首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The fluorescent nucleotide 2',3'-trinitrophenyl-ATP (TNP-ATP) binds at the triphosphate substrate binding site of the large (Klenow) fragment of DNA polymerase I (Pol I) as detected by direct binding studies measuring the increase in fluorescence of this ligand (n = 1.0, KD = 0.07 microM). The enzyme-TNP-ATP complex binds Mg2+ and Mn2+ tightly (KD = 0.05 microM) as measured by an increase in fluorescence on titrating with these metals. The substrate dGTP competitively displaces TNP-ATP from the enzyme (KD = 5.7 microM) de-enhancing the fluorescence. The polymerase reaction is half-maximally inhibited by 0.8 microM TNP-ATP in the presence of dATP (10 microM) as substrate. A region of the amino acid sequence of Pol I (peptide I) consisting of residues 728-777 has been synthesized and found to contain significant secondary structure by CD both in water and 50% methanol/water. In water at 3 degrees C, peptide I binds the substrate analog TNP-ATP (KD = 0.03 microM) with a stoichiometry of 0.2. In 50% methanol at 3 degrees C, peptide I binds TNP-ATP with a higher stoichiometry than in water, consistent with a 1:1 complex, but biphasically (16% of the peptide, KD = 0.09 microM; 84% of the peptide, KD = 5.0 microM), and competitively binds the Pol I substrates dATP, TTP, and dGTP (KD = 230-570 microM). Evidence from size exclusion high performance liquid chromatography suggests that these two forms of the peptide are monomer and dimer, respectively. Significantly, the peptide I-TNP-ATP complex binds duplex DNA, tightly (KD = 0.1-0.5 microM) and stoichiometrically, and single stranded DNA more weakly. The peptide I-duplex DNA complex binds both TNP-ATP (KD = 0.5-1.5 microM) and Pol I substrates (KD = 350-2100 microM) stoichiometrically. In a control experiment, a second peptide, peptide II, based on residues 840-888 of the Pol I sequence, retains secondary structure, as detected by CD, but displays no binding of TNP-ATP. The ability of peptide I, which represents only 8% of the large fragment of Pol I, to bind both substrates and duplex DNA indicates that residues 728-777 constitute a major portion of the substrate binding site of this enzyme.  相似文献   

2.
H Han  J M Rifkind  A S Mildvan 《Biochemistry》1991,30(46):11104-11108
X-ray studies of the proofreading 3',5'-exonuclease site of the large (Klenow) fragment of DNA polymerase I have detected a binuclear metal complex consisting of a pentacoordinate metal (site A) which shares a ligand, Asp-355, with an octahedral metal (site B) [Freemont, P. S., Friedman, J. M., Beese, L. S., Sanderson, M. R., & Steitz, T. A. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 8924-8928; Beese, L. S., & Steitz, T. A. (1991) EMBO J. 10, 25-33]. Kinetic studies of the activation of the 3',5'-exonuclease reaction by Co2+, Mn2+, or Mg2+, at low concentrations of DNA, reveal sigmoidal activation curves for the three metal ions with Hill coefficients of 2.3-2.4 and K0.5 values of 16.6 microM, 4.2 microM, and 343 microM, respectively. The binding of Co2+ to the enzyme results in the appearance of an intense visible absorption spectrum of the metal ion with maxima at 633, 570, and 524 nm and extinction coefficients of 190, 194, and 150 M-1 cm-1, respectively, suggesting the formation of a pentacoordinate Co2+ complex. Optical titration with Co2+ yields a sigmoidal titration curve which is best fit by assuming the cooperative binding of three Co2+ ions with a K0.5 of 39.9 microM, comparable to the value of 16.6 microM obtained kinetically. Displacement of Co2+ by 1 equiv of Zn2+, which binds tightly to the A site of the 3',5'-exonuclease, shifts the optical spectrum to 524 nm and lowers the extinction coefficient to 30 -1 cm-1, indicative of octahedral coordination.2+ the formation of the binuclear complex.  相似文献   

3.
L J Ferrin  A S Mildvan 《Biochemistry》1985,24(24):6904-6913
The conformations and binding site environments of Mg2+TTP and Mg2+dATP bound to Escherichia coli DNA polymerase I and its large (Klenow) fragment have been investigated by proton NMR. The effect of the large fragment of Pol I on the NMR line widths of the protons of Mg2+TTP detected one binding site for this substrate with a dissociation constant of 300 +/- 100 microM and established simple competitive binding of deoxynucleoside triphosphates at this site in accord with previous equilibrium dialysis experiments with whole Pol I [Englund, P. T., Huberman, J.A., Jovin, T.M., & Kornberg, A. (1969) J. Biol. Chem. 244, 3038]. Primary negative nuclear Overhauser effects were used to calculate interproton distances on enzyme-bound Mg2+dATP and Mg2+TTP. These distances established that each substrate was bound with an anti-glycosidic torsional angle (chi) of 50 +/- 10 degrees for Mg2+dATP and 40 +/- 10 degrees for Mg2+TTP. The sugar pucker of both substrates was predominantly O1'-endo, with a C5'-C4'-C3'-O3' exocyclic torsional angle (delta) of 95 +/- 10 degrees for Mg2+dATP and 100 +/- 10 degrees for Mg2+TTP. The consistency of these conformations with those previously proposed, on the basis of distances from Mn2+ at the active site [Sloan, D. L., Loeb, L. A., Mildvan, A.S., & Feldman, R.J. (1975) J. Biol. Chem. 250, 8913], indicates a unique conformation for each bound nucleotide. The chi and delta values of the bound substrates are appropriate for nucleotide units of B DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The metal binding sites of a gamma-carboxyglutamic acid-rich fragment derived from bovine prothrombin were examined using paramagnetic lanthanide ions to evaluate the role of gamma-carboxyglutamic acid resideus in metal binding. A gamma-carboxyglutamic acid-rich peptide, fragment 12-44, was isolated from a tryptic digest of prothrombin. Using 153Gd(III), fragment 12-44 was found to contain one high affinity metal binding site (KD = 0.55 microM) and four to six lower affinity metal binding sites (KD approximately 4 to 8 microM). The S-carboxymethyl derivative of fragment 12-44, in which the disulfide bond in fragment 12-44 was reduced and alkylated, contained no high affinity metal binding site and four or five lower affinity sites (KD = 8 microM). The effects of paramagnetic lanthanide ions on fragment 12-44 and its S-carboxymethyl derivative were studied by natural abundance 13C NMR spectroscopy. The 13C NMR spectrum of fragment 12-44 was recorded at 67.88 MHz and the resonances were assigned by comparison to the chemical shift of carbon resonances of amino acids and peptides previously studied. The proximity between bound metal ions and carbon atoms in fragment 12-44 was estimated using Gd(III), based upon the strategy that the magnitude of the change in the transverse relaxation rate of resonances of carbon nuclei induced by bound metal ions is related in part to the interatomic distances between bound metal and carbon nuclei. Titration of fragment 12-44 with Gd(III) resulted in the selective broadening of the gamma-carboxyl carbon, C gamma, C beta, and C alpha resonances of gamma-carboxyglutamic acid, and the C epsilon of the arginines. S-Carboxymethyl fragment 12-44, which lacked the high affinity metal binding site, showed markedly decreased perturbation of the C epsilon of the arginine residues upon titration with Gd(III). These studies indicate that gamma-carboxyglutamic acid residues in prothrombin fragment 12-44 participate in metal liganding. A high affinity metal binding site in fragment 12-44 is in close proximity of Arg 16 and Arg 25 and is stabilized by the disulfide bond. On the basis of these data, a model of the metal binding sites is proposed in which the high affinity site is composed of two gamma-carboxyglutamic acid residues which participate in intramolecular metal-dependent bridging of two regions of the polypeptide chain. The lower affinity metal binding sites, formed by single or paired adjacent gamma-carboxyglutamic acid residues, then may participate in intermolecular metal-dependent protein . protein or protein . membrane complex formation.  相似文献   

5.
The modification of Klenow fragment of DNA polymerase I E. coli was investigated by the affinity reagents d(Tp)2C[Pt2+(NH3)2OH](pT)7 and d(pT)2pC[Pt2+(NH3)2OH](pT)7. The template binding site of the enzyme was modified by these reagents in the presence of NaF (5 mM), which inhibits selectively the 3'----5'-exonuclease activity of the enzyme and therefore prevents the reagent from degradation. NaCN destroyed covalent bonds between reagents and enzyme, restoring activity of the Klenow fragment. The affinity of different ligands (inorganic phosphate, nucleoside monophosphates, oligonucleotides) to the template binding site of Klenow fragment was estimated. Minimal ligands capable to bind with the template site were shown to be triethylphosphate (Kd 290 microM) and phosphate (Kd 26 microM). Ligand affinity increases by the factor 1.76 per an added (monomer unit from phosphate to d(pT) and then for oligonucleotides d(Tp)nT (n 1 to 19-20). At n greater than 19-20, the ligand affinity remained constant. The complete ethylation of phosphodiester groups lowers affinity of the oligothymidylates to the enzyme by approximately 10 times, and comparable decrease of Pt2+-oligonucleotide affinity to polymerase is caused by the absence of Mn2+-ions. The data obtained led to suggestion that one Me2+-dependent electrostatic contact of the template phosphodiester group with the enzyme takes place (delta G = -1.45...-1.75 kcal/mole). Formation of a hydrogen bond with the oxygen atom of P = O group of the same template phosphate is also assumed (delta G = -4.8...-4.9 kcal/mole). Other template internucleotide phosphates do not interact with the enzyme but the bases of oligonucleotides take part in hydrophobic interactions with the template binding site. Gibbs energy changes by -0.34 kcal/mole when the template is lengthened by one unit.  相似文献   

6.
Legler PM  Lee HC  Peisach J  Mildvan AS 《Biochemistry》2002,41(14):4655-4668
Escherichia coli GDP-mannose mannosyl hydrolase (GDPMH), a homodimer, catalyzes the hydrolysis of GDP-alpha-D-sugars to yield the beta-D-sugar and GDP by nucleophilic substitution with inversion at the C1' carbon of the sugar [Legler, P. M., Massiah, M. A., Bessman, M. J., and Mildvan, A. S. (2000) Biochemistry 39, 8603-8608]. GDPMH requires a divalent cation for activity such as Mn2+ or Mg2+, which yield similar kcat values of 0.15 and 0.13 s(-1), respectively, at 22 degrees C and pH 7.5. Kinetic analysis of the Mn2+-activated enzyme yielded a K(m) of free Mn2+ of 3.9 +/- 1.3 mM when extrapolated to zero substrate concentration (K(a)Mn2+), which tightened to 0.32 +/- 0.18 mM when extrapolated to infinite substrate concentration (K(m)Mn2+). Similarly, the K(m) of the substrate extrapolated to zero Mn2+ concentration (K(S)(GDPmann) = 1.9 +/- 0.5 mM) and to infinite Mn2+ concentration (K(m)(GDPmann) = 0.16 +/- 0.09 mM) showed an order of magnitude decrease at saturating Mn2+. Such mutual tightening of metal and substrate binding suggests the formation of an enzyme-metal-substrate bridge complex. Direct Mn2+ binding studies, monitoring the concentration of free Mn2+ by EPR and of bound Mn2+ by its enhanced paramagnetic effect on the longitudinal relaxation rate of water protons (PRR), detected three Mn2+ binding sites per enzyme monomer with an average dissociation constant (K(D)) of 3.2 +/- 1.0 mM, in agreement with the kinetically determined K(a)Mn2+. The enhancement factor (epsilon(b)) of 11.5 +/- 1.2 indicates solvent access to the enzyme-bound Mn2+ ions. No cross relaxation was detected among the three bound Mn2+ ions, suggesting them to be separated by at least 10 A. Such studies also yielded a weak dissociation constant for the binary Mn2+-GDP-mannose complex (K1 = 6.5 +/- 1.0 mM) which significantly exceeded the kinetically determined K(m) values of Mn2+, indicating the true substrate to be GDP-mannose rather than its Mn2+ complex. Substrate binding monitored by changes in 1H-15N HSQC spectra yielded a dissociation constant for the binary E-GDP-mannose complex (K(S)(GDPmann)) of 4.0 +/- 0.5 mM, comparable to the kinetically determined K(S) value (1.9 +/- 0.5 mM). To clarify the metal stoichiometry at the active site, product inhibition by GDP, a potent competitive inhibitor (K(I) = 46 +/- 27 microM), was studied. Binding studies revealed a weak, binary E-GDP complex (K(D)(GDP) = 9.4 +/- 3.2 mM) which tightened approximately 500-fold in the presence of Mn2+ to yield a ternary E-Mn2+-GDP complex with a dissociation constant, K3(GDP) = 18 +/- 9 microM, which overlaps with the K(I)(GDP). The tight binding of Mn2+ to 0.7 +/- 0.2 site per enzyme subunit in the ternary E-Mn2+-GDP complex (K(A)' = 15 microM) and the tight binding of GDP to 0.8 +/- 0.1 site per enzyme subunit in the ternary E-Mg2+-GDP complex (K3 < 0.5 mM) indicate a stoichiometry close to 1:1:1 at the active site. The decrease in the enhancement factor of the ternary E-Mn2+-GDP complex (epsilon(T) = 4.9 +/- 0.4) indicates decreased solvent access to the active site Mn2+, consistent with an E-Mn2+-GDP bridge complex. Fermi contact splitting (4.3 +/- 0.2 MHz) of the phosphorus signal in the ESEEM spectrum established the formation of an inner sphere E-Mn2+-GDP complex. The number of water molecules coordinated to Mn2+ in this ternary complex was determined by ESEEM studies in D2O to be two fewer than on the average Mn2+ in the binary E-Mn2+ complexes, consistent with bidentate coordination of enzyme-bound Mn2+ by GDP. Kinetic, metal binding, and GDP binding studies with Mg2+ yielded dissociation constants similar to those found with Mn2+. Hence, GDPMH requires one divalent cation per active site to promote catalysis by facilitating the departure of the GDP leaving group, unlike its homologues the MutT pyrophosphohydrolase, which requires two, or Ap4A pyrophosphatase, which requires three.  相似文献   

7.
Examination of metal ion-dependent effects on the electrophoretic mobility of bovine prothrombin and fragment 1 provides a useful and sensitive method for investigation of conformational processes in these proteins. Utilization of this method reveals a conformational change in bovine prothrombin and fragment 1 which occurs at low metal ion concentrations. Equilibrium dialysis studies indicate that the metal ion-induced shape change occurs concomitant with binding of a single calcium ion/molecule of prothrombin or fragment 1. Mixed metal electrophoretic mobility studies with Mg2+ and Ca2+ have demonstrated the "synergistic" effect for fragment 1 observed by others. Mixed metal equilibrium dialysis has provided experimental support for this observation and allows us to conclude that two tight Ca2+ sites are not affected by low Mg2+ concentrations and that the third Ca2+ site is also a tight site for Mg2+. Thus, at low Mg2+ concentrations and upon the addition of Ca2+, there are effectively three tight sites; consequently more Ca2+ will bind to the protein at lower total Ca2+ ion concentrations.  相似文献   

8.
Treatment with native DNA polymerase I of Escherichia coli with the acylating agent N-carboxymethylisatoic acid anhydride (NCMIA) results under specific conditions in a rapid loss of polymerase activity, an increase in 5' leads to 3'-exonuclease activity and in unchanged 3' leads to 5'-exonuclease activity. When a nucleoside triphosphate and Mg2+ was present the polymerase activity was completely protected against the effect of NCMIA. Treatment with higher concentration of the acylating agent under these conditions led to a loss of 3' leads to 5'-exonuclease activity without any appreciable loss of polymerase activity. Treatment with NCMIA of the two catalytically active fragments of the enzyme led to very similar results. In this case both the polymerase activity and the 3' leads to 5'-exonuclease activity deteriorated more rapidly on treatment with the acylating reagent. The increase in 5' leads to 3'-exonuclease activity as a result of modification of the native enzyme appeared to be due to a change in the optimum conditions with regard to concentration of the assay buffer used. These changes are very similar to those seen when the polymerase is cleaved by limited proteolysis. From the results obtained it is concluded that NCMIA reacts primarily with a site at or near the triphosphate-Mg2+ complex binding site, leading to an almost complete loss of polymerase activity. The acylating reagent reacts also with another group on the native enzyme resulting in a modification of the 5' leads to 3'-exonuclease activity, and at high concentrations with a group leading to a slow loss of 3' leads to 5'-exonuclease activity.  相似文献   

9.
R Koren  S Mildvan 《Biochemistry》1977,16(2):241-249
The interaction of Mn2+, substrates and initiators with RNA polymerase have been studied by kinetic and magnetic resonance methods. As determined by electron paramagnetic resonance, Mn2+ binds to RNA polymerase at one tight binding site with a dissociation constant less than 10 muM and at 6 +/- 1 weak binding sites with dissociation constants 100-fold greater. The binding of Mn2+ to RNA polymerase at both types of sites causes an order of magnitude enhancement of the paramagnetic effect of Mn2+ on the longitudinal relaxation rate of water protons, indicating the presence of residual water ligands on the enzyme-bound Mn2+. A kinetic analysis of the Mn2+-activated enzyme with poly(dT) as template indicates the substrate to be MnATP under steady-state conditions in the presence or absence of the initiator ApA. ATP and UTP interact with the tightly bound Mn2+ to form ternary complexes with approximately 50% greater enhancement factors. The dissociation constant of MnATP from the tight Mn2+ site as determined by longitudinal proton relaxation rate (PRR) titration (4.7 muM) is similar to the KM of MnATP in the ApA-initiated RNA polymerase reaction (10 +/- 3 muM) but not in the ATP-initiated reaction (160 +/- 30 muM). Similarly, the dissociation constant of the substrate MnUTP from the tight Mn2+ site (90 muM) is in agreement with the KM of MnUTP (101 +/- 13 muM) when poly[d(A-T)]-poly[d(A-T)] is used as template, indicating the tight Mn2+ site to be the catalytic site for RNA chain elongation. Manganese adenylyl imidodiphosphate (MnAMP-PNP) has been found to be a substrate for RNA polymerase. It has the same affinity as MnATP for the tight site but, unlike the results obtained with MnATP, the enhancement is decreased by 43% in the enzyme Mn-AMP-PNP complex. These results suggest that the enzyme-bound Mn2+ interacts with the leaving pyrophosphate group. The initiators ApA and ApU and the inhibitor rifamycin interact with the enzyme-Mn2+ complex producing small (15-20%) decreases in the enhancement. The dissociation constant of ApA estimated from PRR data (less than or equal to 1.5 muM) agrees with that determined kinetically (1.0 +/- 0.5 muM) as the concentration of ApA required to produce half-maximal change in the KM of MnATP. In the presence of the initiation specific reagents ApA, ApU, or rifamycin, the affinity of the enzyme-Mn complex for ATP or UTP shows little change. However, ATP and UTP no longer increase the enhancement factor of the tightly bound Mn2+ but decrease it by 30-55%, indicating a change in the environment of the Mn2+-substrate complex on the enzyme when the initiation site is either occupied or blocked. Although the role of the six weak Mn2+ binding sites is not clear, the presence of a single tightly bound Mn2+ at the catalytic site for chain elongation which interacts with the substrate reinforces the number of active sites as one per molecule of holoenzyme and provides a paramagnetic reference point for further structural studies.  相似文献   

10.
L-histidinol dehydrogenase, a Zn2+-metalloenzyme   总被引:3,自引:0,他引:3  
The enzymatic activity of L-histidinol dehydrogenase from Salmonella typhimurium was stimulated by the inclusion of 0.5 mM MnCl2 in the assay medium. At pH 9.2 the stimulation was correlated with binding of 1 g-atom of 54Mn2+/mol dimer, KD = 37 microM. ZnCl2, which prevented the MnCl2 stimulation, also bound to the enzyme, 1.2 g-atom/mol dimer, KD = 51 microM, and prevented Mn2+ binding. Enzyme activity was lost when histidinol dehydrogenase was incubated in 8 M urea. Reactivation was observed when urea-denatured enzyme was diluted into buffer containing 2-mercaptoethanol but required either MnCl2 or ZnCl2. Histidinol dehydrogenase was inactivated by the transition metal chelator 1,10-phenanthroline or by high levels of 2-mercaptoethanol. The nonchelating 1,7-phenanthroline was not an inactivator, and inactivation by either 1,10-phenanthroline or 2-mercaptoethanol was prevented by MnCl2. Enzyme inactivated by 1,10-phenanthroline could be reactivated by addition of MnCl2 or ZnCl2 in the presence of 2-mercaptoethanol. Reactivation was correlated with the binding of 1.5 g-atom 54Mn2+/mol dimer. Atomic absorption analysis of the native enzyme indicated the presence of 1.65 g-atom Zn/mol dimer, and no Mn was detected. The results demonstrate, therefore, that histidinol dehydrogenase contains two metal binding sites per enzyme dimer, which normally bind Zn2+, but which may bind Mn2+ while retaining enzyme function. Histidinol dehydrogenase is thus the third NAD-linked oxidoreductase in which Zn2+ fulfills an essential structural and/or catalytic role.  相似文献   

11.
Analysis of metal activation on the synthetic and degradative activities of phi 29 DNA polymerase was carried out in comparison with T4 DNA polymerase and Escherichia coli DNA polymerase I (Klenow fragment). In the three DNA polymerases studied, both the polymerization and the 3'----5' exonuclease activity had clear differences in their metal ion requirements. The results obtained support the existence of independent metal binding sites for the synthetic and degradative activities of phi 29 DNA polymerase, according with the distant location of catalytic domains (N-terminal for the 3'----5' exonuclease and C-terminal for DNA polymerization) proposed for both Klenow fragment and phi 29 DNA polymerase. Furthermore, DNA competition experiments using phi 29 DNA polymerase suggested that the main differences observed in the metal usage to activate polymerization may be the consequence of metal-induced changes in the enzyme-DNA interactions, whose strength distinguishes processive and nonprocessive DNA polymerases. Interestingly, the initiation of DNA polymerization using a protein as a primer, a special synthetic activity carried out by phi 29 DNA polymerase, exhibited a strong preference for Mn2+ as metal activator. The molecular basis for this preference is mainly the result of a large increase in the affinity for dATP.  相似文献   

12.
The modification of tyrosine residues of DNA polymerase I Klenow fragment from E. coli by acetylimidazole has been investigated. This reagent was shown to inactivate both polymerization and 3',5'-exonuclease activities but with different velocity. The poly(dT)-template and r(pA)10-primer each added separately to the enzyme have no notable influence on the rate of enzyme inactivation. Simultaneous presence of both template and primer increases the rate of inactivation. In the presence of poly(dT).r(pA) 10 there is not effect of dCTP and dTTP (noncomplementary to the template) on the rate of inactivation of polymerization activity. However, dATP complementary to the template, provides a complete protection. A weak protective action is detected in the presence of dADP. Orthophosphate, pyrophosphate and dAMP each taken separately increase the rate and the level of the enzyme inactivation. dAMP together with either ortho- or pyrophosphate have the same protective action as ATP. All data obtained allow to suggest the functional significance for polymerization activity of tyrosine located in the dNTP binding site of DNA polymerase I.  相似文献   

13.
The binding of NADH and NAD+ to the human liver cytoplasmic, E1, and mitochondrial, E2, isozymes at pH 7.0 and 25 degrees C was studied by the NADH fluorescence enhancement technique, the sedimentation technique, and steady-state kinetics. The binding of radiolabeled [14C]NADH and [14C]NAD+ to the E1 isozyme when measured by the sedimentation technique yielded linear Scatchard plots with a dissociation constant of 17.6 microM for NADH and 21.4 microM for NAD+ and a stoichiometry of ca. two coenzyme molecules bound per enzyme tetramer. The dissociation constant, 19.2 microM, for NADH as competitive inhibitor was found from steady-state kinetics. With the mitochondrial E2 isozyme, the NADH fluorescence enhancement technique showed only one, high-affinity binding site (KD = 0.5 microM). When the sedimentation technique and radiolabeled coenzymes were used, the binding studies showed nonlinear Scatchard plots. A minimum of two binding sites with lower affinity was indicated for NADH (KD = 3-6 microM and KD = 25-30 microM) and also for NAD+ (KD = 5-7 microM and KD = 15-30 microM). A fourth binding site with the lowest affinity (KD = 184 microM for NADH and KD = 102 microM for NAD+) was observed from the steady-state kinetics. The dissociation constant for NAD+, determined by the competition with NADH via fluorescence titration, was found to be 116 microM. The number of binding sites found by the fluorescence titration (n = 1 for NADH) differs from that found by the sedimentation technique (n = 1.8-2.2 for NADH and n = 1.2-1.6 for NAD+).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.  相似文献   

15.
Arabidopsis thaliana HMA2 is a Zn2+ transporting P1B-type ATPase required for maintaining plant metal homeostasis. HMA2 and all eukaryote Zn2+-ATPases have unique conserved N- and C-terminal sequences that differentiate them from other P1B-type ATPases. Homology modeling and structural comparison by circular dichroism indicate that the 75 amino acid long HMA2 N-terminus shares the betaalphabetabetaalpha folding present in most P1B-type ATPase N-terminal metal binding domains (N-MBDs). However, the characteristic metal binding sequence CysXXCys is replaced by Cys17CysXXGlu21, a sequence present in all plant Zn2+-ATPases. The isolated HMA2 N-MBD fragment binds a single Zn2+ (Kd 0.18 microM), Cd2+ (Kd 0.27 microM), or, with less affinity, Cu+ (Kd 13 microM). Mutagenesis studies indicate that Cys17, Cys18, and Glu21 participate in Zn2+ and Cd2+ coordination, while Cys17 and Glu21, but not Cys18, are required for Cu+ binding. Interestingly, the Glu21Cys mutation that generates a CysCysXXCys site is unable to bind Zn2+ or Cd2+ but it binds Cu+ with affinity (Kd 1 microM) higher than wild type N-MBD. Truncated HMA2 lacking the N-MBD showed reduced ATPase activity without significant changes in metal binding to transmembrane metal binding sites. Likewise, ATPase activity of HMA2 carrying mutations Cys17Ala, Cys18Ala, and Glu21Ala/Cys was also reduced but showed a metal dependence similar to the wild type enzyme. These observations suggest that plant Zn2+-ATPase N-MBDs have a folding and function similar to Cu+-ATPase N-MBDs. However, the unique Zn2+ coordination via two thiols and a carboxyl group provides selective binding of the activating metals to these regulatory domains. Metal binding through these side chains, although found in different sequences, appears as a common feature of both bacterial and eukaryotic Zn2+-ATPase N-MBDs.  相似文献   

16.
J E Scheffler  H J Fromm 《Biochemistry》1986,25(21):6659-6665
The fluorescent nucleotide analogue formycin 5'-monophosphate (FMP) inhibits rabbit liver fructose-1,6-bisphosphatase (I50 = 17 microM, Hill coefficient = 1.2), as does the natural regulator AMP (I50 = 13 microM, Hill coefficient = 2.3), but exhibits little or no cooperativity of inhibition. Binding of FMP to fructose-1,6-bisphosphatase can be monitored by the increased fluorescence emission intensity (a 2.7-fold enhancement) or the increased fluorescence polarization of the probe. A single dissociation constant for FMP binding of 6.6 microM (4 sites per tetramer) was determined by monitoring fluorescence intensity. AMP displaces FMP from the enzyme as evidenced by a decrease in FMP fluorescence and polarization. The substrates, fructose 6-phosphate and fructose 1,6-bisphosphate, and inhibitors, methyl alpha-D-fructofuranoside 1,6-bisphosphate and fructose 2,6-bisphosphate, all increase the maximal fluorescence of enzyme-bound FMP but have little or no effect on FMP binding. Weak metal binding sites on rabbit liver fructose-1,6-bisphosphatase have been detected by the effect of Zn2+, Mn2+, and Mg2+ in displacing FMP from the enzyme. This is observed as a decrease in FMP fluorescence intensity and polarization in the presence of enzyme as a function of divalent cation concentration. The order of binding by divalent cations is Zn2+ = Mn2+ greater than Mg2+, and the Kd for Mn2+ displacement of FMP is 91 microM. Methyl alpha-D-fructofuranoside 1,6-bisphosphate, as well as fructose 6-phosphate and inorganic phosphate, enhances metal-mediated FMP displacement from rabbit liver fructose-1,6-bisphosphatase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In a cytosolic extract from rat liver, the number and the concentration of ADP-binding sites as well as their dissociation constants were determined by using the rate-of-dialysis technique. Interfering cytosolic adenylate kinase was extracted from the cytosol by affinity chromatography on Ap5A-agarose, and remaining traces of enzyme activity were inhibited with (+)-catechin. Binding of ADP to cytosolic proteins was increased by poly(ethylene glycol) and decreased by EDTA. The effect of 0.1 mM-EDTA could be reversed by addition of equimolar concentrations of Mn2+ or Mg2+. In presence of 5% poly(ethylene glycol), added to increase local protein concentration, two binding sites for ADP were observed, with KD values of 1.9 microM (site I) and 10.8 microM (site II). The concentration of these binding sites, when extrapolated to cellular protein concentrations, were 30 microM (site I) and 114 microM (site II). It is concluded that a minimum of about 50% of total cytosolic ADP is bound to proteins, and that the ratio of free ATP/free ADP is at least twice that of total ATP/total ADP.  相似文献   

18.
Metal interactions with beef heart mitochondrial ATPase   总被引:1,自引:0,他引:1  
Atomic absorption and electron paramagnetic resonance spectroscopy were used to study the metal binding sites of beef heart mitochondrial ATPase (F1). Quantitative and qualitative properties of these sites are described. Two different separation techniques were able to distinguish two very tight sites from one tight (easily exchangeable) metal binding site on F1. Of these sites, two are specific for magnesium while one can be substituted with Mn2+, Co2+, or Zn2+. When MgAMP-PNP was incubated with F1, a fourth metal was bound to the enzyme. The carboxyl group modified by dicyclohexylcarbodiimide is shown not to be involved in binding of any of the tightly bound metals. Qualitative properties of the metal binding sites using the Mn2+-enzyme complex as a probe were ascertained using EPR at pH 6.8 and 8.0. CrATP and Mn2+ appear to bind to different metal sites on F1. The possible role of the metals in regulation of catalysis, and their relation to nucleotide binding is discussed.  相似文献   

19.
The role of phospholipid in the binding of coenzyme, NAD(H), to 3-hydroxybutyrate dehydrogenase, a lipid-requiring membrane enzyme, has been studied with the ultrafiltration binding method, which we optimized to quantitate weak ligand binding (KD in the range 10-100 microM). 3-Hydroxybutyrate dehydrogenase has a specific requirement of phosphatidylcholine (PC) for optimal function and is a tetramer quantitated both for the apodehydrogenase, which is devoid of phospholipid, and for the enzyme reconstituted into phospholipid vesicles in either the presence or absence of PC. We find that (i) the stoichiometry for NADH and NAD binding is 0.5 mol/mol of enzyme monomer (2 mol/mol of tetramer); (ii) the dissociation constant for NADH binding is essentially the same for the enzyme reconstituted into the mixture of mitochondrial phospholipids (MPL) (KD = 15 +/- 3 microM) or into dioleoyl-PC (KD = 12 +/- 3 microM); (iii) the binding of NAD+ to the enzyme-MPL complex is more than an order of magnitude weaker than NADH binding (KD approximately 200 microM versus 15 microM) but can be enhanced by formation of a ternary complex with either 2-methylmalonate (apparent KD = 1.1 +/- 0.2 microM) or sulfite to form the NAD-SO3- adduct (KD = 0.5 +/- 0.1 microM); (iv) the binding stoichiometry for NADH is the same (0.5 mol/mol) for binary (NADH alone) and ternary complexes (NADH plus monomethyl malonate); (v) binding of NAD+ and NADH together totals 0.5 mol of NAD(H)/mol of enzyme monomer, i.e., two nucleotide binding sites per enzyme tetramer; and (vi) the binding of nucleotide to the enzyme reconstituted with phospholipid devoid of PC is weak, being detected only for the NAD+ plus 2-methylmalonate ternary complex (apparent KD approximately 50 microM or approximately 50-fold weaker binding than that for the same complex in the presence of PC). The binding of NADH by equilibrium dialysis or of spin-labeled analogues of NAD+ by EPR spectroscopy gave complementary results, indicating that the ultrafiltration studies approximated equilibrium conditions. In addition to specific binding of NAD(H) to 3-hydroxybutyrate dehydrogenase, we find significant binding of NAD(H) to phospholipid vesicles. An important new finding is that the nucleotide binding site is present in 3-hydroxybutyrate dehydrogenase in the absence of activating phospholipid since (a) NAD+, as the ternary complex with 2-methylmalonate, binds to the enzyme reconstituted with phospholipid devoid of PC and (b) the apodehydrogenase, devoid of phospholipid, binds NADH or NAD-SO3- weakly (half-maximal binding at approximately 75 microM NAD-SO3- and somewhat weaker binding for NADH).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
根据顺磁离子Mn~(2+)的取代特性,用EPR方法研究了钙调神经磷酸酶B亚基与其4个Ca~(2+)的结合位点,以及它们亲和力的细微差别。并同时进行了钙调素的对比研究。实验和Scatchard作图表明,B亚基有4个Ca~(2+)结合位点,2个高亲和力结合位点,其解离常数为4×10~(-6)mol/L;2个低亲和力结合位点,解离常数为9×10~(-5)mol/L。钙调素也有2个Ca~(2+)高亲和力结合位点,其解离常数为8×10~(-6)mol/L,2个低亲和力结合位点,解离常数为7×10~(-5)mol/L。钙调神经磷酸酶B亚基和钙调素Mn~(2+)结合位点的EPR研究对B亚基和钙调素在共同调节钙调神经磷酸酶中的作用提供了有用的信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号