporary components of landscape heterogeneity. Here, we combine nuclear and mitochondrial data to study the processes shaping genetic divergence in the Mediterranean esparto grasshopper (Ramburiella hispanica). Our analyses revealed the presence of three main lineages, two in Europe that split in the Early-Middle Pleistocene and one in North Africa that diverged from the two European ones after the Messinian. Lineage-specific potential distribution models and tests of environmental niche differentiation suggest that the phylogeographic structure of the species was driven by allopatric divergence due to the re-opening of the Gibraltar strait at the end of the Messinian (Europe–Africa split) and population fragmentation in geographically isolated Pleistocene climatic refugia (European split). Although we found no evidence for environment as an important driver of genetic divergence at the onset of lineage formation, our analyses considering the spatial distribution of populations and different aspects of landscape composition suggest that genetic differentiation at mitochondrial loci was largely explained by environmental dissimilarity, whereas resistance-based estimates of geographical distance were the only predictors of genetic differentiation at nuclear markers. Overall, our study shows that although historical factors have largely shaped concordant range-wide patterns of mitonuclear genetic structure in the esparto grasshopper, different contemporary processes (neutral gene flow vs. environmental-based selection) seem to be governing the spatial distribution of genetic variation in the two genomes.  相似文献   

8.
Hotspots of intraspecific diversity have been observed in most species, often within areas of putative Pleistocene refugia. They have thus mostly been viewed as the outcome of prolonged stability of large populations within the refugia. However, recent evidence has suggested that several other microevolutionary processes could also be involved in their formation. Here, we investigate the contribution of these processes to current range-wide patterns of genetic diversity in the Italian endemic mole Talpa romana, using both nuclear (30 allozyme loci) and mitochondrial markers (cytochrome b sequences). Southern populations of this species showed an allozyme variation that is amongst the highest observed in small mammals (most populations had an expected heterozygosity of 0.10 or above), which was particularly unexpected for a subterranean species. Population genetic, phylogeographic and historical demographic analyses indicated that T. romana populations repeatedly underwent allopatric differentiations followed by secondary admixture within the refugial range in southern Italy. A prolonged demographic stability was reliably inferred from the mitochondrial DNA data only for a population group located north and east of the Calabrian peninsula, showing comparatively lower levels of allozyme variability, and lacking evidence of secondary admixture with other groups. Thus, our results point to the admixture between differentiated lineages as the main cause of the higher levels of diversity of refugial populations. When compared with the Pleistocene evolutionary history recently inferred for species from both the same and other geographic regions, these results suggest the need for a reappraisal of the role of gene exchange in the formation of intraspecific hotspots of genetic diversity.  相似文献   

9.
The phylogeography of coastal plant species is heavily influenced by past sealevel fluctuations, dispersal barriers, and life-history traits, such as long-distance dispersal ability of the propagules. Unlike the widely studied mangroves, phylogeographic patterns have remained mostly obscure for other coastal plant species. In this study, we sampled 42 populations of Scaevola taccada (Gaertn.) Roxb., a coastal shrub of the family Goodeniaceae, from 17 countries across its distribution range. We used five chloroplast DNA (cpDNA) and 14 nuclear microsatellite (simple sequence repeat [SSR]) markers to assess the influence of abiotic factors and population genetic processes on the phylogeographic pattern of the species. Geographical distribution of cpDNA haplotypes suggests that the species originated in Australia, followed by historical dispersal and expansion of its geographic range. Multiple abiotic factors, including the sealevel changes during the Pleistocene, the presence of landmasses like the Malay Peninsula, and contemporary oceanic circulation patterns, restricted gene flow between geographically distinct populations, thereby creating low haplotype diversity and a strong population structure. Population genetic processes acted on these isolated populations, leading to high nuclear genetic diversity and population differentiation, as revealed from analyzing the polymorphic SSR loci. Although genetic divergence was mostly concordant between cpDNA and SSR data, asymmetrical gene flow and ancestral polymorphism could explain the discordance in the detailed genetic structure. Overall, our findings indicate that abiotic factors and population genetic processes interactively influenced the evolutionary history and current phylogeographic pattern of S. taccada across its distribution range.  相似文献   

10.
The processes that produce and maintain genetic structure in organisms operate at different timescales and on different life‐history stages. In marine macroalgae, gene flow occurs through gamete/zygote dispersal and rafting by adult thalli. Population genetic patterns arise from this contemporary gene flow interacting with historical processes. We analyzed spatial patterns of mitochondrial DNA variation to investigate contemporary and historical dispersal patterns in the New Zealand endemic fucalean brown alga Carpophyllum maschalocarpum (Turner) Grev. Populations bounded by habitat discontinuities were often strongly differentiated from adjoining populations over scales of tens of kilometers and intrapopulation diversity was generally low, except for one region of northeast New Zealand (the Bay of Plenty). There was evidence of strong connectivity between the northern and eastern regions of New Zealand’s North Island and between the North and South Islands of New Zealand and the Chatham Islands (separated by 650 km of open ocean). Moderate haplotypic diversity was found in Chatham Islands populations, while other southern populations showed low diversity consistent with Last Glacial Maximum (LGM) retreat and subsequent recolonization. We suggest that ocean current patterns and prevailing westerly winds facilitate long‐distance dispersal by floating adult thalli, decoupling genetic differentiation of Chatham Island populations from dispersal potential at the gamete/zygote stage. This study highlights the importance of encompassing the entire range of a species when inferring dispersal patterns from genetic differentiation, as realized dispersal distances can be contingent on local or regional oceanographic and historical processes.  相似文献   

11.
Quantifying population genetic structure is fundamental to testing hypotheses regarding gene flow, population divergence and dynamics across large spatial scales. In species with highly mobile life‐history stages, where it is unclear whether such movements translate into effective dispersal among discrete philopatric breeding populations, this approach can be particularly effective. We used seven nuclear microsatellite loci and mitochondrial DNA (ND2) markers to quantify population genetic structure and variation across 20 populations (447 individuals) of one such species, the European Shag, spanning a large geographical range. Despite high breeding philopatry, rare cross‐sea movements and recognized subspecies, population genetic structure was weak across both microsatellites and mitochondrial markers. Furthermore, although isolation‐by‐distance was detected, microsatellite variation provided no evidence that open sea formed a complete barrier to effective dispersal. These data suggest that occasional long‐distance, cross‐sea movements translate into gene flow across a large spatial scale. Historical factors may also have shaped contemporary genetic structure: cluster analyses of microsatellite data identified three groups, comprising colonies at southern, mid‐ and northern latitudes, and similar structure was observed at mitochondrial loci. Only one private mitochondrial haplotype was found among subspecies, suggesting that this current taxonomic subdivision may not be mirrored by genetic isolation.  相似文献   

12.
Comparisons of a species' genetic diversity and divergence patterns across large connected populations vs. isolated relict areas provide important data for understanding potential response to global warming, habitat alterations and other perturbations. Aquatic taxa offer ideal case studies for interpreting these patterns, because their dispersal and gene flow often are constrained through narrow connectivity channels that have changed over geological time and/or from contemporary anthropogenic perturbations. Our research objective is to better understand the interplay between historic influences and modern‐day factors (fishery exploitation, stocking supplementation and habitat loss) in shaping population genetic patterns of the yellow perch Perca flavescens (Percidae: Teleostei) across its native North American range. We employ a modified landscape genetics approach, analysing sequences from the entire mitochondrial DNA control region and 15 nuclear DNA microsatellite loci of 664 spawning adults from 24 populations. Results support that perch from primary glacial refugium areas (Missourian, Mississippian and Atlantic) founded contemporary northern populations. Genetic diversity today is highest in southern (never glaciated) populations and also is appreciable in northern areas that were founded from multiple refugia. Divergence is greater among isolated populations, both north and south; the southern Gulf Coast relict populations are the most divergent, reflecting their long history of isolation. Understanding the influence of past and current waterway connections on the genetic structure of yellow perch populations may help us to assess the roles of ongoing climate change and habitat disruptions towards conserving aquatic biodiversity.  相似文献   

13.
The genetic structure and diversity of species is determined by both current population dynamics and historical processes. Population genetic structure at the edge of the distribution is often expected to differ substantially from populations at the centre, as these edge populations are often small and fragmented. In addition, populations located in regions that have experienced repeated glaciations throughout the Pleistocene, may still carry imprints from the genetic consequences of frequent distribution shifts. Using chloroplast DNA sequences and nuclear microsatellite markers we studied the genetic structure of Epipactis atrorubens at the northern edge of its distribution. Contrary to populations in the centre of the distribution, populations at the northern range are regionally endangered as they are small and disjunct. Sequence data of 2 chloroplast loci and allelic data from 6 nuclear microsatellite markers were obtained from 297 samples from Finland, Estonia and Russia. We sought for genetic indicators of past population processes, such as post-glacial colonisation history of E. atrorubens. As expected, we observed low genetic variation, in terms of numbers of substitutions, haplotypes and alleles, and significant levels of differentiation, especially pronounced in the chloroplast DNA. These features suggest that the edge populations could be prone to extinction.  相似文献   

14.
We examine the structure and phylogeography of the pig-eye shark (Carcharhinus amboinensis) common in shallow coastal environments in northern Australia using two types of genetic markers, two mitochondrial (control region and NADH hydrogenase 4) and two nuclear (microsatellite and Rag 1) DNA. Two populations were defined within northern Australia on the basis of mitochondrial DNA evidence, but this result was not supported by nuclear microsatellite or Rag 1 markers. One possibility for this structure might be sex-specific behaviours such as female philopatry, although we argue it is doubtful that sufficient time has elapsed for any potential signatures from this behaviour to be expressed in nuclear markers. It is more likely that the observed pattern represents ancient populations repeatedly isolated and connected during episodic sea level changes during the Pleistocene epoch, until current day with restricted contemporary gene flow maintaining population genetic structure. Our results show the need for an understanding of both the history and ecology of a species in order to interpret patterns in genetic structure.  相似文献   

15.
To examine the processes that maintain genetic diversity among closely related taxa, we investigated the dynamics of introgression across a contact zone between two lineages of California voles (Microtus californicus). We tested the prediction that introgression of nuclear loci would be greater than that for mitochondrial loci, assuming ongoing gene flow across the contact zone. We also predicted that genomic markers would show a mosaic pattern of differentiation across this zone, consistent with genomes that are semi‐permeable. Using mitochondrial cytochrome b sequences and genome‐wide loci developed via ddRAD‐seq, we analyzed genetic variation for 10 vole populations distributed along the central California coast; this transect included populations from within the distributions of both parental lineages as well as the putative contact zone. Our analyses revealed that (1) the two lineages examined are relatively young, having diverged ca. 8.5–54 kya, (2) voles from the contact zone in Santa Barbara County did not include F1 or early generation backcrossed individuals, and (3) there appeared to be little to no recurrent gene flow across the contact zone. Introgression patterns for mitochondrial and nuclear markers were not concordant; only mitochondrial markers revealed evidence of introgression, putatively due to historical hybridization. These differences in genetic signatures are intriguing given that the contact zone occurs in a region of continuous vole habitat, with no evidence of past or present physical barriers. Future studies that examine specific isolating mechanisms, such as microhabitat use and mate choice, will facilitate our understanding of how genetic boundaries are maintained in this system.  相似文献   

16.
As a result of recurrent droughts and anthropogenic factors, the range of the lesser prairie-chicken (Tympanuchus pallidicinctus) has contracted by 92% and the population has been reduced by approximately 97% in the past century, resulting in the smallest population size and most restricted geographical distribution of any North American grouse. We examined genetic variation through DNA sequence analysis of 478 base pairs of the mitochondrial genome and by assaying allelic variation at five microsatellite loci from lesser prairie-chickens collected on 20 leks in western Oklahoma and east-central New Mexico. Traditional population genetic analyses indicate that lesser prairie-chickens maintain high levels of genetic variation at both nuclear and mitochondrial loci. Although some genetic structuring among lesser prairie-chicken leks was detected within Oklahoma and New Mexico for both nuclear and mitochondrial loci, high levels of differentiation were detected between Oklahoma and New Mexico populations. Nested-clade analysis of mitochondrial haplotypes revealed that both historic and contemporary processes have influenced patterns of haplotype distributions and that historic processes have most likely led to the level of differentiation found between the Oklahoma and New Mexico populations.  相似文献   

17.
Glacial phases during the Pleistocene caused remarkable changes in species range distributions, with inevitable genetic consequences. Specifically, during interglacial phases, when the ice melted and new habitats became suitable again, species could recolonize regions that were previously covered by ice, such as high latitudes and elevations. Based on theoretical models and empirical data, a decrease in genetic variation is predicted along recolonization routes as a result of the consecutive founder effects that characterize the recolonization process. In the present study, we assessed the relative importance of historical and contemporary processes in shaping genetic diversity and differentiation of bank vole (Myodes glareolus) populations at different elevations in the Swiss Alps. By contrast to expectations, we found that genetic variation increased with elevation. Estimates of recent migration rates and a contrasting pattern of genetic differentiation observed at the mitochondrial cytochrome b gene and nuclear microsatellites support the hypothesis that higher genetic diversity at high elevation results from contemporary gene flow. Although historical recolonization processes can have marked effects on the genetic structure of populations, the present study provides an example where contemporary processes along an environmental gradient can reverse predicted patterns of genetic variation.  相似文献   

18.
Active management is essential to the survival of many threatened species globally. Captive breeding programmes can play an important role in facilitating the supplementation, translocation and reintroduction of wild populations. However, understanding the genetic dynamics within and among wild and captive populations is crucial to the planning and implementation of ex situ management, as adaptive potential is, in part, driven by genetic diversity. Here, we use 14 microsatellite loci and mitochondrial Control Region sequence to examine the population genetics of both wild populations and captive colonies of the endangered warru (the MacDonnell Ranges race of the black-footed rock-wallaby Petrogale lateralis) in central Australia, to understand how historical evolutionary processes have shaped current diversity and ensure effective ex situ management. Whilst microsatellite data reveal significant contemporary differentiation amongst remnant warru populations, evidence of contemporary dispersal and relatively weak isolation by distance, as well as a lack of phylogeographic structure suggests historical connectivity. Genetic diversity within current captive populations is lower than in the wild source populations. Based on our genetic data and ecological observations, we predict outbreeding depression is unlikely and hence make the recommendation that captive populations be managed as one genetic group. This will increase genetic diversity within the captive population and as a result increase the adaptive potential of reintroduced populations. We also identify a new site in the Musgrave Ranges which contains unique alleles but also connectivity with a population 6 km away. This novel genetic diversity could be used as a future source for supplementation.  相似文献   

19.
Aim We examined the genetic structure of Quercus garryana to infer post‐glacial patterns of seed dispersal and pollen flow to test the hypotheses that (1) peripheral populations are genetically distinct from core populations and from one another; (2) genetic diversity declines towards the poleward edge of the species’ range; and (3) genetic diversity in the chloroplast genome, a direct measure of seed dispersal patterns, declines more sharply with increasing latitude than diversity in the nuclear genome. We address our findings in the context of known historical oak distribution from pollen core data derived from previously published research. Location Oak–savanna ecosystems from southern Oregon, USA (core populations/non‐glaciated range) northward to Vancouver Island, British Columbia, Canada (peripheral populations/glaciated range). Methods We genotyped 378 trees from 22 sites with five chloroplast and seven nuclear microsatellite loci. For both sets of markers, we estimated genetic diversity and differentiation using an analysis of molecular variance and generated Mantel correlograms to detect genetic and geographical distance correlations. For the nuclear markers, we also used a Bayesian approach to infer population substructure. Results There was a large degree of population differentiation revealed by six chloroplast haplotypes, with little (≤ 3) or no haplotype diversity within sites. Peripheral island locations shared the same, maternally inherited chloroplast haplotype, whereas locations in mainland Washington had greater haplotype diversity. In contrast, genetic diversity of the nuclear markers was high at all locations sampled. Populations clustered into two groups and were significantly positively correlated over large spatial scales (≤ 200 km), although allele richness decreased significantly with latitude. Population substructure was observed between core and peripheral populations because rare alleles were absent in peripheral localities and common allele frequencies differed. Main conclusions The observed pattern of chloroplast haplotype loss at the northern periphery suggests restricted seed dispersal events from mainland sites to peripheral islands. This pattern was unexpected, however, as refugial oak populations remained near the current post‐glacial range even during the Last Glacial Maximum. Using nuclear markers, we found high within‐population diversity and population differentiation only over large spatial scales, suggesting that pollen flow is relatively high among populations.  相似文献   

20.
Fishes of the genus Prochilodus are ecologically and commercially important, ubiquitous constituents of large river biota in South America. Recent ecologic and demographic studies indicate that these fishes exist in large, stable populations with adult census numbers exceeding one million individuals. Abundance data present a stark contrast to very low levels of genetic diversity (theta) and small effective population sizes (Ne) observed in a mitochondrial (mt) DNA dataset obtained for two species, Prochilodus mariae, and its putative sister taxon, Prochilodus rubrotaeniatus. Both species occupy major river drainages (Orinoco, Essequibo, and Negro) of northeastern South America. Disparity between expectations based on current abundance and life history information and observed genetic data in these lineages could result from historical demographic bottlenecks, or alternatively, natural selection (i.e., a mtDNA selective sweep). To ascertain underlying processes that affect mtDNA diversity in these species we compared theta and Ne estimates obtained from two, unlinked nuclear loci (calmodulin intron-4 and elongation factor-1alpha intron-6) using an approach based on coalescent theory. Genetic diversity and Ne estimated from mtDNA and nuclear sequences were uniformly low in P. rubrotaeniatus from the Rio Negro, suggesting that this population has encountered a historical bottleneck. For all P. mariae populations, theta and Ne based on nuclear sequences were comparable to expectations based on current adult census numbers and were significantly greater than mtDNA estimates, suggesting that a selective mtDNA sweep has occurred in this species. Comparative genetic analysis indicates that a suite of evolutionary processes involving historical demography and natural selection have influenced patterns of genetic variation and speciation in this important Neotropical fish group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号