首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
We reported previously that in homogenates of rat olfactory bulb muscarinic and opioid receptor agonists stimulate adenylyl cyclase activity. In the present study we show that carbachol (CCh) and Leu-Enkephalin act synergistically with vasoactive intestinal peptide (VIP) and corticotropin-releasing hormone (CRH), but not with /-isoproterenol, in increasing cyclic AMP formation. The synergistic interaction consists of an increase in the maximal a0denylyl cyclase activation without a significant change in the potency of each agonist. CCh also fails to affect 125ICRH binding to olfactory bulb membranes. The synergism requires micromolar concentrations of GTP. Substitution of the stable GTP analog guanosine 5′-O-(3′-thiotriphosphate) for GTP allows the CRH stimulation, but abolishes the CCh enhancement of both basal and CRH-stimulated enzyme activities. Moreover, in vivo treatment of olfactory bulbs with pertussis toxin completely prevents the muscarinic and opioid effects. Thus, the synergistic interaction appears to result from opioid- and muscarinic-induced activation of a pertussis toxin-sensitive GTP-binding protein which may potentiate the adenylyl cyclase stimulation by the stimulatory GTP-binding protein activated by either VIP or CRH receptors.  相似文献   

2.
Abstract: In rat olfactory bulb, muscarinic and opioid receptor agonists stimulate basal adenylyl cyclase activity in a GTP-dependent and pertussis toxin-sensitive manner. However, in the present study, we show that in the same brain area activation of these receptors causes inhibition of adenylyl cyclase activity stimulated by Ca2+ and calmodulin (CaM) and by forskolin (FSK), two direct activators of the catalytic unit of the enzyme. The opioid and muscarinic inhibitions consist of a decrease of the maximal stimulation elicited by either CaM or FSK, without a change in the potency of these agents. [Leu5]Enkephalin and selective δ- and μ-, but not κ-, opioid receptors agonists inhibit the FSK stimulation of adenylyl cyclase activity with the same potencies displayed in stimulating basal enzyme activity. Similarly, the muscarinic inhibition of FSK-stimulated adenylyl cyclase activity shows agonist and antagonist sensitivities similar to those characterizing the muscarinic stimulation of basal enzyme activity. Fluoride stimulation of adenylyl cyclase is not affected by either carbachol or [Leu5]enkephalin. In vivo treatment of olfactory bulb with pertussis toxin prevents both opioid and muscarinic inhibition of Ca2+/CaM- and FSK-stimulated enzyme activities. These results indicate that in rat olfactory bulb δ- and μ-opioid receptors and muscarinic receptors, likely of the M4 subtype, can exert a dual effect on cyclic AMP formation by interacting with pertussis toxin-sensitive GTP-binding protein(s) and possibly by affecting different molecular forms of adenylyl cyclase.  相似文献   

3.
Abstract: In membranes of rat olfactory bulb, a brain region in which muscarinic agonists increase cyclic AMP formation, the muscarinic stimulation of guanosine 5'- O -(3-[35S]thiotriphosphate) ([35S]GTPγS) binding was used as a tool to investigate the receptor interaction with the guanine nucleotide-binding regulatory proteins (G proteins). The stimulation of the radioligand binding by carbachol (CCh) was optimal (threefold increase) in the presence of micromolar concentrations of GDP and 100 m M NaCl. Exposure to N -ethylmaleimide and pertussis toxin markedly inhibited the CCh effect, whereas it increased the relative stimulation of [35S]GTPγS binding elicited by pituitary adenylate cyclase-activating polypeptide (PACAP). On the other hand, membrane treatment with cholera toxin curtailed the PACAP stimulation of [35S]GTPγS binding but did not affect the response to CCh. Like CCh, a number of cholinergic agonists stimulated [35S]GTPγS binding in a concentration-dependent and saturable manner. The antagonist profile of the muscarinic stimulation of [35S]GTPγS binding was highly correlated with that displayed by the muscarinic stimulation of adenylyl cyclase. These data indicate that the olfactory bulb muscarinic receptors couple to Gi/Go, but not to Gs, and support the possibility that activation of Gi/Go mediates the stimulatory effect on adenylyl cyclase activity.  相似文献   

4.
T Arima  T Segawa  Y Nomura 《Life sciences》1986,39(25):2429-2434
The influence of pertussis toxin on the effects of guanine nucleotide on adenylate cyclase activity were investigated in rat striatal membranes. GTP promoted and inhibited the activity at 1 and 100 microM, respectively. The inhibitory effects of GTP were abolished by pretreatment of the membranes with pertussis toxin. GppNHp (guanyl-5'-y1-beta,gamma-imidodiphosphate) exerted only stimulatory effects and pertussis toxin did not affect the effects of GppNHp. GDP at 10 and 100 microM caused significant inhibition which was completely suppressed by pertussis toxin. It is suggested that guanine nucleotide regulates the affinity of as in stimulatory GTP-binding regulatory protein to either beta gamma or catalytic units of adenylate cyclase in a flip-flop manner. Inhibitory GTP-binding regulatory protein seems to play a regulatory role in inhibiting alpha s activity supplying the beta gamma heterodimer.  相似文献   

5.
The response of adenylate cyclase to GTP and to dopamine (DA) was investigated in synaptic plasma membranes isolated from rat striatum injected with pertussis toxin, which inactivates the inhibitory guanine nucleotide-binding regulatory protein (Ni) of adenylate cyclase. Pertussis toxin treatment reverted the inhibitory effects on the enzyme activity elicited by micromolar concentrations of GTP and reduced by 50% the DA inhibition of cyclase activity via D2 receptors. The toxin treatment enhanced the net stimulation of enzyme activity by DA in the presence of micromolar concentrations of GTP. However, the stimulatory effect of the selective D1 receptor agonist SKF 38393 was not significantly affected. The data indicate that Ni mediates D2 inhibition of striatal adenylate cyclase and participates in the modulation of D1 stimulation of the enzyme activity by DA.  相似文献   

6.
Inhibition of basal adenylate cyclase by GTP or guanyl-5'-yl imidodiphosphate was abolished in membranes isolated from rat adipocytes previously incubated with pertussis toxin. Forskolin (0.1 microM) stimulated adenylate cyclase about 4-fold and inhibition of cyclase by GTP or guanyl-5'-yl imidodiphosphate was also abolished by pertussis toxin treatment of rat adipocytes. Forskolin (1 microM) increased adenylate cyclase activity at least ten-fold and the inhibitory effect of GppNHp was reduced but not abolished by pertussis toxin. In rabbit adipocytes, pertussis toxin reversed the inhibition of adenylate cyclase activity by GppNHp to the same extent as that by GTP in the presence of 1 microM forskolin. The present results indicate that pertussis toxin can reverse the inhibition of adipocyte adenylate cyclase by nonhydrolyzable GTP analogs as well as that by GTP.  相似文献   

7.
Onali P  Olianas MC 《Life sciences》1995,56(11-12):973-980
In membranes of rat olfactory bulb, muscarinic receptor agonists stimulate basal adenylyl cyclase activity . This response is inhibited by a number of muscarinic receptor antagonists with a rank order of potency suggesting the involvement of the M4 muscarinic receptor subtype. The stimulatory effect does not require Ca2+ and occurs independently of activation of phosphoinositide hydrolysis. Pretreatment with pertussis toxin completely prevents the muscarinic stimulation of adenylyl cyclase, indicating the participation of G proteins of the Gi/Go family. Immunological impairment of the G protein, Gs, also reduces the muscarinic response, whereas concomitant activation of Gs-coupled receptors by CRH or VIP results in a synergistic stimulation of adenylyl cyclase activity. Although these data suggest a role for Gs, a body of evidence indicates that the muscarinic receptors do not interact directly with this G protein. Moreover, the Ca2+/calmodulin (Ca2+/CaM)- and forskolin-stimulated enzyme activities are inhibited by muscarinic receptor activation in a pertussis toxin-sensitive manner and with a pharmacological profile similar to that observed for the stimulatory response. These data indicate that in rat olfactory bulb M4 muscarinic receptors exert a bimodal control on cyclic AMP formation through a sequence of events that may involve activation of Gi/Go proteins, synergistic interaction with Gs and differential modulation of Ca2+/CaM-independent and -dependent forms of adenylyl cyclase.  相似文献   

8.
In rat olfactory bulb homogenate, carbachol stimulated adenylate cyclase activity in a concentration-dependent manner (EC50 = 1.1 microM). The carbachol stimulation occurred fully in membranes that had been prepared in the presence of 1 mM EGTA and incubated in a Ca2(+)-free enzyme reaction medium. Under these conditions, exogenous calmodulin (1 microM) failed to stimulate adenylate cyclase activity. In miniprisms of olfactory bulb, carbachol (1 mM) increased accumulation of inositol phosphates, but this response was markedly reduced in a Ca2(+)-free medium. Moreover, the carbachol stimulation of adenylate cyclase activity was not affected by staurosporine at a concentration (1 microM) that completely blocked the stimulatory effect of phorbol 12-myristate 13-acetate, an activator of Ca2+/phospholipid-dependent protein kinase. Quinacrine, a nonselective phospholipase A2 inhibitor, reduced the carbachol stimulation of adenylate cyclase activity, but this inhibition appeared to be competitive with a Ki of 0.2 microM. Nordihydroguaiaretic acid and indomethacin, two inhibitors of arachidonic acid metabolism, failed to affect the carbachol response. These results indicate that in rat olfactory bulb, muscarinic receptors stimulate adenylate cyclase activity through a mechanism that is independent of Ca2+ and phospholipid hydrolysis.  相似文献   

9.
The inhibitory GTP-binding protein (Gi) is known to mediate the effects of a number of hormones that act through specific receptors to inhibit adenylate cyclase. In this study we examined the mechanism whereby Gi modulates the response of adenylate cyclase to a stimulatory hormone and its role in desensitization. In membranes prepared from the cultured renal epithelial cell line LLCPK1, adenylate cyclase activity was stimulated 16-fold by 1-2 microM lysine vasopressin. Addition of GTP (1-100 microM) resulted in stimulation of basal activity but inhibition of hormone-stimulated activity (approximately 40% inhibition at 100 microM GTP). This contrasts with the usual effect of GTP to support or augment activation by stimulatory receptors. The inhibitory effect was abolished by pertussis toxin, which had little effect on basal activity in the absence or presence of added GTP or on vasopressin-stimulated activity in the absence of added GTP. GTP-mediated inhibition was vasopressin concentration dependent. At concentrations of vasopressin below the K1/2 for enzyme activation (approximately 0.6 nM), GTP was stimulatory, and at higher concentrations, GTP was inhibitory. The inhibitory effect of GTP was also observed for a V2-receptor agonist and was not abolished by a V1-receptor antagonist, indicating that a distinct V1 receptor did not mediate inhibition of adenylate cyclase. Using the known subunit structure of adenylate cyclase, we developed the minimal mechanism that would incorporate a modulatory role for Gi in determining net activation of adenylate cyclase by a stimulatory hormone. The predicted enzyme activities for basal and maximal hormone stimulation in the presence and absence of GTP were generated, and model parameters were chosen to match the experimental observations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Pertussis toxin selectively modifies the function of Ni, the inhibitory guanine nucleotide binding protein of the adenylate cyclase complex. In chick heart membranes, guanine nucleotide activation of Ni resulted in a decrease in the apparent affinity of the muscarinic receptor for the agonist oxotremorine, inhibition of basal adenylate cyclase activity, and the attenuation of adenylate cyclase by oxotremorine. Treatment of chicks with pertussis toxin caused the covalent modification of 80-85% of cardiac Ni. After this treatment Gpp(NH)p had no effect on muscarinic receptor affinity and GTP stimulated basal adenylate cyclase activity. In contrast, the GTP-dependent attenuation of adenylate cyclase caused by muscarinic receptors was unaffected.  相似文献   

11.
The influence of islet-activating protein (IAP), a Bordetella pertussis toxin, was studied on adenylate cyclase and GTPase activities in rat adipocyte membranes. Pretreatment of rats or intact rat adipocytes with IAP did not affect adenylate cyclase inhibition by the stable GTP analog, GTP gamma S, whereas inhibition by GTP was abolished. Concomitantly, activation of the adipocyte enzyme by sodium and its inhibition by nicotinic acid were prevented. Furthermore, IAP treatment of adipocyte membranes prevented nicotinic acid-induced stimulation of a high affinity GTPase. The data suggest that a GTP-hydrolyzing system involved in the inhibitory regulation of adenylate cyclase is the target of IAP's action.  相似文献   

12.
We have recently found the calcium dependent glycogenolytic effect of pancreastatin on rat hepatocytes and the mobilization of intracellular calcium. To further investigate the mechanism of action of pancreastatin on liver we have studied its effect on guanylate cyclase, adenylate cyclase, and phospholipase C, and we have explored the possible involvement of GTP binding proteins by measuring GTPase activity as well as the effect of pertussis toxin treatment of plasma liver membranes on the pancreastatin stimulated GTPase activity and the production of cyclic GMP and myo-inositol 1,4,5-triphosphate. Pancreastatin stimulated GTPase activity of rat liver membranes about 25% over basal. The concentration dependency curve showed that maximal stimulation was achieved at 10?7 M pancreastatin (EC50 = 3 nM). This stimulation was partially inhibited by treatment of the membranes with pertussis toxin. The effect of pancreastatin on guanylate cyclase and phospholipase C were examined by measuring the production of cyclic GMP and myo-inositol 1,4,5-triphosphate respectively. Pancreastatin increased the basal activity of guanylate cyclase to a maximum of 2.5-fold the unstimulated activity at 30°C, in a time- and dose-dependent manner, reaching the maximal stimulation above control with 10?7 M pancreastatin at 10 min (EC50 = 0.6 nM). This effect was completely abolished when rat liver membranes had been ADP-ribosylated with pertussis toxin. On the other hand, adenylate cyclase activity was not affected by pancreastatin. Phospholipase C activity of rat liver membranes was rapidly stimulated (within 2–5 min) at 30°C by 10?7 M pancreastatin, reaching a maximum at 15 min. The dose response curve showed that with 10?7 M pancreastatin, maximal stimulation was obtained (EC50 = 3 nM). GTP (10?5 M) stimulated the membrane-bound phospholipase C as expected. However, the incubation of rat liver membranes with GTP partially inhibited the stimulation of phospholipase C activity produced by pancreastatin, whereas GTP enhanced the activation of phospholipase C by vasopressin. This inhibition by GTP was dose dependent and 10?5 M GTP obtained the maximal inhibition (about 40%). the inhibitory effect of GTP on the stimulatory effect of pancreastatin on phospholipase C activity was completely abolished when rat liver membranes had previously been ADP-ribosylated with pertussis toxin. The presence of 8-Br-cGMP mimics the effect of GTP, whereas GMP-PNP increased both basal and pancreastatin-stimulated phospholipase C, suggesting a role of the cyclic GMP as a feed-back regulator of the synthesis of myo-inositol 1,4,5-triphosphate. However, the pretreatment of membranes with pertussis toxin did not modify the production of myo-Inositol 1,4,5-triphosphate stimulated by pancreastatin. In conclusion, pancreastatin activates guanylate cyclase activity and phospholipase C involving different pathways, pertussis toxin-sensitive, and -insensitive, respectively. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Adenylate cyclase (EC 4.6.1.1) activity in mouse liver plasma membranes is increased fivefold when animals are pretreated with cholera toxin. The increase in activity is detectable within 20 min of an intravenous injection of the toxin. The response of the control and cholera-toxin-activated adenylate cyclase to hormones, GTP, and NaF is complex. GTP causes the same fold stimulation of control and toxin-activated cyclase, but glucagon and NaF remain the most potent activators of liver adenylate cyclase irrespective of whether the enzyme is activated by cholera toxin. Determination of kinetic parameters of adenylate cyclase indicates that cholera toxin, hormones, and NaF do not change the affinity of the enzyme for ATP-Mg nor do they alter the Ka for free Mg2+. High concentrations of Mg2+ inhibit adenylate cyclase that is stimulated by either cholera toxin, glucagon, or NaF. These same Mg2+ concentrations have no effect on the basal activity of the enzyme or its activity in the presence of GTP.  相似文献   

14.
Molybdate activation of rat liver plasma membrane adenylate cyclase has been examined and compared with the effect of glucagon, Gpp(NG)p and fluoride. Glucagon does not stimulate the detergent solubilized enzyme, though molybdate, fluoride, and Gpp(NH)p are effective in this regard. The stimulatory effects of either fluoride or molybdate are additive with those of GTP and do not require guanyl nucleotide to evoke their activation. Neither fluoride nor molybdate can substitute for GTP when glucagon is the activator of rat liver adenylate cyclase. The stimulatory effects of either ion on adenylate cyclase are additive with that produced by glucagon. Activation of adenylate cyclase by either molybdate or fluoride occurs by a mechanism distinct from that of glucagon or guanyl nucleotide. The data presented here suggest that fluoride and molybdate may act via a similar mechanism of action. Neither ion displays a lag in activation of adenylate cyclase. The pH profiles of fluoride and molybdate-stimulated adenylate cyclase activity are similar, and distinct from guanyl nucleotide-stimulated activity. Cholera toxin treatment of adenylate cyclase blocks fluoride and molybdate stimulation of the enzyme to the same extent, while enhancing the activation obtained with GTP and hormones.  相似文献   

15.
Thyrotropin-releasing hormone (TRH) stimulated a rapid rise in inositol trisphosphate (IP3) formation and prolactin release from 7315c tumor cells. The potencies (half-maximal) of TRH in stimulating IP3 formation and prolactin release were 100 +/- 30 and 140 +/- 30 mM, respectively. Pretreatment of the cells with pertussis toxin (for up to 24 h) had no effect on either process. Pretreatment of the cells with cholera toxin (30 nM for 24 h) also failed to affect basal or TRH-stimulated IP3 formation. TRH was also able to stimulate IP3 formation with a half-maximal potency of 118 +/- 10 nM in a lysed cell preparation of 7315c cells; the TRH-stimulated formation of IP3 was enhanced by GTP. 5'-Guanosine gamma-thiotriphosphate (GTP gamma S) and 5'-guanylyl imidodiphosphate (Gpp(NH)p), nonhydrolyzable analogs of GTP, stimulated IP3 formation in the absence of TRH with half-maximal potencies of 162 +/- 50 and 7500 +/- 4300 nM, respectively. In contrast to the lack of effect of pertussis toxin on the TRH receptor system, treatment of 7315c cells with pertussis toxin for 3 h or longer completely abolished the ability of morphine, an opiate agonist, to inhibit either adenylate cyclase activity or prolactin release. During this 3-h treatment, pertussis toxin was estimated to induce the endogenous ADP ribosylation of more than 70% of Ni, the inhibitory GTP-binding protein. GTP gamma S and Gpp(NH)p inhibited cholera toxin-stimulated adenylate cyclase activity (presumably by acting at Ni) with half-maximal potencies of 25 +/- 9 and 240 +/- 87 nM, respectively. Finally, Gpp(NH)p was also able to inhibit the [32P]ADP ribosylation of Ni with a half-maximal potency of 300 nM. These results suggest that a novel GTP-binding protein, distinct from Ni, couples the TRH receptor to the formation of IP3.  相似文献   

16.
Incubation of fat cell ghosts with activated cholera toxin, nucleoside triphosphate, cytosol, and NAD results in increased adenylate cyclase activity and the transfer of ADP-ribose to membrane proteins. The major ADP-ribose protein comigrates on sodium dodecyl sulfate-polyacrylamide gels with the putative GTP-binding protein of pigeon erythrocyte membranes (Mr 42 000), which is also ADP-ribosylated by cholera toxin. The treatment with cholera toxin enhances the stimulation of the fat cell membrane adenylate cyclase by GTP, but the stimulation by guanyl-5'-yl imidodiphosphate is unaltered. Subsequent stimulation of fat cell adenylate cyclase by 10 micrometers epinephrine is not particularly affected. These changes were qualititatively the same for membranes isolated from fat cells of hypothyroid rats. Although the cyclase of these membranes has a reduced response to epinephrine, guanyl-5'-yl imidodiphosphate or GTP, as compared to euthyroid rat fat cell membranes, the defect is not rectified by toxin treatment and cannot be explained by a deficiency in the cholera toxin target.  相似文献   

17.
Addition of lithium ion to the inhibitory GTP-binding (Gi) protein resulted in a decrease of its ADP-ribosylation by islet-activating protein (pertussis toxin, IAP). The possibility that this decrease was due to dissociation of the Gi protein trimer was examined. Results showed that lithium ions had no appreciable effect on either the Gi protein trimer or its dissociation into its three subunits induced by Mg2+ and GTP gamma S. Next, the effect of lithium ions on Gi protein-mediated adenylate cyclase inhibition and alpha 2-adrenoceptor in human platelet membranes was examined. Lithium ion was found to impair adenylate cyclase inhibition of alpha 2-adrenoceptor stimulation of forskolin-stimulated enzyme activities. The monovalent ion also abolished guanine nucleotide modulation (GTP shift) of agonist binding, while it had no remarkable effects on antagonist binding in alpha 2-adrenoceptor of human platelet membranes. These results suggested that lithium ion caused functional change of the Gi protein without remarkable change of its dissociation, causing modulation in a coupling between alpha 2-adrenoceptor and Gi protein.  相似文献   

18.
Sodium and other monovalent cations (added as chloride salts) inhibited adenylate cyclase of luteinized rat ovary. Sodium chloride (150 mM) inhibited basal enzyme activity by 20%. Sodium chloride inhibition was enhanced to 34-54% under conditions of enzyme stimulation by guanine nucleotides (GTP and its nonhydrolyzable analog 5'-guanylyl imidodiphosphate), fluoride anion, and agonists (ovine luteinizing hormone (oLH) and the beta-adrenergic catecholamine isoproterenol) acting at stimulatory receptors linked to adenylate cyclase. Sodium chloride inhibition was dependent on salt concentration over a wide range (25-800 mM) as well as the concentrations of GTP and oLH. Inhibition by NaCl was of rapid onset and appeared to be reversible. The order of inhibitory potency of monovalent cations was Li+ greater than Na+ greater than K+. The role of individual components of adenylate cyclase in the inhibitory action of monovalent cations was examined. Exotoxins of Vibrio cholerae and Bordetella pertussis were used to determine respectively the involvement of the stimulatory and inhibitory guanine nucleotide-binding regulatory components (Ns and Ni) in NaCl inhibition. Sodium chloride inhibited cholera toxin-activated adenylate cyclase activity by 29%. Ni did not appear to mediate cation inhibition of adenylate cyclase because pertussis toxin did not attenuate inhibition by NaCl. Enzyme stimulation by agents (forskolin and Mn2+) thought to activate the catalytic component directly was not inhibited by NaCl but was instead significantly enhanced. Sodium chloride (150 mM) increased both the Kd for high-affinity binding of oLH to 125I-human chorionic gonadotropin binding sites and the Kact for oLH stimulation of adenylate cyclase by sevenfold. In contrast, NaCl had no appreciable effect on either isoproterenol binding to (-)-[125I]iodopindolol binding sites or the Kact for isoproterenol stimulation of adenylate cyclase. The results suggest that in luteinized rat ovary monovalent cations uncouple, or dissociate, Ns from the catalytic component and, in a distinct action, reduce gonadotropin receptor affinity for hormone. Dissociation of the inhibitory influence of Ni from direct catalytic activation could account for NaCl enhancement of forskolin- and Mn2+-associated activities. On the basis of these results, the spectrum of divergent stimulatory and inhibitory effects of monovalent cations on adenylate cyclase activities in a variety of tissues may be interpreted in terms of differential enzyme susceptibilities to cation-induced uncoupling of N and catalytic component functions.  相似文献   

19.
In the insulin-secreting beta cell line Rin m 5F, galanin, a newly discovered ubiquitous neuropeptide, inhibited, by 50%, the stimulation of insulin release induced by gastric inhibitory polypeptide (GIP) or forskolin, i.e. two cAMP-generating effectors. In contrast, it failed to decrease the stimulation of insulin release elicited by either the Ca2+-mobilizing agent, carbamoylcholine, or by dibutyryl-cAMP. Concomitantly, galanin inhibited the GIP- and forskolin-stimulated cAMP production. Furthermore, adenylate cyclase in membranes from Rin m 5F cells was highly sensitive to galanin, which exerted a marked inhibitory effect on the forskolin-stimulated enzyme activity. All these galanin effects were observed at low physiological doses, in the nanomolar range. Overnight treatment of the Rin m 5F cells with pertussis toxin completely abolished the inhibitory effect of galanin on insulin release, cAMP production and adenylate cyclase activity. Moreover, pertussis toxin specifically ADP-ribosylated a 39-kDa protein present in membranes from those cells. Taken together, these data show that the galanin inhibition of insulin release most likely occurs through the inhibition of adenylate cyclase, involving a petussis-toxin-sensitive inhibitory GTP-binding regulatory protein.  相似文献   

20.
The influence of the diterpene, forskolin, was studied on adenylate cyclase activity in membranes of rat basophilic leukemia cells. Forskolin increased basal adenylate cyclase activity maximally 2-fold at 100 microM. However, adenylate cyclase activity stimulated via the stimulatory guanine nucleotide-binding protein, Ns, by fluoride and the stable GTP analog, guanosine 5'-O-(3-thiotriphosphate), was inhibited by forskolin. Half-maximal and maximal inhibition occurred at about 1 and 10 microM forskolin, respectively. The inhibition occurred without an apparent lag phase, whereas the enzyme stimulation by forskolin was preceded by a considerable lag period. The inhibition was not affected by treating intact cells or membranes with pertussis toxin and proteolytic enzymes, respectively, which have been shown in other cell types to prevent adenylate cyclase inhibition mediated by the guanine nucleotide-binding regulatory component, Ni. The forskolin inhibition of the stable GTP analog-activated adenylate cyclase was impaired by increasing the Mg2+ concentration and was reversed into a stimulation by Mn2+. Under optimal inhibitory conditions, forskolin even decreased basal adenylate cyclase activity. Finally, forskolin largely reduced the apparent affinity of the rat basophilic leukemia cell adenylate cyclase for its substrate, MgATP, which reduction resulted in an apparent inhibition at low MgATP concentrations and a loss of the inhibition at higher MgATP concentrations. The data indicate that forskolin can cause both stimulation and inhibition of adenylate cyclase and, furthermore, they suggest that the inhibition may not be mediated by the Ni protein, but may be caused by a direct action of forskolin at the adenylate cyclase catalytic moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号