首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Similarity between the apolipoprotein(a) (apo(a)) moiety of lipoprotein(a) (Lp(a)) and plasminogen suggests a potentially important link between atherosclerosis and thrombosis. Lp(a) may interfere with tissue plasminogen activator (tPA)-mediated plasminogen activation in fibrinolysis, thereby generating a hypercoagulable state in vivo. A fluorescence-based system was employed to study the effect of apo(a) on plasminogen activation in the presence of native fibrin and degraded fibrin cofactors and in the absence of positive feedback reactions catalyzed by plasmin. Human Lp(a) and a physiologically relevant, 17-kringle recombinant apo(a) species exhibited strong inhibition with both cofactors. A variant lacking the protease domain also exhibited strong inhibition, indicating that the apo(a)-plasminogen binding interaction mediated by the apo(a) protease domain does not ultimately inhibit plasminogen activation. A variant in which the strong lysine-binding site in kringle IV type 10 had been abolished exhibited substantially reduced inhibition whereas another lacking the kringle V domain showed no inhibition. Amino-terminal truncation mutants of apo(a) also revealed that additional sequences within kringle IV types 1-4 are required for maximal inhibition. To investigate the inhibition mechanism, the concentrations of plasminogen, cofactor, and a 12-kringle recombinant apo(a) species were systematically varied. Kinetics for both cofactors conformed to a single, equilibrium template model in which apo(a) can interact with all three fibrinolytic components and predicts the formation of ternary (cofactor, tPA, and plasminogen) and quaternary (cofactor, tPA, plasminogen, and apo(a)) catalytic complexes. The latter complex exhibits a reduced turnover number, thereby accounting for inhibition of plasminogen activation in the presence of apo(a)/Lp(a).  相似文献   

2.
The kinetics of the activation of plasminogen by tissue-type plasminogen activator were studied in the presence and the absence of CNBr-digested fibrinogen as a soluble cofactor. Michaelis-Menten kinetics applied and the kinetic parameters obtained were very similar to those previously reported for the activation in the presence of solid phase fibrin (Hoylaerts, M., Rijken, D. C., Lijnen, H. R., and Collen, D. (1982) J. Biol. Chem. 257, 2912-2919). The affinity of the enzyme for plasminogen dramatically increases in the presence of the soluble cofactor while the catalytic rate constant does not change significantly (KM drops from 83 to 0.18 microM and kcat increases from 0.07 to 0.28 s-1 for tissue-type plasminogen activator of melanoma origin). Fragments containing the lysine-binding sites of plasminogen compete with plasminogen for interaction with CNBr-digested fibrinogen. The dissociation constant of this interaction was found to be 4.5 microM for the high affinity lysine-binding site. No difference was found in the kinetic parameters for the activation of plasminogen by either tissue-type plasminogen activator of melanoma origin or by glycosylated forms of tissue-type plasminogen activator obtained by recombinant DNA technology. The present findings obtained in a homogenous liquid milieu support the previously proposed mechanism of the activation of plasminogen by tissue-type plasminogen activator in the presence of fibrin. This mechanism involves binding of both tissue-type plasminogen activator and plasminogen to fibrin.  相似文献   

3.
R Machovich  W G Owen 《Enzyme》1988,40(2-3):109-112
A component extracted from endothelium and partially purified has been found to have a capacity to enhance the rate of plasminogen activation by tissue-type plasminogen activator. The mechanism of action of this cofactor differs from that of others, such as fibrin.  相似文献   

4.
Hryszko T  Suzuki Y  Mogami H  Urano T 《FEBS letters》2005,579(27):6023-6026
Protein S, a cofactor for activated protein C (aPC) to inactivate coagulation factors, also plays a pivotal role in inflammation. Based on our recent findings that aPC and protein S modifies tissue plasminogen activator (tPA)-catalyzed activation of Glu-plasminogen (Glu-plg), we analyzed possible role of protein S in cell-associated plasminogen activation and invasive potential of inflammatory cells. Monocyte-like THP-1 cells, to which both plasminogen and tPA bind, enhanced tPA-catalyzed plasminogen activation, which was partially abolished by protein S but not by aPC. Protein S attenuated both the plasminogen binding to THP-1 cells and associated their invasive potential through Matrigel.  相似文献   

5.
Vampire bat saliva contains a plasminogen activator that presumably assists these hematophagous animals during feeding. Here, we report that the vampire bat salivary plasminogen activator, Bat-PA, is homologous to tissue-type plasminogen activator (t-PA) but contains neither a kringle 2 domain nor a plasmin-sensitive processing site. Three Bat-PA species corresponding to full-length, finger-, and finger- epidermal growth factor homology domain- forms of t-PA have been isolated. Bat-PA(H), the full-length form, was purified and its activity has been characterized. Bat-PA(H) and t-PA are of similar efficacy when monitored for their abilities to catalyze plasminogen activation in the presence of a fibrin cofactor. Interestingly, Bat-PA activity toward plasminogen is stimulated 45,000-fold in the presence of fibrin I; the corresponding value for t-PA is only 205-fold. Bat-PA(H) is the only Bat-PA species which binds tightly to fibrin, although each of the three species exhibit remarkable stimulation by a fibrin cofactor.  相似文献   

6.
Certain denatured proteins function as cofactors in the activation of plasminogen by tissue-type plasminogen activator. The present study approached the structural requirements for the cofactor activity of a model protein (human serum albumin). Heat denaturation of 100-230 microM albumin (80 degrees C and 60-90 min) reproducibly yielded aggregates with radius in the range of 10-150 nm. The major determinant of the cofactor potency was the size of the aggregates. The increase of particle size correlated with the cofactor activity, and there was a minimal requirement for the size of the cofactor (about 10 nm radius). Similar to other proteins, the molecular aggregates with cofactor function contained a significant amount of antiparallel intermolecular beta-sheets. Plasmin pre-digestion increased the cofactor efficiency (related to C-terminal lysine exposure) and did not affect profoundly the structure of the aggregates, suggesting a long-lasting and even a self-augmenting cofactor function of the denatured protein.  相似文献   

7.
Invasive bacterial pathogens intervene at various stages and by various mechanisms with the mammalian plasminogen/plasmin system. A vast number of pathogens express plasmin(ogen) receptors that immobilize plasmin(ogen) on the bacterial surface, an event that enhances activation of plasminogen by mammalian plasminogen activators. Bacteria also influence secretion of plasminogen activators and their inhibitors from mammalian cells. The prokaryotic plasminogen activators streptokinase and staphylokinase form a complex with plasmin(ogen) and thus enhance plasminogen activation. The Pla surface protease of Yersinia pestis resembles mammalian activators in function and converts plasminogen to plasmin by limited proteolysis. In essence, plasminogen receptors and activators turn bacteria into proteolytic organisms using a host-derived system. In Gram-negative bacteria, the filamentous surface appendages fimbriae and flagella form a major group of plasminogen receptors. In Gram-positive bacteria, surface-bound enzyme molecules as well as M-protein-related structures have been identified as plasminogen receptors, the former receptor type also occurs on mammalian cells. Plasmin is a broad-spectrum serine protease that degrades fibrin and noncollagenous proteins of extracellular matrices and activates latent procollagenases. Consequently, plasmin generated on or activated by Haemophilus influenzae, Salmonella typhimurium, Streptococcus pneumoniae, Y. pestis, and Borrelia burgdorferi has been shown to degrade mammalian extracellular matrices. In a few instances plasminogen activation has been shown to enhance bacterial metastasis in vitro through reconstituted basement membrane or epithelial cell monolayers. In vivo evidence for a role of plasminogen activation in pathogenesis is limited to Y. pestis, Borrelia, and group A streptococci. Bacterial proteases may also directly activate latent procollagenases or inactivate protease inhibitors of human plasma, and thus contribute to tissue damage and bacterial spread across tissue barriers.  相似文献   

8.
The vampire bat salivary plasminogen activator (BatPA) is virtually inactive toward Glu-plasminogen in the absence of a fibrin-like cofactor, unlike human tissue-type plasminogen activator (tPA) (the kcat/Km values were 4 and 470 M-1 s-1, respectively). In the presence of fibrin II, tPA and BatPA activated Glu-plasminogen with comparable catalytic efficiencies (158,000 and 174,000 M-1 s-1, respectively). BatPA's cofactor requirement was partially satisfied by polymeric fibrin I (54,000 M-1 s-1), but monomeric fibrin I was virtually ineffective (970 M-1 s-1). By comparison, a variety of monomeric and polymeric fibrin-like species markedly enhanced tPA-mediated activation of Glu-plasminogen. Fragment X polymer was 2-fold better but 9-fold worse as cofactor for tPA and BatPA, respectively, relative to fibrin II. Fibrinogen, devoid of plasminogen, was a 10-fold better cofactor for tPA than fibrinogen rigorously depleted of plasminogen, Factor XIII, and fibronectin; the enhanced stimulatory effect of the less-purified fibrinogen was apparently due to the presence of Factor XIII. By contrast, the two fibrinogen preparations were equally poor cofactors of BatPA-mediated activation of Glu-plasminogen. BatPA possessed only 23 and 4% of the catalytic efficiencies of tPA and two-chain tPA, respectively, in hydrolyzing the chromogenic substrate Spectrozyme tPA. However in the presence of fibrin II, BatPA and tPA exhibited similar kcat/Km values for the hydrolysis of Spectrozyme tPA. Our data revealed that BatPA, unlike tPA, displayed a strict and fastidious requirement for polymeric fibrin I or II. Consequently, BatPA may preferentially promote plasmin generation during a narrow temporal window of fibrin formation and dissolution.  相似文献   

9.
We previously showed that coagulation factor Xa (FXa) enhances activation of the fibrinolysis zymogen plasminogen to plasmin by tissue plasminogen activator (tPA). Implying that proteolytic modulation occurs in situ, intact FXa (FXaα) must be sequentially cleaved by plasmin or autoproteolysis, producing FXaβ and Xa33/13, which acquire necessary plasminogen binding sites. The implicit function of Xa33/13 in plasmin generation has not been demonstrated, nor has FXaα/β or Xa33/13 been studied in clot lysis experiments. We now report that purified Xa33/13 increases tPA-dependent plasmin generation by at least 10-fold. Western blots confirmed that in situ conversion of FXaα/β to Xa33/13 correlated to enhanced plasmin generation. Chemical modification of the FXaα active site resulted in the proteolytic generation of a product distinct from Xa33/13 and inhibited the enhancement of plasminogen activation. Identical modification of Xa33/13 had no effect on tPA cofactor function. Due to its overwhelming concentration in the clot, fibrin is the accepted tPA cofactor. Nevertheless, at the functional level of tPA that circulates in plasma, FXaα/β or Xa33/13 greatly reduced purified fibrin lysis times by as much as 7-fold. This effect was attenuated at high levels of tPA, suggesting a role when intrinsic plasmin generation is relatively low. FXaα/β or Xa33/13 did not alter the apparent size of fibrin degradation products, but accelerated the initial cleavage of fibrin to fragment X, which is known to optimize the tPA cofactor activity of fibrin. Thus, coagulation FXaα undergoes proteolytic modulation to enhance fibrinolysis, possibly by priming the tPA cofactor function of fibrin.  相似文献   

10.
Fibrin (Fn) enhances plasminogen (Pg) activation by tissue-type plasminogen activator (tPA) by serving as a template onto which Pg and tPA assemble. To explore the contribution of the Pg/Fn interaction to Fn cofactor activity, Pg variants were generated and their affinities for Fn were determined using surface plasmon resonance (SPR). Glu-Pg, Lys-Pg (des(1-77)), and Mini-Pg (lacking kringles 1-4) bound Fn with K(d) values of 3.1, 0.21, and 24.5 μm, respectively, whereas Micro-Pg (lacking all kringles) did not bind. The kinetics of activation of the Pg variants by tPA were then examined in the absence or presence of Fn. Whereas Fn had no effect on Micro-Pg activation, the catalytic efficiencies of Glu-Pg, Lys-Pg, and Mini-Pg activation in the presence of Fn were 300- to 600-fold higher than in its absence. The retention of Fn cofactor activity with Mini-Pg, which has low affinity for Fn, suggests that Mini-Pg binds the tPA-Fn complex more tightly than tPA alone. To explore this possibility, SPR was used to examine the interaction of Mini-Pg with Fn in the absence or presence of tPA. There was 50% more Mini-Pg binding to Fn in the presence of tPA than in its absence, suggesting that formation of the tPA-Fn complex exposes a cryptic site that binds Mini-Pg. Thus, our data (a) indicate that high affinity binding of Pg to Fn is not essential for Fn cofactor activity, and (b) suggest that kringle 5 localizes and stabilizes Pg within the tPA-Fn complex and contributes to its efficient activation.  相似文献   

11.
An elastase-dependent pathway of plasminogen activation   总被引:1,自引:0,他引:1  
R Machovich  W G Owen 《Biochemistry》1989,28(10):4517-4522
In reaction mixtures containing Glu-plasminogen, alpha 2-antiplasmin, and tissue plasminogen activator or urokinase, either pancreatic or leukocyte elastase enhances the rate of plasminogen activation by 2 or more orders of magnitude. This effect is the consequence of several reactions. (a) In concentrations on the order of 100 nM, elastase degrades plasminogen within 10 min to yield des-kringle1-4-plasminogen (mini-plasminogen), which is 10-fold more efficient than Glu-plasminogen as a substrate for plasminogen activators. Des-kringle1-4-plasminogen is insensitive to cofactor activities of fibrin(ogen) fragments or an endothelial cell cofactor. (b) Des-kringle1-4-plasmin is one-tenth as sensitive as plasmin to inhibition by alpha 2-antiplasmin: k" = 10(6) M-1 s-1 versus 10(7) M-1 s-1. (c) alpha 2-Antiplasmin is disabled efficiently by elastase, with a k" of 20,000 M-1 s-1. The elastase-dependent reactions are not influenced by 6-aminohexanoate. In diluted (10-fold) blood plasma, the capacity of endogenous inhibitors to block plasmin expression is suppressed by 30 microM elastase. It is proposed that elastases provide an alternative pathway for Glu-plasminogen activation and a mechanism for controlling initiation of fibrinolysis by urokinase-type plasminogen activators.  相似文献   

12.
The reciprocal activation of plasminogen and prourokinase (pro-u-PA) is an important mechanism in the initiation and propagation of local fibrinolytic activity. We have found that a bacterial lipopeptide compound, surfactin C (3-20 microM), enhances the activation of pro-u-PA in the presence of plasminogen. This effect accompanied increased conversions of both pro-u-PA and plasminogen to their two-chain forms. Surfactin C also elevated the rate of plasminogen activation by two-chain urokinase (tcu-PA) while not affecting plasmin-catalyzed pro-u-PA activation and amidolytic activities of tcu-PA and plasmin. The intrinsic fluorescence of plasminogen was increased, and molecular elution time of plasminogen in size-exclusion chromatography was shortened in the presence of surfactin C. These results suggested that surfactin C induced a relaxation of plasminogen conformation, thus leading to enhancement of u-PA-catalyzed plasminogen activation, which in turn caused feedback pro-u-PA activation. Surfactin C was active in enhancing [125I]fibrin degradation both by pro-u-PA/plasminogen and tcu-PA/plasminogen systems. In a rat pulmonary embolism model, surfactin C (1 mg/kg, i.v.) elevated 125I plasma clot lysis when injected in combination with pro-u-PA. The present results provide first evidence that pharmacological relaxation of plasminogen conformation leads to enhanced fibrinolysis in vivo.  相似文献   

13.
The kinetics of tissue plasminogen activator (t-PA) and DSPAalpha1-catalyzed plasminogen activation using untreated and TAFIa-treated fibrin degradation products (FDPs), ranging in weight average molecular weight (M(w)) from 0.48 x 10(6) to 4.94 x 10(6) g/mol, were modeled according to the steady-state template model. The FDPs served as effective cofactors for both activators. The intrinsic catalytic efficiencies of both t-PA (17.4 x 10(5) m(-1) s(-1)) and DSPAalpha1 (6.0 x 10(5) m(-1) s(-1)) were independent of FDP M(w). The intrinsic catalytic efficiency of t-PA was 12-fold higher than that measured under identical conditions with intact fibrin as the cofactor. At sub-saturating levels of cofactor and substrate, rates were strongly dependent on FDP M(w) with DSPAalpha1 but not t-PA. Loss of activity with decreasing FDP M(w) correlated with loss of finger-dependent binding of the activators to the FDPs. TAFIa treatment of the FDPs resulted in 90- and 215-fold decreases in the catalytic efficiencies of t-PA (0.20 x 10(5) m(-)(1) s(-1)) and DSPAalpha1 (0.028 x 10(5) m(-1) s(-1)), yielding cofactors that were still 30- and 50-fold better than fibrinogen with t-PA and DSPAalpha1, respectively. Our results show that for both activators the products released during fibrinolysis are very effective cofactors for plasminogen activation, and both t-PA and DSPAalpha1 cofactor activity are strongly down-regulated by TAFIa.  相似文献   

14.
15.
Several pathogenic bacterial species intervene with the mammalian proteolytic plasminogen-plasmin system. Recent developments have been made in understanding the structure and the virulence-associated functions of bacterial plasminogen receptors and activators, in particular by using plasminogen-deficient or transgenic gain-of-function mice. Bacteria can affect the regulation of the plasminogen system by degrading circulating plasmin inhibitors and by influencing the expression levels of mammalian plasminogen activators and activation inhibitors. Interaction with the plasminogen system promotes damage of extracellular matrices as well as bacterial spread and organ invasion during infection, suggesting common mechanisms in migration of eukaryotic and prokaryotic cells.  相似文献   

16.
To identify new structure-function correlations in the γ domain of streptokinase, mutants were generated by error-prone random mutagenesis of the γ domain and its adjoining region in the β domain followed by functional screening specifically for substrate plasminogen activation. Single-site mutants derived from various multipoint mutation clusters identified the importance of discrete residues in the γ domain that are important for substrate processing. Among the various residues, aspartate at position 328 was identified as critical for substrate human plasminogen activation through extensive mutagenesis of its side chain, namely D328R, D328H, D328N, and D328A. Other mutants found to be important in substrate plasminogen activation were, namely, R319H, N339S, K334A, K334E, and L335Q. When examined for their 1:1 interaction with human plasmin, these mutants were found to retain the native-like high affinity for plasmin and also to generate amidolytic activity with partner plasminogen in a manner similar to wild type streptokinase. Moreover, cofactor activities of the mutants precomplexed with plasmin against microplasminogen as the substrate as well as in silico modeling studies suggested that the region 315-340 of the γ domain interacts with the serine protease domain of the macromolecular substrate. Overall, our results identify the presence of a substrate specific exosite in the γ domain of streptokinase.  相似文献   

17.
The mammalian protease plasminogen can be activated by bacterial activators, the three-domain (alpha, beta, gamma) streptokinases and the one-domain (alpha) staphylokinases. These activators act as plasmin(ogen) cofactors, and the resulting complexes initiate proteolytic activity of host plasminogen which facilitates bacterial colonization of the host organism. We have investigated the kinetic mechanism of the plasminogen activation mediated by a novel two-domain (alpha, beta) streptokinase isolated from Streptococcus uberis (Sk(U)) with specificity toward bovine plasminogen. The interaction between Sk(U) and plasminogen occurred in two steps: (1) rapid association of the proteins and (2) slow transition to the active complex Sk(U)-PgA. The complex Sk(U)-PgA converted plasminogen to plasmin with the following parameters: K(m) < or = 1.5 microM and k(cat) = 0.55 s(-)(1). The ability of proteolytic fragments of Sk(U) to activate plasminogen was investigated. Only two C-terminal segments (97-261 and 123-261), which both contain the beta-domain (126-261), were shown to be active. They initiated plasminogen activation in complex with plasmin, but not with plasminogen, and thereby exhibited functional similarity to the staphylokinase. The fusion protein His(6)-Sk(U) (i.e., Sk(U) with a small N-terminal tag) acted exclusively in complex with plasmin as well. These observations demonstrate that (1) the N-terminal alpha-domain, including a native N-terminus, was necessary for "virgin" activation of the associated plasminogen in the Sk(U)-PgA complex and (2) the C-terminal beta-domain of Sk(U) is important for recognition of the substrate in the Sk(U)-PgA complex.  相似文献   

18.
Vitronectin (VN) has been implicated as a major matrix-associated regulator component of plasminogen activation by serving as a potent stabilizing cofactor of plasminogen activator inhibitor-1 (PAI-1). The direct binding of heparin, plasminogen as well as PAI-1 in its latent and active form to immobilized VN was studied in the absence or presence of competitors. Monoclonal antibodies against the carboxyl-terminal portion of VN inhibited both PAI-1 and plasminogen binding, whereas heparin, heparan sulfate with a high degree of sulfation, or dextran sulfate interfered with PAI-1 binding (KD = 20 nM) only. Utilizing synthetic peptides encompassing overlapping sequences of the heparin-binding domain of VN, adjacent heparin and PAI-1-binding sites were localized within the sequence 348-370 of VN. Although a number of other serine protease inhibitors which do not form binary complexes with VN contain a reactive-site Ser at their P1'-position, a reactive-site P1' mutant of PAI-1 (Met----Ser) showed comparable if not increased binding to VN. Binding of Lys-plasminogen and active-site-blocked plasmin was at least 10-fold higher in affinity (KD = 85-100 nM) compared to Glu-plasminogen (KD approximately 1 microM) and could be inhibited by lysine analogs but not by glycosaminoglycans or PAI-1, indicating that heteropolar plasmin(ogen) binding of VN occurs to an adjacent segment upstream to the heparin and PAI-1-binding sites. This contention was further supported in binding studies with plasmin-modified VN which lost both heparin and PAI-1 binding but exhibited 2-3-fold higher capacity to bind plasminogen. The essential plasmin(ogen)-binding site was mapped by ligand blot analysis to the carboxyl-terminal portion of proteolytically trimmed VN (M(r) = 61,000). Moreover, treatment of the extracellular matrix of human umbilical vein endothelial cells with plasmin resulted in partial degradation of matrix-associated VN and concomitant release of PAI-1, but increased the ability of the matrix by about 2-fold to bind plasminogen. These results are indicative of differential interactions of VN with components of the plasminogen activation system, whereby plasmin itself may provoke the switch of VN from an anti-fibrinolytic into a pro-fibrinolytic cofactor. This process reflects a novel role for the adhesive protein and its degradation product(s) in the possible feedback regulation of localized plasmin formation at extracellular sites.  相似文献   

19.
Bacteroides fragilis is a minor component of the intestinal microbiota and the most frequently isolated from intra-abdominal infections and bacteremia. Previously, our group has shown that molecules involved in laminin-1 (LMN-1) recognition were present in outer membrane protein extracts of B. fragilis MC2 strain. One of these proteins was identified and showed 98% similarity to a putative B. fragilis plasminogen-binding protein precursor, deposited in the public database. Thus, the objective of this work was to overexpress and further characterize this novel adhesin. The ability of B. fragilis MC2 strain and purified protein to convert plasminogen into plasmin was tested. Our results showed that B. fragilis strain MC2 strain adhered to both LMN-1 and plasminogen and this adhesion was inhibited by either LMN-1 or plasminogen. Regarding the plasminogen activation activity, both the whole bacterial cell and the purified protein converted plasminogen into plasmin similar to streptokinase used as a positive control. Bacterial receptors that recognize plasminogen bind to it and enhance its activation, transforming a nonproteolytic bacterium into a proteolytic one. We present in vitro evidence for a pathogenic function of the plasminogen receptor in promoting adherence to laminin and also the formation of plasmin by B. fragilis .  相似文献   

20.
Our previous work showed that purified coagulation factor Xa (FXa) acquires fibrinolysis cofactor activity after plasmin-mediated cleavage. The predominant functional species is a non-covalent heterodimer of 33 and 13 kDa, termed Xa33/13, which has predicted newly exposed C-terminal lysines that are important for tissue plasminogen activator (tPA)-mediated plasminogen activation to plasmin. To provide evidence that this mechanism occurs in a physiological context, here we demonstrated the appearance of Xa33 in clotting plasma by western blot analysis. Since the normal fate of FXa is stable association with antithrombin (AT), an AT western blot was conducted, which revealed a band of ~ 13 kDa higher apparent molecular weight than AT that appeared concurrent to Xa33. Sequencing of purified proteins confirmed the generation of Xa13 covalently bound to AT and Xa33 (Xa33/13-AT) by cleavages at Lys–Met339 and Lys–Asp389. Ligand blots demonstrated 125I-plasminogen binding to the Xa33 subunit of plasmin-generated Xa33/13-AT. Purified XaAT added to plasma that was induced to clot enhanced the rate of tPA-mediated fibrinolysis by ~ 16-fold. Similarly, purified plasminogen activation by tPA was enhanced by ~ 16-fold by XaAT. Plasmin cleaves XaAT and exposes plasminogen binding sites at least 10-fold faster than FXa. Here we demonstrate a novel function for AT, which accelerates the modulation of FXa into the fibrinolytic form, Xa33/13. The consequent exposure of C-terminal lysine binding sites essential for plasminogen activation enhances fibrinolysis. These results are consistent with a model where auxiliary cofactors link coagulation to fibrinolysis by priming the accelerating role of fibrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号