首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugal transfer of the small plasmid pUB110 betweenBacillus subtilis strains was studied under conditions of microcosms with sterile and nonsterile soil. Plasmid transfer proved to be possible after soil inoculation with vegetative partner cells or with their spores. Plasmid transfer occurred at temperatures of 30 and 22–23°C.  相似文献   

2.
Summary Sporulation gene spoIVC of Bacillus subtilis was cloned by the prophage transformation method in temperate phage 105. The specialized transducing phage, 105spoIVC-1, restored the sporulation of the asporogenous mutant of B. subtilis strain 1S47 (spoIVC133). Transformation experiments showed that the spoIVC gene resides on a 7.3 kb HindIII restriction fragment. Subsequent analysis of the 7.3 kb HindIII fragment with restriction endonuclease EcoRI showed that the spoIVC gene resides on a 3.6 kb EcoRI fragment within the 7.3 kb fragment. The 3.6 kb fragment was recloned into the unique EcoRI site of plasmid pUB110 and deletion derivatives having a deletion within the 3.6 kb insert were constructed. The plasmid carrying the entire spoIVC gene restored the sporulation of strain HU1214 (spoIVC133, recE4) at a frequency of 107 spores/ml, and reduced the sporulation of strain HU1018 (spo +, recE4) to 107 spores/ml.  相似文献   

3.
A Bacillus amyloliquefaciens neutral protease gene was cloned and expressed in Bacillus subtilis.The chromosomal DNA of B. amyloliquefaciens strain F was partially digested with restriction endonuclease Sau3AI, and 2 to 9 kb fragments isolated were ligated into the BamHI site of plasmid pUB110. Then, B. subtilis strain 1A289 was transformed with the hybrid plasmids by the method of protoplast transformation and kanamycin-resistant transformants were screened for the formation of large halo on a casein plate. A transformant that produced a large amount of an extracellular neutral protease harbored a plasmid, designated as pNP150, which contained a 1.7 kb insert.The secreted neutral protease of the transformant was found to be indistinguishable from that of DNA donor strain B. amyloliquefaciens by double immunodiffusion test and SDS-polyacrylamide gel electrophoresis.The amount of the neutral protease activity excreted into culture medium by the B. subtilis transformed with pNP150 was about 50-fold higher than that secreted by B. amyloliquefaciens. The production of the neutral protease in the transformant was partially repressed by addition of glucose to the medium.  相似文献   

4.
Summary The illegitimate recombination between Staphylococcus aureus plasmids pE194 (or pGG20, the hybrid between pE194 and Escherichia coli plasmid pBR322) and pBD17 (plasmid pUB110 without HpaII C-fragment) was studied in Bacillus subtilis. Cointegrates were generated with the frequency of 1–3x10-8. Among 22 hybrids analysed 9 types of recombinants were found. Nucleotide sequences of all three parental plasmids were involved in intermolecular recombination. Nucleotide sequencing of recombinant DNA junctions revealed that in 8 cases recombination occurred between short homologous regions (9–15 bp). One recombinant was formed using nonhomologous sites. The similarity was demonstrated between nucleotide sequences of the recombination sites of two types of cointegrates and those used for pE194 integration into the B. subtilis chromosome. Possible mechanisms of illegitimate recombination are discussed.  相似文献   

5.
Linearization of pBG0 (a hydrid between Escherichia coli plasmid pBR322 and Staphylococcus aureus plasmid pUB110) was performed by lysis of the oxolinic acid treated Bacillus subtilis protoplasts with sodium dodecyl sulfate. This plasmid DNA linearization was used both for a detailed mapping of DNA gyrase cleavage sites of various strength and for the nucleotide sequence determinations at the points of gyrase-mediated scission by introducing the XhoI linker DNA. A total of 40 plasmids carrying inserted XhoI linker were sequenced by labeling 3' termini of XhoI sites; 38 of them were found to contain a duplication of four base-pairs of the plasmid sequence flanking the linker, which were characteristic of the oxolinic acid-induced DNA cleavage by E. coli DNA gyrase in vitro and in vivo. The relative strength of these sequenced sites was established by comparing their positions to the sites mapped on the appropriate plasmid genome. This allowed us to propose a consensus sequence of B. subtilis DNA gyrase in vivo cleavage site:GNAT GATCATNC% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaaeikaiaabsfacaqGPaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca% caqGOaGaae4raiaabMcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai% aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa% aeiiaiaabccacaqGOaGaaeyqaiaabMcaaaa!4E92!\[{\rm{(T) (G) (A)}}\]where N is any nucleotide. The bases in parentheses were preferred secondarily. The involvement of DNA gyrase in illegitimate recombination events in Bacillus subtilis is discussed.  相似文献   

6.
It was found that plasmid DNA (pUB 110) can be introduced into not only protoplasts but also intact cells of Bacillus subtilis by electric field pulses. The transformation of, B. subtilis using protoplasts results in an efficiency of 2.5 × 104 transformants per μg of DNA, with a single pulse of 50 jisec with an initial electric field strength of 7kV/cm. Even transformation of intact B. subtilis cells results in a maximum efficiency of 1.5 × 103 transformants per μg DNA, with a single pulse of 400 μsec with an initial electric field strength of 16kV/cm. The cell survival of protoplasts and intact cells was approximately 100% and 30%, respectively, under the conditions found to be optimal for the transformation process. Plasmid DNA isolated from pUB 110 containing transformants was indistinguishable from authentic preparations of pBU 110 on gel electrophoretic analysis.  相似文献   

7.
Summary Cloning in Escherichia coli and Bacillus subtilis was carried out using the bifunctional plasmid pDH5060. B. subtilis chromosomal DNA and pDH5060 DNA were digested with either BamHI or SalI, then annealed, ligated, and transformed into E. coli SK2267. Transformants containing sequences ligated into the BamHI or SalI sites in the Tcr gene of pDH5060 were selected directly using a modification of the fusaric acid technique. The BamHI and SalI clone banks contain about 250 and 140 B. subtilis fragments, respectively, with an average insert size of 8–9 Kbp in the BamHI and 4–5 Kbp in the SalI bank. The inserts ranged in size from 0.3 Kbp to greater than 20 Kbp. The vector used here therefore accepts inserts which are significantly larger than previously reported for other B. subtilis cloning systems. All individual cloned B. subtilis sequences examined were stably propagated in E. coli SK2267. Eight of eighteen B. subtilis auxotrophic markers tested (aroG, gltA, glyB, ilvA, metC, purA, pyrD, and thrA) were transformed to prototrophy with BamHI or SalI clone bank DNA. All or part of the hybrid plasmid DNA recombined at the sites of homology in the chromosome of these Rec+ recipients. Loss of sequences from hybrid plasmids was not prevented in a r - m - recE4 recipient strain of B. subtilis. Although the recE4 background prevented recombination between homologous chromosomal DNA, a variety of cloned fragments were shown to be unstable and undergo deletions of both insert and plasmid sequences. In addition, B. subtilis sequences propagated in E. coli transformed B. subtilis recE4 recipients with a 500-1,000-fold reduced efficiency.  相似文献   

8.
Summary We have cloned the hisH tyrA wild-type genes of Bacillus subtilis with the aid of the chimeric plasmid pBJ194, which replicates both in B. subtilis and Escherichia coli. Primary cloning was done in E. coli. The original E. coli clone, carrying the recombinant plasmid (pGR1) which complements hisH tyrA mutants of B. subtilis, was selected directly from a mixture of plated E. coli clones by replicaplating these clones onto minimal agar plates without tyrosine spread just before with competent B. subtilis cells. After overnight incubation clusters of small colonies had developed exclusively in the E. coli [pGR1] colony prints.The Tyr+ minicolonies were shown to be B. subtilis carrying pGR1 because (i) their appearance depended linearly on the number of B. subtilis cells plated, (ii) they produced extracellular protease and amylase and (iii) plasmids could be reisolated from the minicolonies and used to transform B. subtilis recE4 tyrA1 both to Cmr and Tyr+.Plasmid pGR1 transfer through replica plating was compared with plasmid transfer in liquid. Both systems depended on transformable B. subtilis strains and were sensitive to DNAseI. However, whereas integration of the tyrA + gene into the chromosome and concomittant loss of plasmids occurred frequently during regular plasmid transformation of Rec+ B. subtilis, this was a rare event during plasmid transfer through replica plating.  相似文献   

9.
Summary To determine the minimal DNA sequence homology required for recombination in Bacillus subtilis, we developed a system capable of distinguishing between homologous and illegitimate recombination events during plasmid integration into the chromosome. In this system the recombination frequencies were measured between is pE194 derivatives carrying segments of the chromosomal -gluconase gene (bglS) of various lengths and the bacterial chromosome, using selection for erythromycin resistance at the non-permissive temperature. Homologous recombination events, resulting in disruption of the bglS gene, were easily detected by a colorimetric assay for -gluconase activity. A linear dependence of recombination frequency on homology length was observed over an interval of 77 bp. It was found that approximately 70 bp of homology is required for detectable homologous recombination. Homologous recombination was not detected when only 25 by of homology between plasmid and chromosome were provided. The data indicate that homology requirements for recombination in B. subtilis differ from those in Escherichia coli.  相似文献   

10.
Plasmid pSL103 was previously constructed by cloning a Trp fragment (approximately 2.3 X 10(6) daltons) from restriction endonuclease EcoRI-digested chromosome DNA of Bacillus pumilus using the neomycin-resistance plasmid pUB110 (approximately 2.8 X 10(6) daltons) as vector and B. subtilis as transformation recipient. In the present study the EcoRI Trp fragment from pSL103 was transferred in vitro to EcoRI fragments of the Bacillus plasmid pPL576 to determine the ability of the plasmid fragments to replicate in B. subtilis. Endonuclease EcoRI digestion of pPL576 (approximately 28 X 10(6) daltons) generated three fragments having molecular weights of about 13 X 13(6) (the A fragment), 9.5 X 10(6) (B fragment, and 6.5 X 10(6) (C fragment). Trp derivatives of pPL576 fragments capable of autonomous replication in B. subtilis contained the B fragment (e.g., pSL107) or both the B and C fragments (e.g., pSL108). Accordingly, the B fragment of pPL576 contains information essential for autonomous replication. pSL107 and pSL108 are compatible with pUB110. Constructed derivatives of the compatible plasmids pPL576 and pUB110, harboring genetically distinguishable EcoRI-generated Trp fragments cloned from the DNA of a B. pumilus strain, exhibited relatively high frequency recombination for a trpC marker when the plasmid pairs were present in a recombination-proficient strain of B. subtilis. No recombination was detected when the host carried the chromosome mutation recE4. Therefore, the recE4 mutation suppresses recombination between compatible plasmids that contain homologous segments.  相似文献   

11.
Summary The effects of the restriction system of Bacillus subtilis strain M on plasmid transformation were studied. Plasmid pHV1401 DNA prepared from B. subtilis transformed the restriction-proficient M strain 100 times more efficiently than the DNA prepared from Escherichia coli, while the two DNA preparations transformed restriction-deficient derivatives of that strain with similar efficiencies. This indicates that transformation with pHV1401 is sensitive to the M restriction system. pHV1401 contains three CTCGAG (XhoI sites). Successive removal of these abolished the effect of restriction. This indicates that the XhoI sites are the targets for the M restriction system.Abbreviations used Apr resistance to ampicillin - Cmr resistance to chloramphenicol - R/M restriction and modification - Tcr resistance to tetracycline  相似文献   

12.
Summary We determined the effect of various Bacillus subtilis dna(Ts) mutations on pUB110 and chromosomal replication. Leading strand DNA synthesis of pUB110, starting by a nick at the plasmid replication origin (oriU), is performed by DNA polymerase III, since replication is blocked at non-permissive temperature in thermosensitive mutants dnaD, dnaF, dnaH and dnaN known to cause thermosensitivity of the various subunits of DNA polymerase III. When the lagging strand origin (oriL) is exposed, the DnaG protein (DNA primase) alone, or in association with unknown protein(s) binds asymmetrically to oriL to form a primer that is also extended by DNA polymerase III. In oriL - plasmids like pBT32, leading and lagging strand DNA syntheses are decoupled from each other. The DnaB protein, that is not required for pUB110 replication, may be associated with priming at a second unidentified lagging strand origin on pBT32. At non-permissive temperature, the dnaC30 and dnaI2 mutations affect both pUB110 and chromosomal DNA synthesis.  相似文献   

13.
Summary Rec mutants of Bacillus subtilis have been tested for complementation by the recA gene of Proteus mirabilis (recApm) which was introduced into B. subtilis via the plasmid pHP334. In the recE4 mutant of B. subtilis the plasmid pHP334 restored significantly the defects in RecE functions tested: UV-sensitivity, homologous recombination (transduction and transformation) and prophage induction.Although serological methods to detect the presence of RecApm protein in B. subtilis have been unsuccessful, our results strongly indicate that the recE function of B. subtilis is analogous to the recA function of P. mirabilis.Abbreviations Cmr resistance to chloramphenicol - Emr resistance to erythromycin - Tcr resistance to tetracycline - SDS sodium dodecyl sulfate - UV ultraviolet - AS ammonium sulfate  相似文献   

14.
Competent cells of Bacillus subtilis were transformed with DNA from gently lysed protoplasts. Significant linkages among markers separated by distances of approximately 2.3% of the total chromosome were found, which have not been detected for conventional transformation. In comparison to previous reports, enhanced plasmid transformation was observed [4.0×107 transformants per g DNA (one transformant per 5×104 molecules added)], when competent cells were transformed with DNA from lysed protoplasts harboring pUB110.  相似文献   

15.
A functional map of the replicator region of the octopine Ti plasmid   总被引:14,自引:0,他引:14  
A hybrid plasmid of pUB 110 (Neor) and pAB 124 (Tcr) has been constructed and shown to have a NeosTcr phenotype in Bacillus subtilis. A derivative of this pUB 110:pAB 124 hybrid has been isolated, pAB 324, which has the expected NeorTcr phenotype. A restriction endonuclease cleavage map of pAB 324 was compared to that of the parent hybrid. This showed that pAB 324 contained a minimum of two deletions and one insertion. This insertion (approximately 1.0 Md) has been identified as originating from the Bacillus subtilis chromosome.  相似文献   

16.
Using a high-efficiency DNA cloning vector pJ1–8, a DNA repair geneuvr1 has been self-cloned in bacteriumHaemophilus influenzae. Chimeric plasmid pKuvrl, carrying wild type allele ofuvr1 gene and flanking DNA sequences, specifically complements auvr1 gene mutation in the bacterial chromosome. Auvr1} mutation could be transferred from chromosome byin vivo recombination to pKuvr1 and isolated and designated as plasmid pKuvrl. Plasmid pKuvrl carries a 11.3 kb chromosomal DNA insert which was scanned for the presence of any other DNA repair genes by a novel method of directed mutagenesis. Preliminary analysis of the 3 new mutants isolated by this method supports the notion that the insert contains more than one gene concerned with ultraviolet radiation-sensitivity.  相似文献   

17.
Summary The streptococcal plasmids pMV158 and pLS1, grown in Streptococcus pneumoniae, were transferred to Bacillus subtilis by DNA-mediated transformation. The plasmids were unchanged in the new host; no deletions were observed in 80 instances of transfer. Their copy number was similar to that in S. pneumoniae. Two B. subtilis plasmids, pUB110 and pBD6, could not be transferred to S. pneumoniae. Hybrid plasmids were produced by recombining the EcoRI fragment of pBD6 that confers Kmr with EcoRI-cut pLS1, which confers Tcr. The simple hybrid, pMP2, was transferable to both species and expressed Tcr and Kmr in both. A derivative, pMP5, which contained an insertion in the pBD6 component, expressed a higher level of kanomycin resistance and was more easily selected in S. pneumoniae. Another derivative, pMP3, which contained an additional EcoRI fragment, presumably of pneumococcal chromosomal DNA, could not be transferred to B. subtilis. Previous findings that monomeric plasmid forms could transform S. pneumoniae but not B. subtilis were confirmed using single plasmid preparations. Although plasmids extracted from either species were readily transferred to S. pneumoniae, successive passage in B. subtilis increased the ability of plasmid extracts to transfer the plasmid to a B. subtilis recipient. This adaptation was tentatively ascribed to an enrichment of multimeric forms in extracts of B. subtilis as compared to S. pneumoniae. A review of host ranges exhibited by plasmids of Gram-positive bacteria suggested differences in their ability to use particular host replication functions. The pMP5 plasmid, with readily selectable Kmr and Tcr markers in both hosts, and with the potential for inactivation of Kmr by insertion in the Bg/II site, could be a useful shuttle vector for cloning in S. pneumoniae and B. subtilis.  相似文献   

18.
Bacillus subtilis 168 was developed as a genome vector to manipulate large DNA fragments. The system is based on the inherent natural transformation (TF) activity. However, DNA size transferred by TF is limited up to approximately 100 kb. A conjugal transfer system capable of transferring DNA fragments considerably larger than those transferred by TF was developed. A well-defined oriT110 sequence and a cognate relaxase gene from the pUB110 plasmid were inserted into the xkdE gene of the B. subtilis genome. Transfer of antibiotic resistance markers distant from the oriT110 locus to the recipient B. subtilis occurred only in the presence of pLS20, a helper plasmid that provides a type IV secretion system. Marker transmission was consistent with the orientation of oriT110 and required a recA-proficient recipient. The first conjugal transfer system of genomic DNA should provide a valuable alternative genetic tool for editing the B. subtilis genome.  相似文献   

19.
Kim JY 《Biotechnology letters》2003,25(17):1445-1449
A gene coding for endo--1,3-1,4-glucanase (lichenase) containing a recombinant plasmid, pLL200K, was transferred from Bacillus circulans into a new shuttle plasmid, pLLS920, by ligating linearized DNAs of pLL200K and pUB110. B. subtilis RM125 and B. megaterium ATCC14945 transformed with pLLS920 produced the endo--1,3-1,4-glucanase. The enzyme was produced during active growth with maximum activity. The B. subtilis (pLLS920) enzyme was 83 times (8522 mU ml–1) more active than that of the gene donor cells (103 mU ml–1). The B. megaterium (pLLS920) enzyme was 7 times (735 mU ml–1) more active than that of the gene donor cells. While E. coli secreted only about 10% of the produced enzyme, B. subtilis excreted the enzyme completely into the medium and B. megaterium by about 98%. The plasmid pLLS920 was stable in B. megaterium (98%), and in B. subtilis (51%) but not in E. coli (29%).  相似文献   

20.
Conjugal transfer of plasmid pUB110 between different strains of bacilli was studied. The plasmid transfer was possible not only between various strains of B. subtilis, but also when many other species of bacilli served as recipients. Conjugation of a donor strain B. subtilis 19 (p19 pUB110) was accompanied by a transfer of plasmid p19 along with plasmid pUB110 to the B. subtilis recipient strains lacking a large plasmid p19. If, like the donor cells, the recipient B. subtilis strain carried plasmid p19, the frequency of conjugation decreased. The small plasmid pBC16 was also capable of conjugative transfer. However, if this plasmid carried the mob gene with an inverted region, the frequency of its transmission dramatically decreased. If the donor strain contained another small plasmid, pV, which also carried the mob gene, the efficiency of transmission was partially restored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号