首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for studies of an El Tor-associated antigen of Vibrio cholerae O1   总被引:1,自引:0,他引:1  
A method for studying the biotype El Tor associated mannose-sensitive haemagglutinin (MSHA) of V. cholerae O1 has been developed. By using crude MSHA adsorbed to chicken erythrocytes as solid phase antigen in an enzyme-linked immunosorbent assay (ELISA), antisera against V. cholerae of the El Tor biotype reacted in high titre with the MSHA-coated cells, whereas antisera against vibrios of the classical biotype did not bind significantly, i.e. in higher titre than pre-immune sera. The binding of anti-MSHA serum, or a monoclonal antibody against MSHA, to the MSHA-coated erythrocytes could be efficiently inhibited by crude MSHA as well as by El Tor vibrios whereas neither V. cholerae lipopolysaccharide nor different strains of classical vibrios had any inhibitory effect. These results support the existence of an El Tor-associated immunogen. They also suggest a possibility of determining antibodies against different haemagglutinins in ELISA without having access to purified antigens.  相似文献   

2.
The distribution, characterization and function of the tcpA gene was investigated in Vibrio cholerae O1 strains of the El Tor biotype and in a newly emergent non-O1 strain classified as serogroup O139. The V. cholerae tcpA gene from the classical biotype strain O395 was used as a probe to identify a clone carrying the tcpA gene from the El Tor biotype strain E7946. The sequence of the E7946 tcpA gene revealed that the mature El Tor TcpA pilin has the same number of residues as, and is 82% identical to, TcpA of classical biotype strain O395. The majority of differences in primary structure are either conservative or clustered in a manner such that compensatory changes retain regional amino acid size, polarity and charge. In a functional analysis, the cloned gene was used to construct an El Tor mutant strain containing an insertion in tcpA. This strain exhibited a colonization defect in the infant mouse cholera model similar in magnitude to that previously described for classical biotype tcpA mutants, thus establishing an equivalent role for TCP in intestinal colonization by El Tor biotype strains. The tcpA analysis was further extended to both a prototype El Tor strain from the Peru epidemic and to the first non-O1 strain known to cause epidemic cholera, an O139 V. cholerae isolate from the current widespread Asian epidemic. These strains were shown to carry tcpA with a sequence identical to E7946. These results provide further evidence that the newly emergent non-O1 serogroup O139 strain represents a derivative of an El Tor biotype strain and, despite its different LPS structure, shares common TCP-associated antigens. Therefore, there appear to be only two related sequences associated with TCP pilin required for colonization by all strains responsible for epidemic cholera, one primary sequence associated with classical strains and one for El Tor strains and the recent O139 derivative. A diagnostic correlation between the presence of tcpA and the V. cholerae to colonize and cause clinical is now extended to strains of both O1 and non-O1 serotypes.  相似文献   

3.
Biotype-specific tcpA genes in Vibrio cholerae   总被引:4,自引:0,他引:4  
Abstract The tcpA gene, encoding the structural subunit of the toxin-coregulated pilus, has been isolated from a variety of clinical isolates of Vibrio cholerae , and the nucleotide sequence determined. Strict biotype-specific conservation within both the coding and putative regulatory regions was observed, with important differences between the El Tor and classical biotypes. V. cholerae O139 Bengal strains appear to have El Tor-type tcpA genes. Environmental O1 and non-O1 isolates have sequences that bind an E1 Tor-specific tcpA DNA probe and that are weakly and variably amplified by tcpA -specific polymerase chain reaction primers, under conditions of reduced stringency. The data presented allow the selection of primer pairs to help distinguish between clinical and environmental isolates, and to distinguish El Tor (and Bengal) biotypes from classical biotypes from classical biotypes of V. cholerae . While the role of TcpA in cholera vaccine preparations remains unclear, the data strongly suggest that TcpA-containing vaccines directed at O1 strains need include only the two forms of TcpA, and that such vaccines directed at (O139) Bengal strains should include the TcpA of El Tor biotype.  相似文献   

4.
Vibrio cholerae species are extracellular, waterborne, gram-negative bacteria that are overwhelmed by predators in aquatic environments. The unencapsulated serogroup V. cholerae O1 and encapsulated V. cholerae O139 cause epidemic and pandemic outbreaks of cholera. It has recently been shown that the aquatic and free-living amoeba Acanthamoeba castellanii is not a predator to V. cholerae O139; rather, V. cholerae O139 has shown an intracellular compatibility with this host. The aim of this study was to examine the ability of V. cholerae O1 classical and El Tor strains to grow and survive in A. castellanii. The interaction between A. castellanii and V. cholerae O1 strains was studied by means of amoeba cell counts and viable counts of the bacteria in the absence or presence of amoebae. The viable count of intracellularly growing bacteria was estimated by utilizing gentamicin assay. Confocal microscopy and electron microscopy were used to determine the intracellular localization of V. cholerae in A. castellanii. The results showed that V. cholerae O1 classical and El Tor strains grew and survived intracellularly in the cytoplasm of trophozoites, and that the bacteria were also found in the cysts of A. castellanii. The interaction showed a facultative intracellular behaviour of V. cholerae O1 classical and El Tor strains and a possible role of A. castellanii as an environmental host of V. cholerae species.  相似文献   

5.
CTXphi is a filamentous, lysogenic bacteriophage whose genome encodes cholera toxin, the primary virulence factor produced by Vibrio cholerae. CTX prophages in O1 El Tor and O139 strains of V. cholerae are found within arrays of genetically related elements integrated at a single locus within the V. cholerae large chromosome. The prophages of O1 El Tor and O139 strains generally yield infectious CTXphi. In contrast, O1 classical strains of V. cholerae do not produce CTXphi, although they produce cholera toxin and they contain CTX prophages integrated at two sites. We have identified the second site of CTX prophage integration in O1 classical strains and characterized the classical prophage arrays genetically and functionally. The genes of classical prophages encode functional forms of all of the proteins needed for production of CTXphi. Classical CTX prophages are present either as solitary prophages or as arrays of two truncated, fused prophages. RS1, a genetic element that is closely related to CTXphi and is often interspersed with CTX prophages in El Tor strains, was not detected in classical V. cholerae. Our model for CTXphi production predicts that the CTX prophage arrangements in classical strains will not yield extrachromosomal CTX DNA and thus will not yield virions, and our experimental results confirm this prediction. Thus, failure of O1 classical strains of V. cholerae to produce CTXphi is due to overall deficiencies in the structures of the arrays of classical prophages, rather than to mutations affecting individual CTX prophage genes.  相似文献   

6.
Abstract The polymerase chain reaction has been used to differentiate the gene which encodes the toxin co-regulated pili ( tcpA ) of the El Tor and classical biotypes of Vibrio cholerae O1. The same PCR primers were applied to strains belonging to non-O1 serogroups that produced cholera toxin. The size of fragment amplified was either identical to the tcpA of biotype El Tor (471 bp) or to the tcpA of biotype classical (617 bp). All strains belonging to the novel epidemic serogroup O139 generated a 471-bp fragment identical to El Tor tcpA . The present study suggests that there may be an association between non-O1 serogroup and tcpA type.  相似文献   

7.
Variation in epitopes of the B subunit of cholera toxin (CT-B) produced by strains of El Tor and classical biotype Vibrio cholerae O1 was examined using monoclonal antibodies prepared to V. cholerae 569B CT. CT-B epitopes were markedly conserved for V. cholerae classical biotypes. In contrast, epitope variation was observed for El Tor biotypes, which produced both a classical-like CT-B and a unique CT-B lacking at least one epitope common to 569B CT-B. The missing epitope was located outside the GM1 ganglioside-binding site. From results of the study reported here, genetic divergence is exhibited in the El Tor biotype CT-B versus classical CT-B. Furthermore, at least five unique epitopes of V. cholerae 569B CT-B can be defined.  相似文献   

8.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

9.
The expression of two cell-bound haemagglutinins, one sensitive to L-fucose (FSHA) and the other to D-mannose (MSHA), on Vibrio cholerae O1 strains of both the classical and the El Tor biotypes was studied by (i) agglutination of chicken and human group O erythrocytes in the presence of L-fucose or D-mannose, (ii) binding of the bacteria to L-fucose- and D-mannose-coated agarose beads, and (iii) agglutination of the bacteria by 'biotype-specific' antisera. All of the 12 classical strains studied that were isolated before 1979 gave FSHA of human O erythrocytes whereas only 6 of 17 classical strains isolated during recent epidemics expressed FSHA; a few of the classical strains expressed MSHA in addition to FSHA. All the El Tor strains gave MSHA of chicken erythrocytes and one strain also expressed FSHA. Both the cell-bound HAs were optimally expressed during the exponential phase of growth; FSHA markedly decreased during the late exponential phase while the MSHA usually persisted into the stationary phase. The expression of FSHA and MSHA correlated very well with the direct binding of vibrios to fucose- and mannose-coated agarose beads, respectively. Antiserum 'specific' for classical vibrios agglutinated classical strains expressing FSHA and also the El Tor strain exhibiting FSHA. Similarly, the anti-El Tor serum agglutinated all El Tor strains and also classical strains expressing MSHA, suggesting that the 'biotype-specific' sera were specific for the biotype-associated cell-bound HAs.  相似文献   

10.
Vibrio cholerae O1 strains are classified into one of two biotypes, classical and E1 Tor, the latter being primarily responsible for cholera cases worldwide since 1961. Recent studies in our laboratory have focused upon the pathogenic and vaccine significance of the toxin-coregulated pili (TCP) produced by strains of E1 Tor biotype. Mutants in which the tcpA gene (encoding the pilin subunit protein) has been inactivated are dramatically attenuated in the infant mouse cholera model, showing markedly reduced colonisation potential in mixed-infection competition experiments. Significantly, in the vaccine context, antibodies to TCP are sufficient to prevent experimental infection, although our data suggest that this protective effect might be limited to strains of homologous biotype. Since we have shown that tcpA sequences are conserved within a biotype but differ between biotypes, this latter observation suggests that the biotype-restricted pilin epitopes might have greater vaccine significance. Similar studies indicate that TCP also play a critical role in colonisation by strains of the recently-recognised O139 serogroup, which is thought to have evolved from an O1 E1 Tor strain. In contrast to the effect of introducing mutations in the tcpA gene, strains carrying inactivated mshA genes (encoding the subunit of the mannose-sensitive haemagglutinin pilus) show unaltered in vivo behaviour. Consistent with this finding is our inability to demonstrate any protective effect associated with antibodies to MSHA. Ongoing approaches to vaccine development are variously aimed at improving the immunogenicity of the current inactivated whole-cell vaccine, or assessing the field efficacy of a promising live attenuated strain. The possible implications of our findings are discussed in relation to both of these options.  相似文献   

11.
Pathogenic strains of Vibrio cholerae O139 possess the cholera toxin A subunit (ctxA) gene as well as the gene for toxin co-regulated pili (tcpA). We report the isolation of a ctxA-negative, tcpA-negative V. cholerae O139 strain (INDREI) from a patient in Mexico diagnosed with gastrointestinal illness. Certain phenotypic characteristics of this strain were identical to those of V. cholerae O1 biotype El Tor. Unlike ctxA-positive V. cholerae O139 strains, this strain was sensitive to a wide panel of antibiotics, including ampicillin, chloramphenicol, ciprofloxacin, gentamicin, furazolidone, nalidixic acid, nitrofurantoin, tetracycline, trimethoprim-sulfamethoxazole, and streptomycin, but was resistant to polymyxin B. Ribotype and pulsed-field gel electrophoresis profiles of INDRE1 differed from those of ctxA-positive V. cholerae O139 and other V. cholerae strains. Phenotypic characteristics of the Mexico strain were similar to those reported for V. cholerae O139 isolates from Argentina and Sri Lanka.  相似文献   

12.
Throughout most of history, epidemic and pandemic cholera was caused by Vibrio cholerae of the serogroup O1. In 1992, however, a V. cholerae strain of the serogroup O139 emerged as a new agent of epidemic cholera. Interestingly, V. cholerae O139 forms biofilms on abiotic surfaces more rapidly than V. cholerae O1 biotype El Tor, perhaps because regulation of exopolysaccharide synthesis in V. cholerae O139 differs from that in O1 El Tor. Here, we show that all flagellar mutants of V. cholerae O139 have a rugose colony morphology that is dependent on the vps genes. This suggests that the absence of the flagellar structure constitutes a signal to increase exopolysaccharide synthesis. Furthermore, although exopolysaccharide production is required for the development of a three-dimensional biofilm, inappropriate exopolysaccharide production leads to inefficient colonization of the infant mouse intestinal epithelium by flagellar mutants. Thus, precise regulation of exopolysaccharide synthesis is an important factor in the survival of V. cholerae O139 in both aquatic environments and the mammalian intestine.  相似文献   

13.
The bacterial chromosomal replication origin (ori) sequences are a highly conserved essential genetic element. In this study, the large chromosomal replication origin sequence of Vibrio cholerae (oriCIVC) has been targeted for identification of the organism, including the biotypes of serogroup O1. The oriCIVC sequence-based PCR assay specifically amplified an 890 bp fragment from all the V. cholerae strains examined. A point mutation in the oriCIVC sequence of the classical biotype of O1 serogroup led to the loss of a BglII site, which was utilized for differentiation from El Tor vibrios. Interestingly, the PCR assay amplified a similarly sized ori segment, designated as oriCIVM, from V. mimicus strains, but failed to produce any amplicon with other strains. Cloning and sequencing of the oriCIVM revealed high sequence similarity (96%) with oriCIVC. The results indicate that V. mimicus is indeed very closely related to V. cholerae. In addition, the BglII restriction fragment length polymorphism (RFLP) between oriCIVM and oriCIVC sequences allowed us to differentiate the two species. The ori sequence-based PCR-RFLP assay developed in this study appears to be a useful method for rapid identification and differentiation of V. cholerae and V. mimicus strains, as well as for the delineation of classical and El Tor biotypes of V. cholerae O1.  相似文献   

14.
Abstract The sequence of the ctxB gene encoding the B subunit of cholera toxin has been determined for a strain of Vibrio cholerae of the novel O139 serotype associated with recent outbreaks of severe cholera throughout South-East Asia and found to be identical to the ctxB gene in V. cholerae O1 of the E1 Tor biotype. Analyses by Southern hybridization and PCR showed that all strains of the O139 serotype V. cholerae tested carried cholera toxin genes and other gene associated with a virulence cassette DNA region at two loci identical or homologous to those identified in the Classical rather than the E1 Tor biotype of V. cholerae serotype O1 although these loci in O139 could reside on restriction fragments of variable size.  相似文献   

15.
16.
The role of mannose-sensitive hemagglutinin (MSHA) in Vibrio cholerae O1 El Tor interactions with hemolymph of the mussel Mytilus galloprovincialis was studied. Bacterial adherence to and association with hemocytes were evaluated at 4 and 18 degrees C, respectively. In hemolymph serum, the wild-type strain N16961 adhered to and associated with hemocytes about twofold more efficiently than its mutant lacking MSHA. In artificial seawater (ASW), no significant differences between the two strains were observed. N16961 was also more sensitive to hemocyte bactericidal activity than its MSHA mutant; in fact, the percentages of killed bacteria after 120 min of incubation were 60 and 34%, respectively. The addition of D-mannose abolished the serum-mediated increase in adherence, association, and sensitivity to killing of the wild-type strain without affecting the interactions of the mutant. A similar increase in N16961 adherence to hemocytes was observed when serum was adsorbed with MSHA-deficient bacteria. In contrast, serum adsorbed with either wild-type V. cholerae El Tor or wild-type Escherichia coli carrying type 1 fimbriae was no longer able to increase adherence of N16961 to hemocytes. The results indicate that hemolymph-soluble factors are involved in interactions between hemocytes and mannose-sensitive adhesins.  相似文献   

17.
A mismatch amplification mutation PCR assay was developed and validated for rapid detection of the biotype specific cholera toxin B subunit of V. cholerae O1. This assay will enable easy monitoring of the spread of a new emerging variant of the El Tor biotype of V. cholerae O1.  相似文献   

18.
Sequencing of the cef (CHO cell elongating factor) of Vibrio cholerae serogroup O139 revealed one nucleotide substitution (C for T in position 2015) in comparison with classical V. cholerae O1 and two substitutions (AC for GT in positions 2014-2015) in comparison with V. cholerae O1 E1 Tor. A comparative bioinformatic analysis showed that the substitution determines a threonine residue in position 672 of the Cefprotein, while the position is occupied by an isoleucine residue in the classical strains and a valine residue in the El Tor group. The last two amino acids are hydrophobic, while threonine is hydrophilic, having a polar R group. The non- synonymous substitution affects the predicted secondary and, probably, tertiary structures of the Cef-O139 protein and explained our previous finding that the protein fails to degrade tributyrin, while retaining the tweenase activity spectrum and all other characteristics. It cannot be excluded that the inability of Cef-O139 to cleave triglycerides, along with other genetic specifics, contribute to the fact that the O139 serogroup has been displaced from a dominating position in etiology of cholera by the El Tor genotype. The nucleotide sequence of the V. cholerae O139 cefgene and the deduced amino acid sequence of its product are reported for the first time and were deposited in GenBank under accession nos. JF499787 and AEC04822.1, respectively.  相似文献   

19.
Zymovars analysis also known as multilocus enzyme electrophoresis is applied here to investigate the genetic variation of Vibrio cholerae strains and characterise strains or group of strains of medical and epidemiological interest. Fourteen loci were analyzed in 171 strains of non-O1 non-O139, 32 classical and 61 El Tor from America, Africa, Europe and Asia. The mean genetic diversity was 0.339. It is shown that the same O antigen (both O1 and non-O1) may be present in several genetically diverse (different zymovars) strains. Conversely the same zymovar may contain more than one serogroup. It is confirmed that the South American epidemic strain differs from the 7th pandemic El Tor strain in locus LAP (leucyl leucyl aminopeptidase). Here it is shown that this rare allele is present in 1 V. mimicus and 4 non-O1 V. cholerae. Non toxigenic O1 strains from South India epidemic share zymovar 14A with the epidemic El Tor from the 7th pandemic, while another group have diverse zymovars. The sucrose negative epidemic strains isolated in French Guiana and Brazil have the same zymovar of the current American epidemic V. cholerae.  相似文献   

20.
This study reports the results of a molecular analysis of the CTX prophages in classical biotype strains of Vibrio cholerae O1 of clinical origin isolated between 1970 and 1979 in India. All strains were sensitive to group IV classical phage and polymyxin B but resistant to group 5 El Tor phage. These phenotypic traits are consistent to that exhibited by the classical biotype. PCR studies reconfirmed their biotype assignment and showed the presence of intact CTX prophages and the presence of the recently described toxin linked cryptic plasmid. Restriction fragment length polymorphism of rRNA genes and pulsed-field gel electrophoresis showed clonal diversity among the strains. The most notable observation was the finding that one strain (GP13) has three CTX prophages while another (GP147) has four CTX prophages. This is the first time heterogeneity is reported in the arrangement of the CTX prophages among classical strains of V. cholerae O1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号