首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomic force microscopy was used to investigate the surface morphology and transverse stiffness of myofibrils from Drosophila indirect flight muscle exposed to different physiologic solutions. I- and A-bands were clearly observed, and thick filaments were resolved along the periphery of the myofibril. Interfilament spacings correlated well with estimates from previous x-ray diffraction studies. Transverse stiffness was measured by using a blunt tip to indent a small section of the myofibrillar surface in the region of myofilament overlap. At 10 nm indention, the effective transverse stiffness (K( perpendicular)) of myofibrils in rigor solution (ATP-free, pCa 4.5) was 10.3 +/- 5.0 pN nm(-1) (mean +/- SEM, n = 8); in activating solution (pCa 4.5), 5.9 +/- 3.1 pN nm(-1); and in relaxing solution (pCa 8), 4.4 +/- 2.0 pN nm(-1). The apparent transverse Young's modulus (E( perpendicular)) was 94 +/- 41 kPa in the rigor state and 40 +/- 17 kPa in the relaxed state. The value of E( perpendicular) for calcium-activated myofibrils (55 +/- 29 kPa) was approximately a tenth that of Young's modulus in the longitudinal direction, a difference that at least partly reflects the transverse flexibility of the myosin molecule.  相似文献   

2.
Signaling by reactive oxygen species has emerged as a major physiological process. Due to its high metabolic rate, striated muscle is especially subject to oxidative stress, and there are multiple examples in cardiac and skeletal muscle where oxidative stress modulates contractile function. Here we assessed the potential of cysteine oxidation as a mechanism for modulating contractile function in skeletal and cardiac muscle. Analyzing the cysteine content of the myofilament proteins in striated muscle, we found that cysteine residues are relatively rare, but are very similar between different muscle types and different vertebrate species. To refine this list of cysteines to those that may modulate function, we estimated the accessibility of oxidants to cysteine residues using protein crystal structures, and then sharpened these estimates using fluorescent labeling of cysteines in cardiac and skeletal myofibrils. We demonstrate that cysteine accessibility to oxidants and ATPase rates depend on the contractile state in which preparations are exposed. Oxidant exposure of skeletal and cardiac myofibrils in relaxing solution exposes myosin cysteines not accessible in rigor solution, and these modifications correspond to a decrease in maximum ATPase. Oxidant exposure under rigor conditions produces modifications that increase basal ATPase and calcium sensitivity in ventricular myofibrils, but these effects were muted in fast twitch muscle. These experiments reveal how structural and sequence variations can lead to divergent effects from oxidants in different muscle types.  相似文献   

3.
Orientation dependence and rotational motion of maleimide spin labels attached to the fast reacting thiol sites of myosin were studied in glycerinated cardiac and skeletal muscle fibres in rigor and in relaxing medium. The probe order in skeletal muscle was shown to be about one order of magnitude higher than that in cardiac muscle. In skeletal muscle in rigor the orientational order is static on the time scale of the saturation transfer electron paramagnetic resonance measurement (ST EPR, rotational correlation time of the label is greater than 1 ms), but in cardiac muscle fibres, a disorder was observed which was at least partly dynamical, the rotational correlation time being about 100 microseconds. In relaxing solution the degree of order of probe molecules in both types of muscle was strongly reduced at and above the resting length. The disorder was at least partly dynamical on the ST EPR time scale, the apparent rotational correlation times being 200 microseconds for skeletal muscle and 60 microseconds for cardiac muscle, respectively. According to the results of ST EPR the rotational behavior of cross-bridges was identical in cardiac and skeletal muscle in relaxing medium.  相似文献   

4.
The low-angle X-ray diffraction pattern from Lethocerus flight muscle fibres was recorded in rigor or under two conditions that modify crossbridge structure and behaviour, aqueous adenylylimidodiphosphate (AMPPNP) and AMPPNP + calcium in an ethylene glycol-water mixture. The effects on the 38.7 nm layer-line peaks (hk.6) of the diffraction patterns were studied in detail. In aqueous AMPPNP at room temperature, a condition in which rigor tension drops to half without loss of stiffness, the peaks remained nearly as intense as in rigor except for the 10.6, which dropped to half. In 20% (v/v) ethylene glycol-AMPPNP + 100 microM-Ca2+ at 23 degrees C (gly + pnp + Ca), a condition which removed muscle tension but left stiffness close to the rigor value, the 10.6 and 11.6 peaks greatly decreased but the 31.6 remained relatively high. The 14.5 nm meridional peak (00.16) became stronger on addition of AMPPNP and again on adding glycol + calcium. Considered in terms of constructively interfering filaments and crossbridges, the X-ray data indicated a transfer of diffracting crossbridge mass towards the thick filament as relaxation proceeds. We compared the X-ray diffraction patterns and crossbridge structure seen with electron microscopy (EM) under the same chemical conditions. EM and X-ray observations were mutually quite consistent overall. However, X-ray data indicated that more crossbridge mass was stereospecifically related to actin before fixation in the partially relaxed state (gly + pnp + Ca) than was suggested by the disordered crossbridge profiles seen by EM. We conclude that myosin heads at the start of the power stroke may both be closely related to their thick filament origins and form actin-determined attachments to the thin filament.  相似文献   

5.
Atrial and ventricular myocytes 200 to 300 microm long containing one to five myofibrils are isolated from frog hearts. After a cell is caught and held between two suction micropipettes the surface membrane is destroyed by briefly jetting relaxing solution containing 0.05% Triton X-100 on it from a third micropipette. Jetting buffered Ca2+ from other pipettes produces sustained contractions that relax completely on cessation. The pCa/force relationship is determined at 20 degrees C by perfusing a closely spaced sequence of pCa concentrations (pCa = -log[Ca2+]) past the skinned myocyte. At each step in the pCa series quick release of the myocyte length defines the tension baseline and quick restretch allows the kinetics of the return to steady tension to be observed. The pCa/force data fit to the Hill equation for atrial and ventricular myocytes yield, respectively, a pK (curve midpoint) of 5.86 +/- 0.03 (mean +/- SE.; n = 7) and 5.87 +/- 0.02 (n = 18) and an nH (slope) of 4.3 +/- 0.34 and 5.1 +/- 0.35. These slopes are about double those reported previously, suggesting that the cooperativity of Ca2+ activation in frog cardiac myofibrils is as strong as in fast skeletal muscle. The shape of the pCa/force relationship differs from that usually reported for skeletal muscle in that it closely follows the ideal fitted Hill plot with a single slope while that of skeletal muscle appears steeper in the lower than in the upper half. The rate of tension redevelopment following release restretch protocol increases with Ca2+ >10-fold and continues to rise after Ca2+ activated tension saturates. This finding provides support for a strong kinetic mechanism of force regulation by Ca2+ in frog cardiac muscle, at variance with previous reports on mammalian heart muscle. The maximum rate of tension redevelopment following restretch is approximately twofold faster for atrial than for ventricular myocytes, in accord with the idea that the intrinsic speed of the contractile proteins is faster in atrial than in ventricular myocardium.  相似文献   

6.
We have used electron microscopy and proteolytic susceptibility to study the structural basis of myosin-linked regulation in synthetic filaments of scallop striated muscle myosin. Using papain as a probe of the structure of the head-rod junction, we find that this region of myosin is approximately five times more susceptible to proteolytic attack under activating (ATP/high Ca2+) or rigor (no ATP) conditions than under relaxing conditions (ATP/low Ca2+). A similar result was obtained with native myosin filaments in a crude homogenate of scallop muscle. Proteolytic susceptibility under conditions in which ADP or adenosine 5'-(beta, gamma-imidotriphosphate) (AMPPNP) replaced ATP was similar to that in the absence of nucleotide. Synthetic myosin filaments negatively stained under relaxing conditions showed a compact structure, in which the myosin cross-bridges were close to the filament backbone and well ordered, with a clear 14.5-nm axial repeat. Under activating or rigor conditions, the cross-bridges became clumped and disordered and frequently projected further from the filament backbone, as has been found with native filaments; when ADP or AMPPNP replaced ATP, the cross-bridges were also disordered. We conclude (a) that Ca2+ and ATP affect the affinity of the myosin cross-bridges for the filament backbone or for each other; (b) that the changes observed in the myosin filaments reflect a property of the myosin molecules alone, and are unlikely to be an artifact of negative staining; and (c) that the ordered structure occurs only in the relaxed state, requiring both the presence of hydrolyzed ATP on the myosin heads and the absence of Ca2+.  相似文献   

7.
In the previous study (Podlubnaya et al., 1999, J. Struc. Biol. 127, 1-15) Ca2+-induced reversible structural transitions in synthetic filaments of pure fast skeletal and cardiac muscle myosins were observed under rigor conditions (-Ca2+/+Ca2+). In the present work these studies have been extended to new more order-producing conditions (presence of ATP in the absence of Ca2+) aimed at arresting the relaxed structure in synthetic filaments of both fast and slow skeletal muscle myosin. Filaments were formed from column-purified myosins (rabbit fast skeletal muscle and rabbit slow skeletal semimebranosusproprius muscle). In the presence of 0.1 mM free Ca2+, 3 mM Mg2+ and 2 mM ATP (activating conditions) these filaments had a spread structure with a random arrangement of myosin heads and subfragments 2 protruding from the filament backbone. Such a structure is indistinguishable from the filament structures observed previously for fast skeletal, cardiac (see reference cited above) and smooth (Podlubnaya et al., 1999, J. Muscle Res. Cell Motil. 20, 547-554) muscle myosins in the presence of 0.1 mM free Ca2+. In the absence of Ca2+ and in the presence of ATP (relaxing conditions) the filaments of both studied myosins revealed a compact ordered structure. The fast skeletal muscle myosin filaments exhibited an axial periodicity of about 14.5 nm and which was much more pronounced than under rigor conditions in the absence of Ca2+ (see the first reference cited). The slow skeletal muscle myosin filaments differ slightly in their appearance from those of fast muscle as they exhibit mainly an axial repeat of about 43 nm while the 14.5 nm repeat is visible only in some regions. This may be a result of a slightly different structural properties of slow skeletal muscle myosin. We conclude that, like other filaments of vertebrate myosins, slow skeletal muscle myosin filaments also undergo the Ca2+-induced structural order-disorder transitions. It is very likely that all vertebrate muscle myosins possess such a property.  相似文献   

8.
Changes in skeletal troponin C (sTnC) structure during thin filament activation by Ca2+ and strongly bound cross-bridge states were monitored by measuring the linear dichroism of the 5' isomer of iodoacetamidotetramethylrhodamine (5'IATR), attached to Cys98 (sTnC-5'ATR), in sTnC-5'ATR reconstituted single skinned fibers from rabbit psoas muscle. To isolate the effects of Ca2+ and cross-bridge binding on sTnC structure, maximum Ca2+-activated force was inhibited with 0.5 mM AlF4- or with 30 mM 2,3 butanedione-monoxime (BDM) during measurements of the Ca2+ dependence of force and dichroism. Dichroism was 0.08 +/- 0.01 (+/- SEM, n = 9) in relaxing solution (pCa 9.2) and decreased to 0.004 +/- 0.002 (+/- SEM, n = 9) at pCa 4.0. Force and dichroism had similar Ca2+ sensitivities. Force inhibition with BDM caused no change in the amplitude and Ca2+ sensitivity of dichroism. Similarly, inhibition of force at pCa 4.0 with 0.5 mM AlF4- decreased force to 0.04 +/- 0.01 of maximum (+/- SEM, n = 3), and dichroism was 0.04 +/- 0.03 (+/- SEM, n = 3) of the value at pCa 9.2 and unchanged relative to the corresponding normalized value at pCa 4.0 (0.11 +/- 0.05, +/- SEM; n = 3). Inhibition of force with AlF4- also had no effect when sTnC structure was monitored by labeling with either 5-dimethylamino-1-napthalenylsulfonylaziridine (DANZ) or 4-(N-(iodoacetoxy)ethyl-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (NBD). Increasing sarcomere length from 2.5 to 3.6 microm caused force (pCa 4.0) to decrease, but had no effect on dichroism. In contrast, rigor cross-bridge attachment caused dichroism at pCa 9.2 to decrease to 0.56 +/- 0.03 (+/- SEM, n = 5) of the value at pCa 9. 2, and force was 0.51 +/- 0.04 (+/- SEM, n = 6) of pCa 4.0 control. At pCa 4.0 in rigor, dichroism decreased further to 0.19 +/- 0.03 (+/- SEM, n = 6), slightly above the pCa 4.0 control level; force was 0.66 +/- 0.04 of pCa 4.0 control. These results indicate that cross-bridge binding in the rigor state alters sTnC structure, whereas cycling cross-bridges have little influence at either submaximum or maximum activating [Ca2+].  相似文献   

9.
R E Johnson 《FEBS letters》1988,232(2):289-292
It was previously shown that when rabbit skeletal myofibrils are titrated with Mg2+ AMPPNP under conditions that result in the dissociation of cross-bridges from the thin filaments (i.e. 50% ethylene glycol, 0 degrees C), Ca2+-sensitive, biphasic binding is observed. These titrations have been repeated using myofibrils from which the troponin C has been selectively removed. The disappearance of both Ca2+ sensitivity and biphasic binding is taken as evidence that the Ca2+ sensitivity is due to Ca2+ binding to troponin C and the biphasic binding of Mg2+ AMPPNP observed in intact myofibrils is not due to packing constraints or steric hindrance.  相似文献   

10.
When rabbit skeletal muscle myofibrils were treated with a solution containing 0.1 mM Ca2+ and 30 micrograms of leupeptin/ml, alpha-connectin, which forms very thin filaments in myofibrils, was split into beta-connectin and a 1,200-kDa subfragment. A part of beta-connectin located near the junction between beta-connectin and the subfragment seems to have an affinity for calcium ions and to be susceptible to the binding of large amounts of calcium ions. The calcium-binding site on beta-connectin is localized near the N2 line in the I band, and the subfragment is localized adjacent to the Z disk. It is possible that connectin filaments change their elasticity during the contraction-relaxation cycle of skeletal muscle at the physiological concentration of calcium ions. Because postmortem skeletal muscles lose their elasticity and become plastic in association with the calcium-specific splitting of connectin filaments, the splitting is considered to be a factor in meat tenderization during postrigor ageing.  相似文献   

11.
Cardiac myofibrils were isolated from rabbit ventricular muscle by a method that preserves well the integrity of the A-band structure. For the first time electron microscopic observations using the negative staining method revealed, in cardiac A-bands, a full complement of pronounced transverse stripes which indicate the locations of minor proteins in skeletal muscles. The manifestation of some transverse stripes in the cardiac A-band was shown to depend on the duration of muscle incubation in a Ca2(+)-depleting and ATP-free solution before its homogenization into myofibrils. The clear visibility of fine structural details in electron micrographs allowed us to resolve morphological features specific for cardiac muscle at both the central and end parts of the A-bands. The myofibrils demonstrated here are expected to be useful for elucidating the fine structure of cardiac thick filaments and in particular the locations of minor proteins.  相似文献   

12.
It is commonly believed, for both vertebrate striated and insect flight muscle, that when the ATP analogue adenyl-5'-yl imidodiphosphate (AMPPNP) is added to the muscle fiber in rigor, it causes the fiber to lengthen by 0.15%. This has been interpretated (Marston S.B., C.D. Roger, and R.T. Tregear. 1976. J. Mol. Biol. 104:263-267) as suggesting (a) that in rigor the crossbridge is fixed to, i.e., almost never detaches from the actin filament; (b), that the crossbridge remains fixed to the actin filament after AMPPNP addition; and (c) that the ability of AMPPNP to cause apparent lengthening of a muscle fiber is due to its ability to cause a conformational change in the myosin crossbridge that has an axial component of approximately 1.6 nm/half-sarcomere. The present study, done only on chemically-skinned rabbit psoas fibers, confirms that AMPPNP can cause muscle fibers to lengthen by 0.15% but only for a narrow set of experimental conditions. When experimental conditions are varied over a wider range, it becomes apparent that the extent of lengthening of a rigor muscle fiber upon AMPPNP addition depends almost entirely on the strain present in the rigor fiber before AMPPNP addition. Addition of AMPPNP to an unstrained rigor fiber (one supporting zero tension), induces zero length change while addition of AMPPNP to very highly strained rigor fibers induces length changes greater than 0.15%. The data thus do not support the hypotheses that the crossbridges remain fixed to the actin filament after AMPPNP addition and that the size of the apparent length change induced by AMPPNP is related to the size of the axial component of a conformational change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The orientation of the light-chain region of myosin heads in relaxed, rigor, and isometrically contracting fibers from rabbit psoas muscle was studied by fluorescence polarization. Cysteine 108 of chicken gizzard myosin regulatory light chain (cgRLC) was covalently modified with iodoacetamidotetramethylrhodamine (iodo-ATR). Native RLC of single glycerinated muscle fibers was exchanged for labeled cgRLC in a low [Mg2+] rigor solution at 30 degrees C. Troponin and troponin C removed in this procedure were replaced. RLC exchange had little effect on active force production. X-ray diffraction showed normal structure in rigor after RLC exchange, but loss of axial and helical order in relaxation. In isolated myofibrils labeled cgRLC was confined to the regions of the sarcomere containing myosin heads. The ATR dipoles showed a preference for orientations perpendicular to the fiber axis, combined with limited nanosecond rotational motion, in all conditions studied. The perpendicular orientation preference was more marked in rigor than in either relaxation or active contraction. Stretching relaxed fibers to sarcomere length 4 microns to eliminate overlap between actin- and myosin-containing filaments had little effect on the orientation preference. There was no change in orientation preference when fibers were put into rigor at sarcomere length 4.0 microns. Qualitatively similar results were obtained with ATR-labeled rabbit skeletal RLC.  相似文献   

14.
We have used saturation transfer electron paramagnetic resonance (ST-EPR) to measure the microsecond rotational motion of actin-bound myosin heads in spin-labeled myofibrils in the presence of the ATP analogs AMPPNP (5'-adenylylimido-diphosphate) and ATP gamma S (adenosine-5'-O-(3-thiotriphosphate)). AMPPNP and ATP gamma S are believed to trap myosin in two major conformational intermediates of the actomyosin ATPase cycle, respectively known as the weakly bound and strongly bound states. Previous ST-EPR experiments with solutions of acto-S1 have demonstrated that actin-bound myosin heads are rotationally mobile on the microsecond time scale in the presence of ATP gamma S, but not in the presence of AMPPNP. However, it is not clear that results obtained with acto-S1 in solution can be extended to actomyosin constrained within the myofibrillar lattice. Therefore, ST-EPR spectra of spin-labeled myofibrils were analyzed explicitly in terms of the actin-bound component of myosin heads in the presence of AMPPNP and ATP gamma S. The fraction of actin-attached myosin heads was determined biochemically in the spin-labeled myofibrils, using the proteolytic rates actomyosin binding assay. At physiological ionic strength (mu = 165 mM), actin-bound myosin heads were found to be rotationally mobile on the microsecond time scale (tau r = 24 +/- 8 microseconds) in the presence of ATP gamma S, but not AMPPNP. Similar results were obtained at low ionic strength, confirming the acto-S1 solution studies. The microsecond rotational motions of actin-attached myosin heads in the presence of ATP gamma S are similar to those observed for spin-labeled myosin heads during the steady-state cycling of the actomyosin ATPase, both in solution and in an active isometric muscle fiber. These results indicate that weakly bound myosin heads, in the pre-force phase of the ATPase cycle, are rotationally mobile, while strongly bound heads, in the force-generating phase, are rotationally immobile. We propose that force generation involves a transition from a dynamically disordered crossbridge to a rigid and stereospecific one.  相似文献   

15.
We investigated to determine why heating of squid muscle at 60 °C induced the liberation of actin from myofibrils. When a mixture of a myofibrillar fraction and a low-molecular sarcoplasmic fraction prepared from squid muscle was heated at 60 °C, actin liberation occurred. When a myofibrillar fraction was heated with ATP, AMP, or IMP, actin liberation occurred. Hence, AMP is perhaps one of the factors causing actin liberation in postmortem squid muscle. It was found that AMP and IMP reversibly dissociated actomyosin of chicken, bovine, and porcine skeletal muscles into actin and myosin on incubation at 0 °C at pH 7.2 in 0.2 M KCl. These results led us to conclude that AMP and IMP were the most responsible factors causing actin liberation from myofibrils in the heated muscle and causing reversible dissociation of actomyosin on storage of skeletal muscle at a low temperature. Hence, AMP and IMP are possible factors causing the resolution of rigor mortis in muscles.  相似文献   

16.
Adenosine triphosphatase (ATPase) activity of myofibrils isolated from fresh muscle and the muscle stored at 4°C have been measured.

An increase in Mg-activated ATPase activity of myofibrils was caused by lengthened homogenization.

With the progress of aging of muscle, Mg-activated ATPase activity of myofibrils increased remarkably.

When myofibrils from pre-rigor and rigor muscle in 0.16 m KCl were treated with 0.6 m KCl-18 mm Tris-maleate solution (pH 7.0), Mg-activated ATPase activity of myofibrils at low ionic strength increased markedly. However, the Mg-activated ATPase activity of the myofibril isolated from the muscle stored at 4°C for 8 days (8-myofibril) increased slightly after the similar treatment.

The dependence of myofibrillar ATPase activity on KCl concentration became greater with the progress of aging of muscle.

These results may show that, as long as ATPase activity and the dependence of ATPase activity on KCl concentration are concerned, 8-myofibril is the most similar to the isolated actomyosin among myofibrils, although actomyosin in muscle may exist in a different form from that in solution. It is suggested that, with the progress of aging, the structural alteration of myofibril occurred and the myofibril became more susceptible to ATP-induced transformation.  相似文献   

17.
We have used electron paramagnetic resonance (EPR) to investigate the orientation, rotational motion, and actin-binding properties of rabbit psoas muscle cross-bridges in the presence of the nonhydrolyzable nucleotide analogue, 5'-adenylylimido-diphosphate (AMPPNP). This analogue is known to decrease muscle tension without affecting its stiffness, suggesting an attached cross-bridge state different from rigor. We spin-labeled the SH1 groups on myosin heads and performed conventional EPR to obtain high-resolution information about the orientational distribution, and saturation transfer EPR to measure microsecond rotational motion. At 4 degrees C and 100 mM ionic strength, we find that AMPPNP increases both the orientational disorder and the microsecond rotational motion of myosin heads. However, computer analysis of digitized spectra shows that no new population of probes is observed that does not match either rigor or relaxation in both orientation and motion. At 4 degrees C, under nearly saturating conditions of 16 mM AMPPNP (Kd = 3.0 mM, determined from competition between AMPPNP and an ADP spin label), 47.5 +/- 2.5% of myosin heads are dynamically disoriented (as in relaxation) without a significant decrease in rigor stiffness, whereas the remainder are rigidly oriented as in rigor. The oriented heads correspond to actin-attached heads in a ternary complex, and the disoriented heads correspond to detached heads, as indicated by EPR experiments with spin-labeled subfragment 1 (S1) that provide independent measurements of orientation and binding. We take these findings as evidence for a single-headed cross-bridge that is as stiff as the double-headed rigor cross-bridge. The data are consistent with a model in which, in the presence of saturating AMPPNP, one head of each cross-bridge binds actin about 10 times more weakly, whereas the remaining head binds at least 10 times more strongly, than extrinsic S1. Thus, although there is no evidence for heads being attached at nonrigor angles, the attached cross-bridge differs from that of rigor. The heterogeneous behavior of heads is probably due to steric effects of the filament lattice.  相似文献   

18.
Two attached non-rigor crossbridge forms in insect flight muscle   总被引:1,自引:0,他引:1  
We have performed thin-section electron microscopy on muscle fibers fixed in different mechanically monitored states, in order to identify structural changes in myosin crossbridges associated with force production and maintenance. Tension and stiffness of fibers from glycerinated Lethocerus flight muscle were monitored during a sequence of conditions using AMPPNP and then AMPPNP plus increasing concentrations of ethylene glycol, which brought fibers through a graded sequence from rigor relaxation. Two intermediate crossbridge forms distinct from the rigor or relaxed forms were observed. The first was produced by AMPPNP at 20 degrees C, which reduced isometric tension 60 to 70% below rigor level without reducing rigor stiffness. Electron microscopy of these fibers showed that, in spite of the drop in tension, no obvious change from the 45 degrees crossbridge angle characteristic of rigor occurred. However, the thick filament ends of the crossbridges were altered from their rigor positions, so that they now marked a 14.5 nm repeat, and formed four separate origins at each crossbridge level. The bridges were also less slewed and bent than rigor bridges, as seen in transverse sections. The second crossbridge form was seen in glycol-AMPPNP at 4 degrees C, just below the glycol concentration that produced mechanical relaxation. These fibers retained 90% of rigor stiffness at 40 Hz oscillation, but would not bear sustained tension. Stiffness was also high in the presence of calcium at room temperature under similar conditions. Electron microscopy showed crossbridges projecting from the thick filaments at an angle that centered around 90 degrees, rather than the 45 degree angle familiar from rigor. This coupling of relaxed appearance with persistent stiffness suggests that the 90 degree form may represent a weakly attached crossbridge state like that proposed to precede force development in current models of the crossbridge power stroke.  相似文献   

19.
Fluorescence spectra of ANM-labeled, glycerinated rabbit psoas muscle fibers were recorded in relaxed, contracted, and rigor states. SDS polyacrylamide gel electrophoresis of the ANM-labeled muscle fibers indicated that proteins labeled with ANM were myosin heavy chain, C protein, and actin. In a relaxed state in the presence of ATP, myosin heavy chain was mainly labeled. During the transition from rigor to the relaxed or contracted state, there was a blue shift (about 5 nm) of the ANM emission spectrum. Similar experiments with FAM (N-(3-fluoranthyl)-maleimide)-labeled muscle fibers showed that these fluorescence changes were not artifacts due to the movement of muscle fibers. The fibers labeled in the ATP relaxing solution showed a marked decrease in both isometric force and unloaded shortening velocity (Vo), while in the fibers labeled in the rigor solution isometric tension was not markedly suppressed, though Vo decreased to the same extent as in the fibers labeled in the ATP relaxing solution. Fluorescence spectra of ANM-labeled HMM in different states were also measured. A fluorescence enhancement and a blue shift (about 5 nm) of the emission maximum were observed in HMM + MgATP or HMM + MgATP + F-actin in comparison with HMM + F-actin. These results suggest that the fluorescence spectra of the ANM-labeled muscle fibers reflect their conformational changes between the rigor state (in the absence of MgATP) and the relaxed or contracted state (in the presence of MgATP).  相似文献   

20.
S Xu  L C Yu    M Schoenberg 《Biophysical journal》1998,74(3):1110-1114
Using x-ray diffraction and mechanical stiffness, the response of N-phenylmaleimide (NPM)-reacted cross-bridges to solutions containing different amounts of ATP and Mg2+ has been studied. In relaxing solution containing greater than millimolar amounts of ATP and Mg2+, NPM-treated muscle fibers give x-ray diffraction patterns and stiffness records, which are nearly indistinguishable from those of untreated relaxed fibers. In a solution devoid of added ATP, but with Mg2+ (rigor(+Mg) solution), the muscle fibers still give x-ray diffraction patterns and mechanical responses characteristic of relaxed muscle. The new finding reported here is that in a solution devoid of both ATP and Mg2+ (rigor(-Mg) solution containing EDTA with no added ATP), NPM-reacted cross-bridges do give rigor-like behavior. This is the first report that NPM-reacted cross-bridges, at least in the presence of EDTA, are capable of going into a strongly binding conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号