首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Posttranslational isoprenylation of some small GTP-binding proteins is required for their biological activity. Rab geranylgeranyl transferase (Rab GGTase) uses geranylgeranyl pyrophosphate to modify Rab proteins, its only known substrates. Geranylgeranylation of Rabs is believed to promote their association with target membranes and interaction with other proteins. Plants, like other eukaryotes, contain Rab-like proteins that are associated with intracellular membranes. However, to our knowledge, the geranylgeranylation of Rab proteins has not yet been characterized from any plant source. This report presents an activity assay that allows the characterization of prenylation of Rab-like proteins in vitro, by protein extracts prepared from plants. Tomato Rab1 proteins and mammalian Rab1a were modified by geranylgeranyl pyrophosphate but not by farnesyl pyrophosphate. This modification required a conserved cysteine-cysteine motif. A mutant form lacking the cysteine-cysteine motif could not be modified, but inhibited the geranylgeranylation of its wild-type homolog. The tomato Rab proteins were modified in vitro by protein extract prepared from yeast, but failed to become modified when the protein extract was prepared from a yeast strain containing a mutant allele for the [alpha] subunit of yeast Rab GGTase (bet4 ts). These results demonstrate that plant cells, like other eukaryotes, contain Rab GGTase-like activity.  相似文献   

2.
A E Loraine  S Yalovsky  S Fabry    W Gruissem 《Plant physiology》1996,110(4):1337-1347
Rab proteins attach to membranes along the secretory pathway where they contribute to distinct steps in vesicle-mediated transport. To bind membranes, Rab proteins in fungal and animal cells must be isoprenylated by the enzyme Rab geranylgeranyl transferase (Rab GGTase). We have isolated three tomato (Lycopersicon esculentum, M.) cDNAs (LeRab 1A, B, and C) encoding Rab-like proteins and show here that all three are substrates for a Rab GGTase-like activity in plant cells. The plant enzyme is similar to mammalian Rab GGTase in that the plant activity (a) is enhanced by detergent and (b) is inhibited by mutant Rab lacking a prenylation consensus sequence. LeRab1B contains a rare prenylation target motif and was the best substrate for the plant, but not the yeast, Rab GGTase. LeRab1A, B, and C are functional homologs of the Saccharomyces cerevisiae Rab protein encoded by YPT1 and are differentially expressed in tomato. LeRab1A mRNA, but not that of LeRab1B or C, is induced by ethylene in tomato seedlings and is also upregulated in ripening fruit. The increase in LeRab1A mRNA expression in ripe fruit may be linked to increased synthesis and export of enzymes like polygalacturonase, pectin esterase, and other enzymes important in fruit softening.  相似文献   

3.
ADP-ribosylation factors (ARFs) comprise a family of 20 kDa guanine nucleotide-binding proteins that were discovered as one of several cofactors required in cholera toxin-catalyzed ADP-ribosylation of Gs, the guanine nucleotide-binding protein responsible for stimulation of adenylyl cyclase, and was subsequently found to enhance all cholera toxin-catalyzed reactions and to directly interact with, and activate the toxin. ARF is dependent on GTP or its analogues for activity, binds GTP with high affinity in the presence of dimyristoylphosphatidylcholine/cholate and contains consensus sequences for GTP-binding and hydrolysis. Six mammalian family members have been identified which have been classified into three groups (Class I, II, and III) based on size, deduced amino acid sequence identity, phylogenetic analysis and gene structure. ARFs are ubiquitous among eukaryotes, with a deduced amino acid sequence that is highly conserved across diverse species. They have recently been shown to associate with phospholipid and Golgi membranes in a GTP-dependent manner and are involved in regulating vesicular transport.Abbreviations ARF ADP-ribosylation factor - sARF I and sARF II soluble ADP-ribosylation factors purified from bovine brain - mARF purified membrane-associated ARF - hARF human ARF - bARF bovine ARF - yARF yeast ARF - ARF bacterially-expressed recombinant ARF - gARF Giardia ARF - dARF Drosophila ARF - G protein guanine nucleotide-binding protein - Gs G protein responsible for stimulation of adenylyl cyclase - GTPS guanosine-5-O-(3-thio-triphosphate) - CIAI cholera toxin A1 subunit - DMPC dimyristoylphosphatidylcholine - SDS sodium dodecyl sulfate  相似文献   

4.
The regulation of phosphatidylcholine-specific phospholipase D by purine nucleotides and protein kinase A were studied in vitro using an enzyme preparation partially purified from the membranous fraction of 7721 hepatocarcinoma cells. It was found that the enzyme activity was elevated by low concentrations of some purine nucleotides, but the activating effects were decreased when the concentrations of the nucleotides were higher. The optimal concentrations of GTP, GTP[S] , GDP and ATP for maximal activation were 0.1mM, 5M,1 mM and 1 mM respectively. The activation caused by 1mM ADP was lower. The enzyme was not activated by 1mM AMP, but significant activation was observed by the addition of 1mM cAMP. The latter was mediated by protein kinase A, as a specific inhibitor of protein kinase A ablished the activation. There were synergic effects between ATP and GTP, ATP and PIP2, but not between ATP and GTP[S] , or PIP2 and GTP[S]. The activating effects of GTP and ATP were abolished by neomycin, a PIP2 scavenger. These results suggest that phospholipase D is regulated by GTP-binding protein and the presence of PIP2 is required for the activation induced by GTP. Protein kinase A may be another protein kinase in addition to protein kinase C and protein tyrosine kinase which regulate the activity of phospholipase D, when the intracellular concentration of cAMP is increased.  相似文献   

5.
This paper describes characteristics of GTP-binding proteins in the moss Physcomitrella patens, taking into account recent criticisms of artefacts arising in G-protein analyses. The binding of guanosine-5'-O-thiotriphosphate (GTPS) to microsomal fraction membranes was shown, including controls demonstrating effective competition by GTP, but only partial competition by ATP, ADP and CTP. These controls distinguish GTP-binding by heterotrimeric G-proteins from that due to the nucleoside diphosphate kinase catalytic cycle. The GTPS was bound with high affinity, with apparent Kd of 16 nM and Bmax of 26.9 nmol mg-1 protein, which is in line with that observed for other systems. Immunoblot analysis of microsomal membrane fraction proteins probed with antibodies raised against recombinant Arabidopsis Gp1 protein revealed a strongly cross-reacting protein of 37 kDa and more weakly cross-reacting proteins of 45 kDa and 27 kDa. A similar analysis probing with anti-peptide antibodies directed against the N-terminal region of nucleoside diphosphate kinase (NDPK) revealed a strong band of 17 kDa. The molecular weights of the major bands for both GP1 and NDPK agree with the size estimations for these proteins in other organisms and include controls shown to be essential for demonstrating specificity of the cross-reaction. Mosses develop from spores to produce a branched network of filaments called protonemata. Each protonema is a filament of single cells such that cellular communication is via the cross-wall. Immunofluorescence microscopy of intact Physcomitrella patens protonemal tissue exposed to FITC-labelled anti-GP1 antibody, located the moss GP1 protein homologue to the protonemal crosswalls.  相似文献   

6.
In plants, Rab proteins represent the largest family of monomeric GTP-binding proteins (mG-proteins). As distinct from animal cells comprising 40 subfamilies of Rab proteins, which are the key regulators of intracellular vesicular transport, numerous Rab proteins in Arabidopsis and other plant species could be grouped in only eight subfamilies on the basis of their functional properties. The available data concerning the involvement of these mG-proteins in the control of vesicle trafficking agree generally with the paradigms accepted for other eukaryotes. On the other hand, these proteins play an important role in plant responses to abiotic and biotic factors, indicating specific for plants functions of Rab proteins.  相似文献   

7.
Synaptic impairment rather than neuronal loss may be the leading cause of cognitive dysfunction in brain aging. Certain small Rho‐GTPases are involved in synaptic plasticity, and their dysfunction is associated with brain aging and neurodegeneration. Rho‐GTPases undergo prenylation by attachment of geranylgeranylpyrophosphate (GGPP) catalyzed by GGTase‐I. We examined age‐related changes in the abundance of Rho and Rab proteins in membrane and cytosolic fractions as well as of GGTase‐I in brain tissue of 3‐ and 23‐month‐old C57BL/6 mice. We report a shift in the cellular localization of Rho‐GTPases toward reduced levels of membrane‐associated and enhanced cytosolic levels of those proteins in aged mouse brain as compared with younger mice. The age‐related reduction in membrane‐associated Rho proteins was associated with a reduction in GGTase‐Iβ levels that regulates binding of GGPP to Rho‐GTPases. Proteins prenylated by GGTase‐II were not reduced in aged brain indicating a specific targeting of GGTase‐I in the aged brain. Inhibition of GGTase‐I in vitro modeled the effects of aging we observed in vivo. We demonstrate for the first time a decrease in membrane‐associated Rho proteins in aged brain in association with down‐regulation of GGTase‐Iβ. This down‐regulation could be one of the mechanisms causing age‐related weakening of synaptic plasticity.

  相似文献   


8.
T Haizel  T Merkle  F Turck    F Nagy 《Plant physiology》1995,108(1):59-67
We have cloned nine cDNAs encoding small GTP-binding proteins from leaf cDNA libraries of tobacco (Nicotiana tabacum). These cDNAs encode distinct proteins (22-25 kD) that display different levels of identity with members of the mammalian Rab family: Nt-Rab6 with Rab6 (83%), Nt-Rab7a-c with Rab7 (63-70%), and Nt-Rab11a-e with Rab11 (53-69%). Functionally important regions of these proteins, including the "effector binding" domain, the C-terminal Cys residues for membrane attachment, and the four regions involved in GTP-binding and hydrolysis, are highly conserved. Northern and western blot analyses show that these genes are expressed, although at slightly different levels, in all plant tissues examined. We demonstrate that the plant Rab5, Rab6, and Rab11 proteins, similar to their mammalian and yeast counterparts, are tightly bound to membranes and that they exhibit different solubilization characteristics. Furthermore, we show that the yeast GTPase-activating protein Gyp6, shown to be specifically required to control the GTP hydrolysis of the yeast Ypt6 protein, could interact with tobacco GTP-binding proteins. It increases in vitro the GTP hydrolysis rate of the wild-type Nt-Rab7 protein. In addition, it also increases, at different levels, the GTP hydrolysis rates of a Nt-Rab7m protein with a Rab6 effector domain and of two other chimaeric Nt-Rab6/Nt-Rab7 proteins. However, it does not interact with the wild-type Nt-Rab6 protein, which is most similar to the yeast Ypt6 protein.  相似文献   

9.
Protein prenylation is a post translational modification that is indispensable for Ras–Rho mediated tumorigenesis. In mammals, three enzymes namely protein farnesyltransferase (FTase), geranylgeranyl transferase1 (GGTase1), and geranylgeranyl transferase2 (GGTase2) were found to be involved in this process. Usually proteins of Ras family will be farnesylated by FTase, Rho family will be geranylgeranylated by GGTase1. GGTase2 is exclusive for geranylgeranylating Rab protein family. FTase inhibitors such as FTI- 277 are potent anti-cancer agents in vitro. In vivo, mutated Ras proteins can either improve their affinity for FTase active site or undergo geranylgeranylation which confers resistance and no activity of FTase inhibitors. This led to the development of GGTase1 inhibitors. A well-defined 3-D structure of human GGTase1 protein is lacking which impairs its in silico and rational designing of inhibitors. A 3-D structure of human GGTase1 was constructed based on primary sequence available and homology modeling to which pubchem molecules library was virtually screened through AutoDock Vina. Our studies show that natural compounds Camptothecin (-8.2 Kcal/mol), Curcumin (-7.3 Kcal/mol) have higher binding affinities to GGTase-1 than that of established peptidomimetic GGTase-1 inhibitors such as GGTI-297 (-7.5 Kcal/mol), GGTI-298 (-7.5 Kcal/mol), CHEMBL525185 (-7.2 Kcal/mol).  相似文献   

10.
Arabidopsis proteins were predicted which share an 80 residue zinc finger domain known from ADP-ribosylation factor GTPase-activating proteins (ARF GAPs). One of these is a 37 kDa protein, designated ZAC, which has a novel domain structure in which the N-terminal ARF GAP domain and a C-terminal C2 domain are separated by a region without homology to other known proteins. Zac promoter/-glucuronidase reporter assays revealed highest expression levels in flowering tissue, rosettes and roots. ZAC protein was immuno-detected mainly in association with membranes and fractionated with Golgi and plasma membrane marker proteins. ZAC membrane association was confirmed in assays by a fusion between ZAC and the green fluorescence protein and prompted an analysis of the in vitro phospholipid-binding ability of ZAC. Phospholipid dot-blot and liposome-binding assays indicated that fusion proteins containing the ZAC-C2 domain bind anionic phospholipids non-specifically, with some variance in Ca2+ and salt dependence. Similar assays demonstrated specific affinity of the ZAC N-terminal region (residues 1–174) for phosphatidylinositol 3-monophosphate (PI-3-P). Binding was dependent in part on an intact zinc finger motif, but proteins containing only the zinc finger domain (residues 1–105) did not bind PI-3-P. Recombinant ZAC possessed GTPase-activating activity on Arabidopsis ARF proteins. These data identify a novel PI-3-P-binding protein region and thereby provide evidence that this phosphoinositide is recognized as a signal in plants. A role for ZAC in the regulation of ARF-mediated vesicular transport in plants is discussed.  相似文献   

11.
A major 27 kDa particulate and a minor 24 kDa cytosolic GTP-binding protein was detected in HEL cells upon incubation with [-32P]GTP of nitrocellulose blots containing polypeptides separated using SDS-PAGE. Addition of lovastatin (30 M) to HEL cells in culture inhibited protein synthesis by 35%. However, this treatment resulted in a 5-fold increase, as quantitated by [-32P]GTP binding, in the amount of cytosolic 24 kDa GTP-binding protein. Addition of cycloheximide plus lovastatin to cells in culture abolished the observed increase in 24 kDa GTP-binding protein. Incubation of cells with lovastatin plus [R,S]-[5-3H]mevalonolactone resulted in the incorporation of radioactivity into several polypeptides in both the cytosolic and particulate fractions including a polypeptide of molecular mass of 24 kDa in the cytosol. The mobility of this 24 kDa isoprenylated protein on SDS-PAGE was identical to that of the GTP-binding protein increased in response to lovastatin. However, the 24 kDa protein remained in the cytosol after undergoing isoprenylation. The 24 kDa protein was distinct from the HEL cell, G25K/CDC42Hs GTP-binding protein and the GTP-binding protein that was a substrate for botulinum toxin C3 catalyzed ADP-ribosylation. Results demonstrate that lovastatin specifically increases the expression of a 24 kDa GTP-binding protein in HEL cells and that, isoprenylation of low molecular mass GTP-binding protein(s) may have function(s) in addition to its role in the targetting of these proteins to cell membrane.  相似文献   

12.
A cDNA encoding a member of the Ypt/Rab family of small GTP-binding proteins was cloned from the facultative CAM plant Mesembryanthemum crystallinum. Mcrab5b includes an open reading frame of 201 amino acids. The deduced amino acid sequence shows 91% similarity to LjRAB5b isolated from Lotus japonicus. The amino acid sequence of McRAB5b provides interesting features suggesting that McRAB5b and its homologue from Lotus japonicus represent a new subclass of Ypt/Rab proteins. The fact that proteins like McRAB5b and LjRAB5b were only found in plants and not in yeast or vertebrates suggests that they have plant-specific functions. The expression of Mcrab5b as investigated by northern blot hybridization and RT-PCR was stimulated under salt stress. After heterologous expression in Escherichia coli an antibody was raised against recombinant McRAB5b protein. Western blot analysis revealed that McRAB5b was bound to membranes. It is present in a monomeric and a dimeric form in vitro and in vivo. In vitro only the monomeric protein exhibits a binding capacity for radiolabelled GTP, while the dimer is unable to do so, indicating that the activity may be regulated by monomer/dimer transition.  相似文献   

13.
The superfamily of small, monomeric GTP-binding proteins, in Arabidopsis thaliana comprising 93 members, is classified into four families: Arf/Sar, Rab, Rop/Rac, and Ran families. All monomeric G proteins function as molecular switches that are activated by GTP and inactivated by the hydrolysis of GTP to GDP. GTP/GDP cycling is controlled by three classes of regulatory protein: guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). Proteins of Arf family are primarily involved in regulation of membrane traffic and organization of the cytoskeleton. Arf1/Sar1 proteins regulate the formation of vesicle coat at different steps in the exocytic and endocytic pathways. Rab GTPases are regulators of vesicular transport. They are involved in vesicle formation, recruitment of cytoskeletal motor proteins, and in vesicle tethering and fusion. Rop proteins serve as key regulators of cytoskeletal reorganization in response to extracellular signals. Several data have also shown that Rop proteins play additional roles in membrane trafficking and regulation of enzymes activity. Ran proteins are involved in nucleocytoplasmic transport.  相似文献   

14.
Summary Plasma membranes were prepared from soybean hypocotyls and roots by aqueous two-phase partitioning and subsequent free-flow electrophoresis. The highly purified plasma membranes bound [35S]GTPS with a relatively high affinity (Kd10nM). The binding was saturable and specific as it was indicated by the displacement of bound [35S]GTPS by unlabeled GTPS and GTP, but not by ATPS, ATP, UTP or CTP. ITP was intermediate in its ability to displace [35S]GTPS. When soybean plasma membrane proteins were separated by SDS-PAGE and displayed by autoradiography, two major [35S]GTPS binding proteins were revealed with apparent molecular weights of 24 and 28 kDa. Results with plasma membranes from soybean hypocotyls and roots were similar but differed from those with plasma membranes prepared from rat liver and adipocytes where only a single major [35S]GTPS binding activity with a molecular weight of 28 kDa was observed.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - G protein hetero-trimeric GTP binding protein with , , subunits - Gn protein GTP binding protein detected on nitrocellulose blots - GTPS guanosine 5-[-thio]triphosphate - IAA 3-indoleacetic acid - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis  相似文献   

15.
Plant callose synthase complexes   总被引:15,自引:0,他引:15  
Synthesis of callose (-1,3-glucan) in plants has been a topic of much debate over the past several decades. Callose synthase could not be purified to homogeneity and most partially purified cellulose synthase preparations yielded -1,3-glucan in vitro, leading to the interpretation that cellulose synthase might be able to synthesize callose. While a rapid progress has been made on the genes involved in cellulose synthesis in the past five years, identification of genes for callose synthases has proven difficult because cognate genes had not been identified in other organisms. An Arabidopsis gene encoding a putative cell plate-specific callose synthase catalytic subunit (CalS1) was recently cloned. CalS1 shares high sequence homology with the well-characterized yeast -1,3-glucan synthase and transgenic plant cells over-expressing CalS1 display higher callose synthase activity and accumulate more callose. The callose synthase complex exists in at least two distinct forms in different tissues and interacts with phragmoplastin, UDP-glucose transferase, Rop1 and, possibly, annexin. There are 12 CalS isozymes in Arabidopsis, and each may be tissue-specific and/or regulated under different physiological conditions responding to biotic and abiotic stresses.  相似文献   

16.
Rab proteins typically lack the consensus carboxyl-terminal CXXX motif that signals isoprenoid modification of Ras and other isoprenylated proteins and, instead, terminate in either CC or CXC sequences (C = cysteine, X = any amino acid). To compare the functional relationship between the Ras CXXX and the Rab CC/CXC motifs, we have generated chimeric Ras proteins terminating in Rab carboxyl-terminal CC or CXC sequences. These mutant Ras proteins were not isoprenylated in vitro or in vivo, demonstrating that the CC and CXC sequences alone are not sufficient to replace a CXXX sequence to signal Ras isoprenoid modification. Surprisingly, chimeric Ras/Rab proteins terminating in significant lengths of carboxyl-terminal sequences from Rab1b (7-139 residues), Rab2 (5-151 residues), or Rab3a (12 residues) were also not isoprenylated. These results demonstrate that the sequence requirements for isoprenoid modification of Rab proteins are more complex than the simple tetrapeptide CXXX sequence for isoprenoid modification of Ras proteins and suggest that the Rab geranylgeranyl transferase(s) requires recognition of protein conformation to signal the addition of geranylgeranyl groups. Finally, competition studies demonstrate that a common geranylgeranyl transferase activity is responsible for the modification of Rab proteins terminating in CC or CXC motifs.  相似文献   

17.
Nitrogen-containing bisphosphonate drugs inhibit bone resorption by inhibiting FPP synthase and thereby preventing the synthesis of isoprenoid lipids required for protein prenylation in bone-resorbing osteoclasts. NE10790 is a phosphonocarboxylate analogue of the potent bisphosphonate risedronate and is a weak anti-resorptive agent. Although NE10790 was a poor inhibitor of FPP synthase, it did inhibit prenylation in J774 macrophages and osteoclasts, but only of proteins of molecular mass approximately 22-26 kDa, the prenylation of which was not affected by peptidomimetic inhibitors of either farnesyl transferase (FTI-277) or geranylgeranyl transferase I (GGTI-298). These 22-26-kDa proteins were shown to be geranylgeranylated by labelling J774 cells with [(3)H]geranylgeraniol. Furthermore, NE10790 inhibited incorporation of [(14)C]mevalonic acid into Rab6, but not into H-Ras or Rap1, proteins that are modified by FTase and GGTase I, respectively. These data demonstrate that NE10790 selectively prevents Rab prenylation in intact cells. In accord, NE10790 inhibited the activity of recombinant Rab GGTase in vitro, but did not affect the activity of recombinant FTase or GGTase I. NE10790 therefore appears to be the first specific inhibitor of Rab GGTase to be identified. In contrast to risedronate, NE10790 inhibited bone resorption in vitro without markedly affecting osteoclast number or the F-actin "ring" structure in polarized osteoclasts. However, NE10790 did alter osteoclast morphology, causing the formation of large intracellular vacuoles and protrusion of the basolateral membrane into large, "domed" structures that lacked microvilli. The anti-resorptive activity of NE10790 is thus likely due to disruption of Rab-dependent intracellular membrane trafficking in osteoclasts.  相似文献   

18.
The Rab family belongs to the Ras‐like small GTPase superfamily and is implicated in membrane trafficking through interaction with specific effector molecules. Because of the large number of Rab isoforms in mammals, however, the effectors of most of the mammalian Rabs are yet to be identified. In this study, we systematically screened five different cell or tissue lysates for novel Rab effectors by a combination of glutathione S‐transferase (GST) pull‐down assay with 60 different mammalian Rabs and mass spectroscopic analysis. Three of the 21 Rab‐binding proteins we identified, mKIAA1055/TBC1D2B (Rab22‐binding protein), GAPCenA/TBC1D11 (Rab36‐binding protein) and centaurin β2/ACAP2 (Rab35‐binding protein), are GTPase‐activating proteins (GAPs) for Rab or Arf. Although it has recently been proposed that the Rab–GAP (Tre‐2 /Bub2/Cdc16) domain physically interacts with its substrate Rab, these three GAPs interacted with specific Rabs via a domain other than a GAP domain, e.g. centaurin β2 binds GTP‐Rab35 via the ankyrin repeat (ANKR) domain. Although centaurin β2 did not exhibit any Rab35–GAP activity in vitro, the Rab35‐binding ANKR domain of centaurin β2 was found to be required for its plasma membrane localization and regulation of Rab35‐dependent neurite outgrowth of PC12 cells through inactivation of Arf6. These findings suggest a novel mode of interaction between Rab and GAP.  相似文献   

19.
To identify and characterize small GTP-binding proteins in plant cells, GTP-binding studies were performed with electroblotted plant proteins following SDS-polyacrylamide gel electrophoresis using [α-32P]GTP. Three species of small GTP-binding protein (21, 23, and 27 kD) which have a specific GTP-binding property were identified in the membrane and cytosolic fractions of both monocotyledons (Zea mays) and dicotyledons (Glycine max). Moreover, these three species of small GTP-binding protein were gradually decreased when membranes were treated with hydroxylamine. This result indicates that these small GTP-binding proteins in plant cells are fatty acylated to the membrane lipids. The 27 kDa component was partially purified from hypocotyl membranes of Glycinemax, following S-300 gel filtration, phenylsepharose CL-4B, hydroxyapatite, and Q-sepharose column chromatography. This 27 kD protein was found to have both GTP-binding and GTPase activities.  相似文献   

20.
Recently, we reported the identification of a novel gene named RBEL1 (Rab-like protein 1) and characterized its two encoded isoforms, RBEL1A and RBEL1B, that function as novel GTPases of Ras superfamily. Here we report the identification of two additional splice variants of RBEL1 that we have named RBEL1C and -D. All four RBEL1 isoforms (A, B, C, and D) have identical N termini harboring the Rab-like GTPase domains but contain variable C termini. Although all isoforms can be detected in both cytoplasm and nucleus, RBEL1A is predominantly cytoplasmic, whereas RBEL1B is mostly nuclear. RBEL1C and -D, by contrast, are evenly distributed between the cytoplasm and nucleus. Furthermore, all four RBEL1 proteins are also capable of associating with cellular membrane. The RBEL1 proteins also exhibit a unique nucleotide-binding potential and, whereas the larger A and B isoforms are mainly GTP-bound, the smaller C and D variants bind to both GTP and GDP. Furthermore, a regulatory region at amino acid position 236–302 immediately adjacent to the GTP-binding domain is important for GTP-binding potential of RBEL1A, because deletion of this region converts RBEL1A from predominantly GTP-bound to GDP-bound. RBEL1 knockdown via RNA interference results in marked cell growth suppression, which is associated with morphological and biochemical features of apoptosis as well as inhibition of extracellular signal-regulated kinase phosphorylation. Taken together, our results indicate that RBEL1 proteins are linked to cell growth and survival and possess unique biochemical, cellular, and functional characteristics and, therefore, appear to form a novel subfamily of GTPases within the Ras superfamily.The Ras superfamily is known to comprise five structurally distinct subfamilies of small GTPases, including Ras, Rho, Rab, Sar1/Arf, and Ran, and each subfamily of these GTPases possess distinct functions in the regulation of a variety of cellular processes such as cell proliferation, cell differentiation, cytoskeletal organization, protein transport, and trafficking (14). The Ras subfamily of GTPases (N-, H-, and K-Ras) function predominantly in relaying signals from receptors at the plasma membrane and modulating cell signaling pathways that regulate cell proliferation, differentiation, and survival (5). Ran GTPase, on other hand, is a key regulator of nucleocytoplasmic transport that regulates protein transport across the nuclear pore complex (6, 7). The Rab subfamily is the largest subfamily among the Ras superfamily and contains more than 60 members. The key functions of the Rab GTPases are to regulate protein exocytic and endocytic pathways and modulate intracellular protein transport/trafficking (813).In general, the Ras superfamily GTPases cycle between an active GTP-bound state and an inactive GDP-bound state. There are five N-terminal motifs involved in the binding and hydrolysis of GTP that are highly conserved among all GTPases: G1 (GXXXXGK(S/T)), G2 (T), G3 (DXXG), G4 ((N/T)(K/Q)XD), and G5 (EXSAX). Each sequence has particular functions involved in binding nucleotides (GTP or GDP) and facilitating hydrolysis (4, 14, 15). In general, the intrinsic GTPase activity (converting GTP to GDP) and exchange of GDP for GTP are slow processes for these GTPases and thus require regulatory proteins such as GTPase-activating proteins and GDP/GTP exchange factors to facilitate these processes (1618).For the last two decades, the Ras superfamily has been a major focus in the cancer field as many of the members are either mutated or dysregulated in cancer. The founding members of the Ras superfamily, H-Ras and K-Ras, were first identified as viral oncogenes (1, 4). Later studies demonstrated that mutations of the Ras proteins (H-, N-, and K-Ras) occur frequently in human cancers, and the mutations identified are mostly clustered within the GTP-binding domains of the proteins thus locking Ras proteins in a GTP-bound configuration. GTP-bound Ras is constitutively active; it constantly activates its effector proteins to transduce cell proliferative signals (1, 4). Unlike Ras subfamily genes, mutations occurring in Rab and Rab-like genes are less common, yet alterations in gene expression of a number of Rab genes have been reported in multiple human malignancies. For example, Rab25 overexpression has been linked to prostate cancer progression (19). Rab2 overexpression has been found in lung adenomas and adenocarcinomas (20). In addition, alterations in Rab gene expression have also been linked to cancer drug resistance. For instance, resistance to the anticancer drug doxorubicin in MCF-7 cells has been linked with reduced expression of Rab6C, and introduction of exogenous Rab6C restores drug sensitivity (21).We have recently reported the identification two novel Ras superfamily GTPases, RBEL1A and RBEL1B (22). RBEL1A and RBEL1B are two splice variants of the RBEL1 gene and are highly homologous to the Rab and Ran GTPases within their N-terminal GTP-binding domains (22). Our studies show that both RBEL1A and -B predominantly bind to GTP. A single point mutation (T57N) in the GTP-binding domain of RBEL1A and -B abolishes their ability to bind to both GTP and GDP. Both RBEL1A and RBEL1B localize in the nucleus as well as in the cytosol. Whereas RBEL1A is predominantly cytosolic, RBEL1B is primarily nuclear. Interestingly, our studies also suggested that nucleotide (GTP or GDP)-binding could be important for the nuclear distribution of RBEL1B, because the nucleotide binding-deficient mutant form (T57N) of RBEL1B did not reside in the nucleus but rather became largely cytosolic (22).In our continuous efforts to fully elucidate the function of RBEL1, we have identified two additional splice variants that we have named RBEL1C and RBEL1D. Here we report further characterization of all four RBEL1 splice variants in terms of their GTPase activities, subcellular localizations, regulations, and potential functions. Our results indicate that RBEL1 GTPases, although sharing some common features with other Ras superfamily members, also harbor unique characteristics that are significantly different from other Ras superfamily GTPases. Based on our findings, we suggest that RBEL1 proteins appear to form a novel subfamily of GTPases within the Ras superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号