首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known about Ceanothus-infective Frankia strains because no Frankia strains that can reinfect the host plants have been isolated from Ceonothus spp. Therefore, we studied the diversity of the Ceonothus-infective Frankia strains by using molecular techniques. Frankia strains inhabiting root nodules of nine Ceanothus species were characterized. The Ceanothus species used represent the taxonomic diversity and geographic range of the genus; therefore, the breadth of the diversity of Frankia strains that infect Ceanothus spp. was studied. DNA was amplified directly from nodular material by using the PCR. The amplified region included the 3' end of the 16S rRNA gene, the intergenic spacer, and a large portion of the 23S rRNA gene. A series of restriction enzyme digestions of the PCR product allowed us to identify PCR-restriction fragment length polymorphism (RFLP) groups among the Ceanothus-infective Frankia strains tested. Twelve different enzymes were used, which resulted in four different PCR-RFLP groups. The groups did not follow the taxonomic lines of the Ceanothus host species. Instead, the Frankia strains present were related to the sample collection locales.  相似文献   

2.
To study the global diversity of plant-symbiotic nitrogen-fixing Frankia strains, a rapid method was used to isolate DNA from these actinomycetes in root nodules. The procedure used involved dissecting the symbiont from nodule lobes; ascorbic acid was used to maintain plant phenolic compounds in the reduced state. Genes for the small-subunit rRNA (16S ribosomal DNA) were amplified by the PCR, and the amplicons were cycle sequenced. Less than 1 mg (fresh weight) of nodule tissue and fewer than 10 vesicle clusters could serve as the starting material for template preparation. Partial sequences were obtained from symbionts residing in nodules from Ceanothus griseus, Coriaria arborea, Coriaria plumosa, Discaria toumatou, and Purshia tridentata. The sequences obtained from Ceonothus griseus and P. tridentata nodules were identical to the sequence previously reported for the endophyte of Dryas drummondii. The sequences from Frankia strains in Coriaria arborea and Coriaria plumosa nodules were identical to one another and indicate a separate lineage for these strains. The Frankia strains in Discaria toumatou nodules yielded a unique sequence that places them in a lineage close to bacteria that infect members of the Elaeagnaceae.  相似文献   

3.
Frankia strains symbiotic with Ceanothus present an interesting opportunity to study the patterns and causes of Frankia diversity and distribution within a particular host infectivity group. We intensively sampled Frankia from nodules on Ceanothus plants along an elevational gradient in the southern Sierra Nevada of California, and we also collected nodules from a wider host taxonomic and geographic range throughout California. The two sampling scales comprised 36 samples from eight species of Ceanothus representing six of the seven major biogeographic regions in and around California. The primary objective of this study was to use a quantitative model to test the relative importance of geographic separation, host specificity, and environment in influencing the identity of Ceanothus Frankia symbionts as determined by ribosomal DNA sequence data. At both sampling scales, Frankia strains symbiotic with Ceanothus exhibited a high degree of genetic similarity. Frankia strains symbiotic with Chamaebatia (Rosaceae) were within the same clade as several Ceanothus symbionts. Results from a classification and regression tree model used to quantitatively explain Frankia phylogenetic groupings demonstrated that the only significant variable in distinguishing between phylogenetic groups at the more local sampling scale was host species. At the regional scale, Frankia phylogenetic groupings were explained by host species and the biogeographic province of sample collection. We did not find any significant correspondence between Frankia and Ceanothus phylogenies indicative of coevolution, but we concluded that the identity of Frankia strains inhabiting Ceanothus nodules may involve interactions between host species specificity and geographic isolation.  相似文献   

4.
DNA extracted directly from nodules was used to assess the genetic diversity of Frankia strains symbiotically associated with two species of the genus Casuarina and two of the genus Allocasuarina naturally occurring in northeastern Australia. DNA from field-collected nodules or extracted from reference cultures of Casuarina-infective Frankia strains was used as the template in PCRs with primers targeting two DNA regions, one in the ribosomal operon and the other in the nif operon. PCR products were then analyzed by using a set of restriction endonucleases. Five distinct genetic groups were recognized on the basis of these restriction patterns. These groups were consistently associated with the host species from which the nodules originated. All isolated reference strains had similar patterns and were assigned to group 1 along with six of the eight unisolated Frankia strains from Casuarina equisetifolia in Australia. Group 2 consisted of two unisolated Frankia strains from C. equisetifolia, whereas groups 3 to 5 comprised all unisolated strains from Casuarina cunninghamiana, Allocasuarina torulosa, and Allocasuarina littoralis, respectively. These results demonstrate that, contrary to the results of previous molecular studies of isolated strains, there is genetic diversity among Frankia strains that infect members of the family Casuarinacaeae. The apparent high homogeneity of Frankia strains in these previous studies probably relates to the single host species from which the strains were obtained and the origin of these strains from areas outside the natural geographic range of members of the family Casuarinaceae, where genetic diversity could be lower than in Australia.  相似文献   

5.
Repeated attempts at isolating the Frankia endophyte of Coriaria spp. have not yielded infective microbial cultures that could fulfil Koch's postulates. In order to circumvent the critical isolation step, nodule endophytes of Coriaria were characterized directly by means of specific amplification of nodule DNA (PCR) followed by sequencing of part of the 16S rDNA gene. Three closely related sequences were obtained from nodules originating from France, Mexico and New Zealand, containing unique sequences different from all other Frankia strains characterized so far. The sequences obtained were closest (with 5 or 6 substitutions) to those of Frankia alni and those of Casuarina-infective Frankia strains, respectively. Two nucleotides unique to the Coriaria endophyte sequences were used to define specific primers, resulting in a hybridization test that could discriminate between Frankia DNAs originating from Coriaria nodules and those recovered from all cultured Frankia strains tested. The endophytes of Coriaria thus appear to form a distinct Frankia lineage.  相似文献   

6.
Frankia spp. strains typically induce N2-fixing root nodules on actinorhizal plants. The majority of host plant taxa associated with the uncultured Group 1 Frankia strains, i.e., Ceanothus of the Rhamnaceae, Datisca glomerata (Datiscaceae), and all actinorhizal members of the Rosaceae except Dryas, are found in California. A study was conducted to determine the distribution of Frankia strains among root nodules collected from both sympatric and solitary stands of hosts. Three DNA regions were examined, the 5' end of the 16S rRNA gene, the internal transcribed spacer region between the 16S and 23S rRNA genes, and a portion of the glutamine synthetase gene (glnA). The results suggest that a narrow range of Group 1 Frankia spp. strains dominate in root nodules collected over a large area of California west of the Sierra Nevada crest with no apparent host-specificity. Comparisons with Group 2 Frankia strain diversity from Alnus and Myrica within the study range suggest that the observed low diversity is peculiar to Group 1 Frankia strains only. Factors that may account for the observed lack of genetic variability and host specificity include strain dominance over a large geographical area, current environmental selection, and (or) a past evolutionary bottleneck.  相似文献   

7.
DNA samples extracted from the root nodules of Alnus nepalensis, collected from 10 different locations of Darjeeling hills, were used to assess the genetic diversity of Frankia. The DNA samples from the nodules of naturally growing plants were used as templates in PCR, targeting different genomic regions of Frankia, namely distal, middle and proximal parts of 16S rRNA gene and nifH-D IGS region with locus specific primers. The PCR products were digested with a number of frequent (4-base) cutter restriction endonucleases. Bands were scored as present (1) or absent (0) and the clustering was done using NTSYSpc. Distinct polymorphism was found among the nodules collected from different parts of the region and those of same geographic area. These results demonstrate that genetic diversity is indeed present among the naturally occurring Frankia of Darjeeling, India.  相似文献   

8.
The polymerase chain reaction (PCR) is an in vitro procedure for primer-directed enzymatic amplification of specific template nucleic acid sequences. In order to determine whether a given actinomycete isolated from an actinorhiza (nodule) belongs to the genus Frankia or is a contaminant, we have developed a test based on the PCR. Primers complementary to sequences of two DNA regions corresponding to the nif genes (nifH and nifD) and the rRNA genes (16S and 23S) were specifically chosen to differentially amplify DNAs from Frankia strains but not those from other microorganisms. A series of positive and negative controls were set up by using universal or selective primers resulting in a discriminant amplification, which could be detected after agarose gel electrophoresis. In the nif region, degenerate oligonucleotide primers were used to amplify a target common to all the nitrogen-fixing microorganisms tested, while another set of primers amplified a target with a high specificity for Frankia strains. In the rRNA gene region, universal and specific primers were characterized and tested with DNAs from a wide range of microorganisms. The efficiency of this rapid and sensitive PCR assay was tested with an isolate obtained from Alnus nepalensis nodules, confirming results obtained by nodulation tests.  相似文献   

9.
Frankia genus-specific characterization by polymerase chain reaction.   总被引:4,自引:0,他引:4  
The polymerase chain reaction (PCR) is an in vitro procedure for primer-directed enzymatic amplification of specific template nucleic acid sequences. In order to determine whether a given actinomycete isolated from an actinorhiza (nodule) belongs to the genus Frankia or is a contaminant, we have developed a test based on the PCR. Primers complementary to sequences of two DNA regions corresponding to the nif genes (nifH and nifD) and the rRNA genes (16S and 23S) were specifically chosen to differentially amplify DNAs from Frankia strains but not those from other microorganisms. A series of positive and negative controls were set up by using universal or selective primers resulting in a discriminant amplification, which could be detected after agarose gel electrophoresis. In the nif region, degenerate oligonucleotide primers were used to amplify a target common to all the nitrogen-fixing microorganisms tested, while another set of primers amplified a target with a high specificity for Frankia strains. In the rRNA gene region, universal and specific primers were characterized and tested with DNAs from a wide range of microorganisms. The efficiency of this rapid and sensitive PCR assay was tested with an isolate obtained from Alnus nepalensis nodules, confirming results obtained by nodulation tests.  相似文献   

10.
李志真 《微生物学报》2008,48(11):1432-1438
[目的]了解福建省放线菌结瘤植物共生固氮菌Frankia的遗传多样性.[方法]利用16S-23SrDNA间隔区(rrn)和nifD-K基因间隔区的PCR扩增和RFLP技术,分析了福建省木麻黄、杨梅、桤木、胡颓子等共生Frankia纯培养菌株的遗传差异.[结果]17个菌株获得rrn扩增片段,2个杨梅菌株和1个胡颓子菌株扩增未成功,酶切图谱经聚类分析表明6个地点的细枝木麻黄、短枝木麻黄、粗枝木麻黄12个共生Frankia菌株同源性高,属于一个类群,2个地点的4个杨梅菌株和1个四川桤木菌株亲缘关系近,为另一类群.25个Frankia菌株的,nifD-K基因间隔区PCR-RFLP分析结果显示,7个地点的3种木麻黄14个菌株聚类为一个类群,4个地点的7个杨梅菌株、2个地点的2个四川桤木菌株以及1个台湾桤木菌株聚类为另一个类群,胡颓子菌株则为独立的类群.[结论]研究结果表明福建省共生Frankia遗传多样性丰富.  相似文献   

11.
The identity of Frankia strains from nodules of Myrica gale, Alnus incana subsp. rugosa, and Shepherdia canadensis was determined for a natural stand on a lake shore sand dune in Wisconsin, where the three actinorhizal plant species were growing in close proximity, and from two additional stands with M. gale as the sole actinorhizal component. Unisolated strains were compared by their 16S ribosomal DNA (rDNA) restriction patterns using a direct PCR amplification protocol on nodules. Phylogenetic relationships among nodular Frankia strains were analyzed by comparing complete 16S rDNA sequences of study and reference strains. Where the three actinorhizal species occurred together, each host species was nodulated by a different phylogenetic group of Frankia strains. M. gale strains from all three sites belonged to an Alnus-Casuarina group, closely related to Frankia alni representative strains, and were low in diversity for a host genus considered promiscuous with respect to Frankia microsymbiont genotype. Frankia strains from A. incana nodules were also within the Alnus-Casuarina cluster, distinct from Frankia strains of M. gale nodules at the mixed actinorhizal site but not from Frankia strains from two M. gale nodules at a second site in Wisconsin. Frankia strains from nodules of S. canadensis belonged to a divergent subset of a cluster of Elaeagnaceae-infective strains and exhibited a high degree of diversity. The three closely related local Frankia populations in Myrica nodules could be distinguished from one another using our approach. In addition to geographic separation and host selectivity for Frankia microsymbionts, edaphic factors such as soil moisture and organic matter content, which varied among locales, may account for differences in Frankia populations found in Myrica nodules.  相似文献   

12.
Actinomycetes from the genus Frankia induce nitrogen-fixing root nodules on actinorhizal plants in the "core rosid" clade of eudicots. Reported here are nine partial Frankia 16S rRNA gene sequences including the first from host plants of the rosaceous genera Cercocarpus and Chamaebatia, 24 partial glutamine synthetase (GSI; glnA) sequences from Frankia in nodules of 17 of the 23 actinorhizal genera, and the partial glnA sequence of Acidothermus cellulolyticus. Phylogenetic analyses of combined Frankia 16S rDNA and glnA sequences indicate that infective strains belong to three major clades (I-III) and that Clade I strains consisting of unisolated symbionts from the Coriariaceae, Datiscaceae, Rosaceae, and Ceanothus of the Rhamnaceae are basal to the other clades. Clock-like mutation rates in glnA sequence alignments indicate that all three major Frankia clades diverged early during the emergence of eudicots in the Cretaceous period, and suggest that present-day symbioses are the result of an ancestral symbiosis that emerged before the divergence of extant actinorhizal plants.  相似文献   

13.
The phylogenetic relationships of Frankia strains infective on Gymnostoma with other Frankia strains was analyzed. Partial sequencing of the 16S rDNA and use of specific primers showed that the Frankia strains present in Gymnostoma are phylogenetically close to Elaeagnus-infective strains. This finding was confirmed by using the sequences of the hypervariable nifDK intergenic spacer. The strains present in Gymnostoma nodules were close to one another. Clustered with Elaeagnus-infective strains, and distantly related to Casuarina and Alnus-infective strains. Morphological observations of strains and cross-inoculation trials showed that Gymnostoma-infective strains are indistinguishable from Elaeagnus-infective strains. Results of both phenotypic and genotypic approaches indicate that Gymnostoma-infective strains are Elaeagnus infective and not Casuarina infective.  相似文献   

14.
Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia   总被引:4,自引:0,他引:4  
The occurrence and diversity of Frankia nodulating Elaeagnus angustifolia in Tunisia were evaluated in 30 soils from different regions by a Frankia-capturing assay. Despite the absence of actinorhizal plants in 24 of the 30 soils, nodules were captured from all the samples. Eight pure strains were isolated from single colonies grown in agar medium. On the basis of 16S rRNA and GlnII sequences, seven strains were clustered with Frankia, colonizing Elaeagnaceae and Rhamnaceae in two different phylogenetic groups while one strain described a new lineage in the Frankia assemblage, indicating that Frankia strains genetically diverse from previously known Elaeagnus-infective strains are present in tunisian soils. Genomic fingerprinting determined by rep-PCR, and tDNA-PCR-SSCP, confirmed the wide genetic diversity of the strains.  相似文献   

15.
DNA sequences of an intergenic spacer (IGS) and parts of genes in the nif cluster were amplified by the polymerase chain reaction (PCR) using two primers derived from nifD -and nifK -conserved sequences. The PCR products were cleaved by ten 4–base cutting restriction enzymes and the restriction patterns were used as fingerprints to type Frankia strains. The feasability of this PCR-RFLP method for typing Frankia strains was investigated on Frankia reference strains belonging mainly to the Elaeagnaceae infectivity group but also on new Frankia isolates and on other N2-fixing microorganisms. By modulating the stringency of the amplifications, we showed the method allowed to target either Frankia strains or the whole N2-fixing microbial community. DNA digestion patterns were used to estimate the sequence divergence between the Frankia nifD-K fragment. The estimated relationships deduced from these genotypic data correlated well with established Frankia taxonomic schemes.  相似文献   

16.
The presence of Frankia strains in soil samples collected from northern areas of Pakistan was detected by inoculating Coriaria nepalensis and Datisca cannabina plants. The abundance of compatible Frankia strains in some areas was indicated by profuse nodulation of the host plants, whereas soil samples from other localities failed to result in nodulation. An oligonucleotide probe (COR/DAT) directed against the 16S rRNA gene of the endophytes of Coriaria and Datisca spp. that did not cross-react with the RNA gene of Frankia strains isolated from other hosts was developed. Genetic diversity among Frankia strains nodulating D. cannabina was determined by sequence analysis of the partial 16S rRNA gene amplified from nodules induced by soil samples from different localities by PCR. Four types of Frankia sequences and one non-Frankia sequence were detected by hybridization with a Frankia genus probe and the COR/DAT probe as well as by sequence analysis of the cloned PCR products.  相似文献   

17.
Actinorhizal plants invade nitrogen-poor soils because of their ability to form root nodule symbioses with N(2)-fixing actinomycetes known as Frankia. Frankia strains are difficult to isolate, so the diversity of strains inhabiting nodules in nature is not known. To address this problem, we have used the variability in bacterial 16S rRNA gene sequences amplified from root nodules as a means to estimate molecular diversity. Nodules were collected from 96 sites primarily in northeastern North America; each site contained one of three species of the family Myricaceae. Plants in this family are considered to be promiscuous hosts because several species are effectively nodulated by most isolated strains of Frankia in the greenhouse. We found that strain evenness varies greatly between the plant species so that estimating total strain richness of Frankia within myricaceous nodules with the sample size used was problematical. Nevertheless, Myrica pensylvanica, the common bayberry, was found to have sufficient diversity to serve as a reservoir host for Frankia strains that infect plants from other actinorhizal families. Myrica gale, sweet gale, yielded a few dominant sequences, indicating either symbiont specialization or niche selection of particular ecotypes. Strains in Comptonia peregrina nodules had an intermediate level of diversity and were all from a single major group of Frankia.  相似文献   

18.
高黎贡山旱冬瓜Frankia的IGS PCR-RFLP分析   总被引:7,自引:0,他引:7  
在云南省高黎贡山自然保护区海拔1310~2400m的范围内,采集30个旱冬瓜根瘤样品,直接从根瘤中提取Frankia DNA,对其,nifD-nifK基因间隔区(intergenic spacer,IGS)和16S-23S rDNA IGS进行PCR—RFLP分析.结果表明,nifD-nifK IGS的PCR产物长度差异很大,经HaeⅢ和Afa I双酶切后,得到15种酶切带型,检测到多种基因型的菌株同时与同一株宿主植物共生;16S-23S rDNA IGS的PCR产物长度相似,酶切后亦区分出15种酶切带型.通过对两个基因间隔区的PCR-RFLP联合分析,发现高黎贡山旱冬瓜Frankia存在20种基因型.  相似文献   

19.
PCR primers of arbitrary nucleotide sequence have identified DNA polymorphisms useful for genetic mapping in a large variety of organisms. Although technically very powerful, the use of arbitrary primers for genome mapping has the disadvantage of characterizing DNA sequences of unknown function. Thus, there is no reason to anticipate that DNA fragments amplified by use of arbitrary primers will be enriched for either transcribed or promoter sequences that may be conserved in evolution. For these reasons, we modified the arbitrarily primed PCR method by using oligonucleotide primers derived from conserved promoter elements and protein motifs. Twenty-nine of these primers were tested individually and in pairwise combinations for their ability to amplify genomic DNA from a variety of species including various inbred strains of laboratory mice and Mus spretus. Using recombinant inbred strains of mice, we determined the chromosomal location of 27 polymorphic fragments in the mouse genome. The results demonstrated that motif sequence-tagged PCR products are reliable markers for mapping the mouse genome and that motif primers can also be used for genomic fingerprinting of many divergent species.  相似文献   

20.
In studies of symbiotic efficiency it is of great importance to identify and separate individual Frankia strains from a nodule. Therefore, a new laser-based micromanipulation technique has been developed in which individual vesicles from root nodules of two Frankia-Alnus symbioses have been successfully cut loose and separated from clusters of vesicles in sterile conditions under light microscopy using a laser scalpel and optical tweezers. Vesicles from the Alnus incana-Frankia AvCI1 symbiosis were successfully isolated and grown in culture using this technique. The DNA from both Frankia sources was amplified by polymerase chain reaction (PCR). The work shows that a combination of laser-based manipulation techniques and PCR can be used for the separation and study of individual vesicles. This novel laser-based micromanipulation technique opens up various new possibilities, for instance, to study whether several Frankia strains can grow simultaneously in the same root nodule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号