首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
X-Ray diffraction was used to characterize the profile structures of ultrathin lipid multilayers having a bound surface layer of cytochrome c. The lipid multilayers were formed on an alkylated glass surface, using the Langmuir-Blodgett method. The ultrathin lipid multilayers of this study were: five monolayers of arachidic acid, four monolayers of arachidic acid with a surface monolayer of dimyristoyl phosphatidylserine, and four monolayers of arachidic acid acid with a surface monolayer of thioethyl stearate. Both the phosphatidylserine and the thioethyl stearate surfaces were found previously to covalently bind yeast cytochrome c, while the arachidic acid surface electrostatically binds yeast cytochrome c. Meridional x-ray diffraction data were collected from these lipid multilayer films with and without a bound yeast cytochrome c surface layer. A box refinement technique, previously shown to be effective in deriving the profile structures of ultrathin multilayer lipid films with and without electrostatically bound cytochrome c, was used to determine the multilayer electron density profiles. The surface monolayer of bound cytochrome c was readily apparent upon comparison of the multilayer electron density profiles for the various pairs of ultrathin multilayer films plus/minus cytochrome c for all cases. In addition, cytochrome c binding to the multilayer surface significantly perturbs the underlying lipid monolayers.  相似文献   

2.
X-ray diffraction and spectroscopic techniques were used to characterize ultrathin fatty acid multilayers having a bound surface layer of cytochrome c. Three to six monolayers of arachidic acid were deposited onto an alkylated glass surface, using the Langmuir-Blodgett method. These fatty acid multilayer films were stored either in a 1 mM NaHCO3 pH 7.5 solution or a buffered 10 microM cytochrome c solution, pH 7.5. After washing extensively with buffer, these multilayer films were assayed for bound cytochrome c by optical spectroscopy. It was found that the cytochrome c bound only to the odd-numbered monolayer films (which have hydrophilic surfaces). The theoretical number of cytochrome c molecules bound to the ultrathin multilayer films having three or five monolayers was calculated as N = 1.2 x 10(13)/cm2 (assuming a hexagonally close-packed monolayer of protein), which would produce an optical density of 0.002 at a wavelength of 550 nm; for a three or five monolayer ultrathin film that was incubated with cytochrome c, OD550 approximately equal to 0.002. The protein was released from the film when treated with greater than 100 mM KCl solution, as would be expected for an electrostatic interaction. Meridional x-ray diffraction data were collected from the arachidic acid films with and without a bound cytochrome c layer. A box refinement technique, previously shown to be effective in deriving the profile structures of nonperiodic ultrathin films, was used to determine the multilayer electron density profiles. The electron density profiles and their autocorrelation functions showed that bound cytochrome c resulted in an additional electron dense feature on the multilayer surface, consistent with a bound cytochrome c monolayer. The position of the bound protein relative to the multilayer surface was independent of the number of fatty acid monolayers in the multilayer. Future studies will use these methods to investigate the structures of membrane protein complexes bound directly to the surface of multilayer films.  相似文献   

3.
We have previously shown that cytochrome c can be electrostatically bound to an ultrathin multilayer film having a negatively charged hydrophilic surface; furthermore, x-ray diffraction and absorption spectroscopy techniques indicated that the cytochrome c was bound to the surface of these ultrathin multilayer films as a molecular monolayer. The ultrathin fatty acid multilayers were formed on alkylated glass, using the Langmuir-Blodgett method. In this study, optical linear dichroism was used to determine the average orientation of the heme group within cytochrome c relative to the multilayer surface plane. The cytochrome c was either electrostatically or covalently bound to the surface of an ultrathin multilayer film. Horse heart cytochrome c was electrostatically bound to the hydrophilic surface of fatty acid multilayer films having an odd number of monolayers. Ultrathin multilayer films having an even number of monolayers would not bind cytochrome c, as expected for such hydrophobic surfaces. Yeast cytochrome c was covalently bound to the surface of a multilayer film having an even number of fatty acid monolayers plus a surface monolayer of thioethyl stearate. After washing extensively with buffer, the multilayer films with either electrostatically or covalently bound cytochrome c were analyzed for bound protein by optical absorption spectroscopy; the orientation of the cytochrome c heme was then investigated via optical linear dichroism. Polarized optical absorption spectra were measured from 450 to 600 nm at angles of 0 degrees, 30 degrees, and 45 degrees between the incident light beam and the normal to the surface plane of the multilayer. The dichroic ratio for the heme alpha-band at 550 nm as a function of incidence angle indicated that the heme of the electrostatically-bound monolayer of cytochrome c lies, on average, nearly parallel to the surface plane of the ultrathin multilayer. Similar results were obtained for the covalently-bound yeast cytochrome c. Furthermore, fluorescence recovery after photobleaching (FRAP) was used to characterize the lateral mobility of the electrostatically bound cytochrome c over the monolayer plane. The optical linear dichroism and these initial FRAP studies have indicated that cytochrome c electrostatically bound to a lipid surface maintains a well-defined orientation relative to the membrane surface while exhibiting measurable, but highly restricted, lateral motion in the plane of the surface.  相似文献   

4.
In the preceding paper (Stamatoff, J., Eisenberger, P., Blasie, J.K., Pachence, J.M., Tavormina, A., Erecinska, M., Dutton P.L. and Brown, G. (1982) Biochim. Biophys. Acta 679, 177-187), we described the observation of resonance X-ray scattering effects from intrinsic metal atoms associated with redox centers in membrane proteins on the lamellar X-ray diffraction from oriented multilayers of reconstituted membranes. In this paper, we discuss the possible methods of analysis of such data and present the results of our model refinement analysis concerning (a) the location of the cytochrome c heme iron atom in the profile structure of a reconstituted membrane containing a photosynthetic reaction center-cytochrome c complex and (b) the location of the heme a and a3 iron atoms in the profile structure of a reconstituted membrane containing cytochrome oxidase. The former results are of special importance because they provide a test of the validity of the resonance diffraction data and the methods of analysis, since the location of cytochrome c in the reaction center-cytochrome c membrane profile is known independently of the resonance diffraction experiments.  相似文献   

5.
Spatial relationship between cytochrome a and a3   总被引:2,自引:0,他引:2  
We have studied the spatial relationship between cytochromes a and a3 by the enhancement of the spin relaxation of cytochrome a3-NO EPR signals by the paramagnetic a heme at 15 K. An Fe-Fe distance of 12-19A is estimated from the absence of dipolar broadening and from the observation of spin relaxation enhancement in the a3-NO complex. When this result is combined with resonance x-ray diffraction data reported by Blasie et al. (Blasie, J. K., Pachence, J. M., Tavormina, A., Dutton, P. L., Stamatoff, J., Eisenberger, P., and Brown, G. (1982) Biochim. Biophys. Acta 679, 188-197) and the contribution from the exchange interaction is considered, we can limit the iron-iron distance to 12-16 A and estimate the angle between the Fe-Fe vector and mitochondrial membrane normal as 30-60 degrees. We also consider the possible effects of CuA on cytochrome a3-NO.  相似文献   

6.
We previously showed [Herbette, L. G., Blasie, J. K., DeFoor, P., Fleischer, S., Bick, R. J., Van Winkle, W. B., Tate, C. A., & Entman, M. L. (1984) Arch. Biochem. Biophys. 234, 235-242; Herbette, L. G., DeFoor, P., Fleischer, S., Pascolini, D., Scarpa, A., & Blasie, J. K. (1985) Biochim. Biophys. Acta 817, 103-122] that the phospholipid head-group distribution in the membrane bilayer of isolated sarcoplasmic reticulum is asymmetric. From these studies, both the total number of phospholipid head groups and the total lipid, as well as the head-group species for these lipids, were found to be different for each monolayer of the membrane bilayer. In this paper, we demonstrate for the first time that there is significant asymmetry in the distribution of unsaturated fatty acids between the two monolayers; i.e., the outer monolayer of the sarcoplasmic reticulum contained more unsaturated and polyunsaturated chains when compared to the inner monolayer. X-ray diffraction measurements demonstrated that the time-averaged fatty acyl chain extension for the outer monolayer was approximately 20% less than for the inner monolayer. This is consistent with the concept that the greater degree of unsaturation in the outer monolayer may provide for a decreased average fatty acyl chain extension for that layer. This architecture for the bilayer may be related to both the "resting" state mass distribution of the calcium pump protein within the membrane bilayer and possible "conformational" states of the calcium pump protein during calcium transport by the sarcoplasmic reticulum.  相似文献   

7.
The technique of resonance X-ray diffraction (Blasie, J.K. and Stamatoff, J. (1981) Annu. Rev. Biophys. Bioeng. 10, 451–452) utilizing synchrotron radiation was used to determine the locations of the cytochrome c heme iron atom and the photosynthetic reaction center iron atom within the profile of a reconstituted membrane. The accuracy of these determinations was better than ±2 ?. The cytochrome c heme iron atom → reaction center iron atom vector was determined to have a magnitude of approx. 44 ? projected onto the membrane profile and to span most of the lipid hydrocarbon core of the membrane profile. Since the reaction center iron atom interacts magnetically with the primary quinone electron acceptor QI over a distance of less than 10 ?, the primary light-induced electron-transfer reactions for this system generate the electric charge separation between oxidized cytochrome c+ and Fe-Q?I across most (approx. 23) of the membrane profile including most or all of the lipid hydrocarbon core of the membrane.  相似文献   

8.
X-ray interferometry/holography was applied to meridional x-ray diffraction data to determine uniquely the profile structures of a single monolayer of an integral membrane protein and a peripheral membrane protein, each tethered to the surface of a solid inorganic substrate. Bifunctional, organic self-assembled monolayers (SAMs) were utilized to tether the proteins to the surface of Ge/Si multilayer substrates, fabricated by molecular beam epitaxy, to facilitate the interferometric/holographic x-ray structure determination. The peripheral membrane protein yeast cytochrome c was covalently tethered to the surface of a sulfhydryl-terminated 11-siloxyundecanethiol SAM via a disulfide linkage with residue 102. The detergent-solubilized, photosynthetic reaction center integral membrane protein was electrostatically tethered to the surface of an analogous amine-terminated SAM. Optical absorption measurements performed on these two tethered protein monolayer systems were consistent with the x-ray diffraction results indicating the reversible formation of densely packed single monolayers of each fully functional membrane protein on the surface of the respective SAM. The importance of utilizing the organic self-assembled monolayers (as opposed to Langmuir-Blodgett) lies in their ability to tether specifically both soluble peripheral membrane proteins and detergent-solubilized integral membrane proteins. The vectorial orientations of the cytochrome c and the reaction center molecules were readily distinguishable in the profile structure of each monolayer at a spatial resolution of 7 A.  相似文献   

9.
We have previously compared the electron density profiles for several highly-functional reconstituted sarcoplasmic reticulum membranes with that for the isolated sarcoplasmic reticulum membrane (Herbette, L., Scarpa, A., Blasie, J.K., Wang, C.T., Saito, A. and Fleischer, S. (1981) Biophys. J. 36, 47–72). In this paper, we compare the separate calcium pump protein profile within these reconstituted sarcoplasmic reticulum membranes, as derived by X-ray and neutron diffraction methods, with that within isolated sarcoplasmic reticulum membranes. In addition, the time-average perturbation of the lipid bilayer by the incorporated calcium pump protein within these reconstituted sarcoplasmic reticulum membranes has been determined in some detail.  相似文献   

10.
We have previously compared the electron density profiles for several highly-functional reconstituted sarcoplasmic reticulum membranes with that for the isolated sarcoplasmic reticulum membrane (Herbette, L., Scarpa, A., Blasie, J.K., Wang, C.T., Saito, A. and Fleischer, S. (1981) Biophys. J. 36, 47-72). In this paper, we compare the separate calcium pump protein profile within these reconstituted sarcoplasmic reticulum membranes, as derived by X-ray and neutron diffraction methods, with that within isolated sarcoplasmic reticulum membranes. In addition, the time-average perturbation of the lipid bilayer by the incorporated calcium pump protein within these reconstituted sarcoplasmic reticulum membranes has been determined in some detail.  相似文献   

11.
We have previously compared the electron density profiles for several highly-functional reconstituted sarcoplasmic reticulum membranes with that for the isolated sarcoplasmic reticulum membrane (Herbette, L., Scarpa, A., Blasie, J.K., Wang, C.T., Saito, A. and Fleischer, S. (1981) Biophys. J. 36, 47–72). In this paper, we compare the separate calcium pump protein profile within these reconstituted sarcoplasmic reticulum membranes, as derived by X-ray and neutron diffraction methods, with that within isolated sarcoplasmic reticulum membranes. In addition, the time-average perturbation of the lipid bilayer by the incorporated calcium pump protein within these reconstituted sarcoplasmic reticulum membranes has been determined in some detail.  相似文献   

12.
Vectorially oriented monolayers of yeast cytochrome c and its bimolecular complex with bovine heart cytochrome c oxidase have been formed by self-assembly from solution. Both quartz and Ge/Si multilayer substrates were chemical vapor deposited with an amine-terminated alkylsiloxane monolayer that was then reacted with a hetero-bifunctional cross-linking reagent, and the resulting maleimide endgroup surface then provided for covalent interactions with the naturally occurring single surface cysteine 102 of the yeast cytochrome c. The bimolecular complex was formed by further incubating these cytochrome c monolayers in detergent-solubilized cytochrome oxidase. The sequential formation of such monolayers and the vectorially oriented nature of the cytochrome oxidase was studied via meridional x-ray diffraction, which directly provided electron density profiles of the protein(s) along the axis normal to the substrate plane. The nature of these profiles is consistent with previous work performed on vectorially oriented monolayers of either cytochrome c or cytochrome oxidase alone. Furthermore, optical spectroscopy has indicated that the rate of binding of cytochrome oxidase to the cytochrome c monolayer is an order of magnitude faster than the binding of cytochrome oxidase to an amine-terminated surface that was meant to mimic the ring of lysine residues around the heme edge of cytochrome c, which are known to be involved in the binding of this protein to cytochrome oxidase.  相似文献   

13.
Yeast cytochrome c (YCC) can be covalently tethered to, and thereby vectorially oriented on, the soft surface of a mixed endgroup (e.g., -CH3/-SH = 6:1, or -OH/-SH = 6:1) organic self-assembled monolayer (SAM) chemisorbed on the surface of a silicon substrate utilizing a disulfide linkage between its unique surface cysteine residue and a thiol endgroup. Neutron reflectivities from such monolayers of YCC on Fe/Si or Fe/Au/Si multilayer substrates with H2O versus D2O hydrating the protein monolayer at 88% relative humidity for the nonpolar SAM (-CH3/-SH = 6:1 mixed endgroups) surface and 81% for the uncharged-polar SAM (-OH/-SH = 6:1mixed endgroups) surface were collected on the NG1 reflectometer at NIST. These data were analyzed using a new interferometric phasing method employing the neutron scattering contrast between the Si and Fe layers in a single reference multilayer structure and a constrained refinement approach utilizing the finite extent of the gradient of the profile structures for the systems. This provided the water distribution profiles for the two tethered protein monolayers consistent with their electron density profile determined previously via x-ray interferometry (Chupa et al., 1994).  相似文献   

14.
X-ray absorption spectroscopic (XAS) studies on cytochrome C1 from beef heart mitochondria were conducted to identify the effect of the hinge protein [Kim, C.H., & King, T.E. (1983) J. Biol. Chem. 258, 13543-13551] on the structure of the heme site in cytochrome c1. A comparison of XAS data of highly purified "one-band" and "two-band" cytochrome c1 [Kim, C.H., & King, T.E. (1987) Biochemistry 26, 1955-1961] demonstrates that the hinge protein exerts a rather pronounced effect on the heme environment of the cytochrome c1: a conformational change occurs within a radius of approximately 5 A from the heme iron in cytochrome c1 when the hinge protein is bound to cytochrome c1. This result may be correlated with the previous observations that the structure and reactivity of cytochrome c1 are affected by the hinge protein [Kim, C.H., & King, T.E. (1987) Biochemistry 26, 1955-1961; Kim, C.H., Balny, C., & King, T.E. (1987) J. Biol. Chem. 262, 8103-8108].  相似文献   

15.
山莨菪碱与膜相互作用的小角X射线衍射研究   总被引:1,自引:0,他引:1  
应用小角X射线衍射和差示扫描量热法研究了中药提取物山莨菪碱与DPPC多层膜的相互作用.结果表明,山莨菪碱不仅能降低DPPC多层膜的相变温度,而且能使多层膜发生分相现象,根据衍射结果并采用推广傅里叶合成去卷积法计算了脂双分子层膜的电子密度剖面图.从中我们估计山莨菪碱分子可能分布于脂双分子层极性头部的内侧  相似文献   

16.
We have developed resonance X-ray diffraction methods to locate for the first time intrinsic metal atoms associated with redox centers within biological membrane systems. The study of membranes containing dilute concentrations of resonant scatterers has been made possible by the development of synchrotron radiation sources of X-rays. The technique permits altering the scattering power of a particular atom relative to others by varying the incident X-ray energy. Thus, this method may be used to locate a metal atom within a complex integral protein without chemical modification of the membrane. We present resonance diffraction data taken with synchroton radiation for two different membrane systems: cytochrome oxidase incorporated into lipid vesicles and a photosynthetic reaction center-cytochrome c complex also reincorporated into lipid vesicles.  相似文献   

17.
The structure of the retinal rod disc membrane and its modifications upon bleaching have been studied by X-ray diffraction. Three types of preparations are used: functioning isolated frog retina, isolated rods from frog retina, oriented by a magnetic field, and stacked discs from cattle retina. X-rays are detected by a position-sensitive linear counter. Diffraction spectra are obtained in 10–100 s.The electron density profile favors models where the rhodopsin molecule spans the whole thickness of the membrane. Upon bleaching, a small increase of electron density appears instantly at the cytoplasmic edge of the membrane. In the intact retina this structural change is accompanied by disorder and slow swelling reactions which are not observed in the isolated rod outer segment.The diffraction signal arising from the protein distribution in the plane of the membrane has been reinvestigated carefully. Patterns identical to those of Blasie (Blasie (1969) J. Mol. Biol. 39, 407 and Blasie (1972) Biophys. J. 12, 191) can be obtained but these are shown to be dominated by artefacts. The actual signal is a single broad band around (55 Å)-1, upon which bleaching has a negligible effect. No measurable displacement of rhodopsin in the thickness of the membrane occurs upon bleaching.Temperature effects on the protein distribution are found to be large only for disc membranes from cattle retina. In this material from a warm-blooded animal those effects are correlated with the occurrence, upon lowering the temperature, of a partial phase transition of the paraffin chains of the lipids. The position and the slope of the transition are not sensitive to bleaching.  相似文献   

18.
X-ray and neutron diffraction studies of oriented multilayers of a highly purified fraction of isolated sarcoplasmic reticulum (SR) have previously provided the separate profile structures of the lipid bilayer and the Ca2+-ATPase molecule within the membrane profile to approximately 10-A resolution. These studies used biosynthetically deuterated SR phospholipids incorporated isomorphously into the isolated SR membranes via phospholipid transfer proteins. Time-resolved x-ray diffraction studies of these oriented SR membrane multilayers have detected significant changes in the membrane profile structure associated with phosphorylation of the Ca2+-ATPase within a single turnover of the Ca2+-transport cycle. These studies used the flash photolysis of caged ATP to effectively synchronize the ensemble of Ca2+-ATPase molecules in the multilayer, synchrotron x-radiation to provide 100-500-ms data collection times, and double-beam spectrophotometry to monitor the Ca2+-transport process directly in the oriented SR membrane multilayer.  相似文献   

19.
20.
R Bisson  B Jacobs  R A Capaldi 《Biochemistry》1980,19(18):4173-4178
Two arylazidocytochrome c derivatives, one modified at lysine-13 and the second modified at lysine-22, were reacted with beef heart cytochrome c oxidase. The lysine-13 modified arylazidocytochrome c was found to cross-link both to the enzyme and with lipid bound to the cytochrome c oxidase complex. The lysine-22 derivative reacted only with lipids. Cross-linking to protein was through subunit II of the cytochrome c oxidase complex, as first reported by Bisson et al. [Bisson, R., Azzi, A., Gutweniger, H., Colonna, R., Monteccuco, C., & Zanotti, A. (1978) J. Biol. Chem. 253, 1874]. Binding studies show that the cytochrome c derivative covalently bound to subunit II was in the high-affinity binding site for the substrate. Evidence is also presented to suggest that cytochrome c bound to the lipid was in the low-affinity binding site [as defined by Ferguson-Miller et al. [Ferguson-Miller, S., Brautigan, D. L., & Margoliash, E. (1976) J. Biol. Chem. 251, 1104]]. Covalent binding of the cytochrome c derivative into the high-affinity binding site was found to inhibit electron transfer even when native cytochrome c was added as a substrate. Inhibition was almost complete when 1 mol of the Lys-13 modified arylazidocytochrome c was covalently bound to the enzyme per cytochrome c oxidase dimer (i.e., congruent to 280 000 daltons). Covalent binding of either derivative with lipid (low-affinity site) had very little effect on the overall electron transfer activity of cytochrome c oxidase. These results are discussed in terms of current theories of cytochrome c-cytochrome c oxidase interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号