首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 505 毫秒
1.
The effects of photon flux density and temperature on net photosynthesis and transpiration rates of mature and immature leaves of three-year-old Japanese larch Larix kaempferi (Lamb.) Sarg. trees were determined with an infrared, differential open gas analysis system. Net photosynthetic response to increasing photon flux densities was similar for different foliage positions and stage of maturity. Light compensation was between 25 and 50 μmol m−2 s−1. Rates of photosynthesis increased rapidly at photon flux densities above the compensation level and became saturated between 800 and 1000 μmol m−2 s−1. Transpiration rates at constant temperature likewise increased with increasing photon flux density, and leveled off between 800 and 1000 μmol m−2 s−1. Photosynthetic response to temperature was determined in saturating light and was similar for all foliage positions; it increased steadily from low temperatures to an optimum range betweeen 15 and 21°C and then decreased rapidly above 21°C. Transpiration rate, however, increased continuously with rising temperature up to the experimental maximum. CO2 compensation concentrations for mature foliage varied between 58 and 59 μl l−1; however, foliage borne at the apex of the terminal leader compensated at 75 μl l−1. None of these data support the claim that Japanese larch possesses C4 photosynthetic characteristics.  相似文献   

2.
The effects of the ratio of Rubisco activase to Rubisco (activase/Rubisco ratio) on light dependent activation of CO2 assimilation were investigated during leaf aging of rice. Changes of photosynthetic CO2 gas exchange rates in relation to step increases of light intensity from two photon flux densities of 60 µmol m−2 s−1 (low initial PFD) and 500 µmol m−2 s−1 (high initial PFD) to saturated PFD of 1 800 µmol m−2 s−1 were measured. These photosynthetic activation processes were considered to be limited by the Rubisco activation rate when analyzed by the relaxation method. The relaxation time of low initial PFD gradually declined from 3 to 33 days after leaf emergence and showed high and negative correlation to the activase/Rubisco ratio. The initial rate of Rubisco activation under low initial PFD linearly correlated to the amounts of Rubisco activase, whereas these were almost constant from 3 to 23 days after leaf emergence. But these correlations could not be recognized in the case of high initial PFD. Moreover, the relaxation times were more sensitive to intercellular CO2 concentration (Ci) under high initial PFD than under low initial PFD, especially, at Ci below 300 µl l−1. These results suggest the involvement of the activase/Rubisco ratio in the photosynthetic activation under relatively low initial PFD, and the limitation of photosynthetic activation under relatively high initial PFD by Rubisco carbamylation during leaf aging of rice.  相似文献   

3.
I considered the possibility that changes in fruit photosynthesis obscure the occurrence of the climacteric rise in respiration in tomato fruits attached to the plant. Internal CO2 and ethylene concentrations in tomatoes ( Lycopersicon esculentum Mill. cv. OH 7814) were analyzed after direct sampling through polyethylene tubes implanted in the external pericarp. Fruits which were shaded with aluminium foil contained up to 60 ml 1−1 CO2, until the internal ethylene concentration exceeded 1 μl l−1, when CO2 concentration declined to below 40 ml l−1; the CO2 concentration in fruits exposed to light only occasionally exceeded 40 ml 1−1. The internal CO2 concentration of detached fruits first declined and then increased along with ethylene concentration, as expected for the climacteric. Detached green fruits under continuous low photosynthetic photon flux density (100 μmol m−2 s−1) contained almost no internal CO2 and produced no CO2. Changes in photosynthesis and an associated CO2-generating system in green fruits are thought to obscure the climacteric rise in tomato fruits developing on the plant.  相似文献   

4.
Seedlings of two tree species from the Atlantic lowlands of Costa Rica, Ochroma la-gopus Swartz, a fast-growing pioneer species, and Pentaclethra macroloba (Willd.) Kuntze, a slower-growing climax species, were grown under enriched atmospheric CO2 in controlled environment chambers. Carbon dioxide concentrations were maintained at 350 and 675 μl 1−1 under photosynthetic photon flux densities of 500 μol m−2 s−1 and temperatures of 26°C day and 20°C night. Total biomass of both species increased significantly in the elevated CO2 treatment; the increase in biomass was greatest for the pioneer species, O. lagopus . Both species had greater leaf areas and specific leaf weights with increased atmospheric CO2. However, the ratio of non-pho-tosynthetic tissue to leaf area also increased in both species leading to decreased leaf area ratios. Plants of both species grown at 675 μl 1−1 CO2 had lower chlorophyll contents and photosynthesis on a leaf area basis than those grown at 350 μl 1−1. Reductions in net photosynthesis occurred despite increased internal CO2 concentrations in the CO2-enriched treatment. Stomatal conductances of both species decreased with CO2-enrichment resulting in significant increases in water use efficiency.  相似文献   

5.
Net CO2 exchange rates (CERs) were measured in seedlings of two loblotly pine ( Pinus taeda L.) families following 6- or 13-week exposures to ozone (charcoalfiltered or ambient air + O3) and acid rain treatments (pH 3.3, 4.5 and 5.2). Ozone exposures (14 or 170 nl l−1) were made in open-top chambers, and in continously stirred tank reactors (14, 160 or 320 nl l−1) located in the field and laboratory, respectively. The CERs of whole shoots were measured in an open infrared gas analysis system at 6 levels of photosynthetic photon flux density (0, 33, 60, 410, 800 and 1660 μmol m−2 s−1). Treatment effects were not consistent between field- and laboratory-exposed seedlings. Ozone-treated field seedlings exhibited statistically significant reductions in light-saturated CER of 12.5 and 25% when measured at 6 and 13 weeks, respectively. Laboratory seedlings exhibited mixed responses to O3, with one family showing reduced CER only after 6 weeks of O3 exposure and the other only after 13 weeks (O3 >160 nl l−1 for both). After 13 weeks of exposure, pH 3.3, and 4.5 rain treatments enhanced light-saturated CER by an average of 52% over that observed in seedlings exposed to the pH 5.2 treatment. Enhanced CERs due to acid rain were of the same magnitude (3–5 μmol CO2g−1 s−1) as ozone-induced CER reductions. No differences in dark respiration were detected between treatments. Although ozone and acid rain treatments altered seedling CER, the differences were not translated into altered final plant dry weights over the 13-week exposure period.  相似文献   

6.
Nitrogen nutrition of C3 plants at elevated atmospheric CO2 concentrations   总被引:5,自引:0,他引:5  
The atmospheric CO2 concentration has risen from the preindustrial level of approximately 290 μl l−1 to more than 350 μl l−1 in 1993. The current rate of rise is such that concentrations of 420 μl l−1 are expected in the next 20 years. For C3 plants, higher CO2 levels favour the photosynthetic carbon reduction cycle over the photorespiratory cycle, resulting in higher rates of carbohydrate production and plant productivity. The change in balance between the two photosynthetic cycles appears to alter nitrogen and carbon metabolism in the leaf, possibly causing decreases in nitrogen concentrations in the leaf. This may result from increases in the concentration of storage carbohydrates of high molecular weight (soluble or insoluble) and/or changes in distribution of protein or other nitrogen containing compounds. Uptake of nitrogen may also be reduced at high CO2 due to lower transpiration rates. Decreases in foliar nitrogen levels have important implications for production of crops such as wheat, because fertilizer management is often based on leaf chemical analysis, using standards estimated when the CO2 levels were considerably lower. These standards will need to be re-evaluated as the CO2 concentration continues to rise. Lower levels of leaf nitrogen will also have implications for the quality of wheat grain produced, because it is likely that less nitrogen would be retranslocated during grain filling.  相似文献   

7.
The floating angiosperm Lemna gibba L. was exposed for 2 h to various combinations of photosynthetic photon flux densities and temperature. The extent of photoinhibition of photosynthesis was assayed by measuring the net CO2 uptake before and after a photoinhibitory treatment, and the time course for photoinhibition was studied. It was found that the maximum quantum yield and the light-saturated rate of CO2 uptake were affected by the interaction between light and temperature during the photoinhibitory treatment. At a constant photon flux density of 650 μmol m−2 s−1 the extent of photoinhibition increased with decreasing temperature showing that even a chilling-resistant plant like L. gibba is much more susceptible to photoinhibition at chilling temperatures. About 60% photoinhibition of the quantum yield for CO2 uptake could be obtained either by a high photon flux density of 1 750 μmol m−2 s−1 and 25°C or by a moderate photon flux density of 650 μmol m−2 s−1 and 3°C. The time courses of recovery from 60% photoinhibition produced by either of these two treatments were similar, indicating that the nature of the photoinhibition was intrinsically similar. The extent of photoinhibition was related to the amount of light absorbed in excess to what could be handled by photosynthesis at that temperature. The vital importance of photosynthesis in alleviating photoinhibition is discussed.  相似文献   

8.
Two rice ( Oryza sativa L.) cultivars of contrasting morphologies, IR-36 and Fujiyama-5, were exposed to ambient (360 μl l−1) and ambient plus 300 μl l−1 CO2 from time of emergence until ca 50% grain fill at the Duke University Phytotron, Durham, North Carolina. Exposure to increased CO2 resulted in about a 50% increase in the photosynthetic rate for both cultivars and photosynthetic enhancement was still evident after 3 months of exposure to a high CO2 environment. The photosynthetic response at 5% CO2 and the response of CO2 assimilation (A) to internal CO2 (Ci) suggest a reallocation of biochemical resources from RuBP carboxylation to RuBP regeneration. Increases in total plant biomass at elevated CO2 were approximately the same in both cultivars, although differences in allocation patterns were noted in root/shoot ratio. Differences in reproductive characteristics were also observed between cultivars at an elevated CO2 environment with a significant increase in harvest index for IR-36 but not for Fujiyama-5. Changes in carbon allocation in reproduction between these two cultivars suggest that lines of rice could be identified that would maximize reproductive output in a future high CO2 environment.  相似文献   

9.
Photosynthetic response of Eragrostis tef to temperature   总被引:1,自引:0,他引:1  
Photosynthetic characteristics of leaves of tef, Eragrostis tef (Zucc.) Trotter, plants, grown at 25/15°C (day/night), were measured at temperatures from 18 to 48°C. The highest carbon exchange rates (CER) occurred between 36 and 42°C. and averaged 27 μmol m−2 s−1. At lower or higher temperatures, CER was reduced, but the availability of CO2 to the mesophyll, measured as internal CO2 concentration, was highest when temperatures were above or below the optimum for CER. In addition, CER and stomatal conductance were not correlated, but residual conductance was highly correlated with CER (r = 0.98). In additional experiments, relative 13C composition for leaf tissue grown at 25, 35 and 45°C averaged -14.4 per mille, confirming that tef is a C4 grass species. Dry matter accumulation was higher at 35 than at 25, and lowest at 45°C. Leaf CER rates increased hyperbolically with increased light when measured from 0 to 2000 μmol m−2 s−1 PPFD. The highest CER, 31.8 μ-mol m-2 s−1, occurred at 35°C and 2000 μmol m−2 s−1 PPFR. At high light, CER at 25 and 35°C were nearly equal because of higher stomatal conductance at 25°C. Residual conductance was, however, clearly highest at 35°C compared to 25 and 45°C treatments. Stomatal conductance and residual conductance were not correlated in either set of experiments, yet residual conductance was always highest when temperatures were between 35 and 42°C across experiments, suggesting that internal leaf photosynthetic potential was highest across that temperature range.  相似文献   

10.
Abstract: The concentration dependency of the impact of elevated atmospheric CO2 concentrations on Arabidopsis thaliana L. was studied. Plants were exposed to nearly ambient (390), 560, 810, 1240 and 1680 μl I-1 CO2 during the vegetative growth phase for 8 days. Shoot biomass production and dry matter content were increased upon exposure to elevated CO2. Maximal increase in shoot fresh and dry weight was obtained at 560 μl I-1 CU2, which was due to a transient stimulation of the relative growth rate for up to 3 days. The shoot starch content increased with increasing CO2 concentrations up to two-fold at 1680 μl I-1 CO2, whereas the contents of soluble sugars and phenolic compounds were hardly affected by elevated CO2. The chlorophyll and carotenoid contents were not substantially affected at elevated CO2 and the chlorophyll a/b ratio remained unaltered. There was no acclimation of photosynthesis at elevated CO2; the photosynthetic capacity of leaves, which had completely developed at elevated CO2 was similar to that of leaves developed in ambient air. The possible consequences of an elevated atmospheric CO2 concentration to Arabidopsis thaliana in its natural habitat is discussed.  相似文献   

11.
Abstract: Very large numbers (3466 ml−1) of ciliated protozoa were found living beneath the oxic-anoxic boundary in a stratified freshwater pond. Most ciliates (96%) contained symbiotic algae ( Chlorella spp.). Peak abundance was in anoxic water with almost 1 mol free CO2 m−3 and a midday irradiance of 6 μmol photon m−2 s−1. Photosynthetic rate measurements of metalimnetic water indicated a light compensation point of 1.7 μmol photon m−2 s−1 which represents 0.6% of sub-surface light. We calculate that photosynthetic evolution of O2 by symbionts is sufficient to meet the demand of the host ciliates for 13 to 14 hours each day. Each 'photosynthetic ciliate' may therefore become an aerobic island surrounded by anoxic water.  相似文献   

12.
The main objective of the present work was to examine the effects of the red:far-red ratio (R:FR) prevailing during leaf development on the photosynthetic capacity of mature leaves. Plants of Phaseolus vulgaris L. cv. Balin de Albenga were grown from time of emergence in a controlled environment room, 25 ± 3°C, 12-h photoperiod, with different light treatments:a) high photosynthetic photon flux density (PPFD) = 800 μmol m−1 s−1+ high R:FR= 1.3;b) low PPFD= 300 μmol m−2 s−1+ high R:FR= 1.3; c) high PPFD=800 μmol m−2 s−1+ low R:FR= 0.7; d) low PPFD= 300 μmol m−2s−1+ low R:FR=0.7. With an R:FR ratio of 1.3, a decrease in irradiance during leaf growth reduced photosynthesis when measured at moderate to high PPFD; but when measured at low PPFD, leaves expanded under low irradiance actually had photosynthesis rates higher than those of leaves grown in high irradiance. A low R:FR ratio during development reduced the photosynthetic capacity of the leaves. In leaves expanded under R:FR = 0.7 and high irradiance photosynthesis was reduced by 42 to 89%, depending on the PPFD at which measurements were made, whereas for leaves developed at R:FR = 0.7 and low irradiance photosynthesis decreased by 21 to 24%, compared to leaves under R:FR = 1.3 and similar irradiance. The reduced photosynthetic capacity under R:FR = 0.7 and high irradiance. In natural environments, leaves may experience low R:FR conditions temporarily during their development, and this may affect their future photosynthetic capacity in full sunlight.  相似文献   

13.
The physiological characteristics of holm oak ( Quercus ilex L.) resprouts originated from plants grown under current CO2 concentration (350 μl l−1) (A-resprouts) were compared with those of resprouts originated from plants grown under elevated CO2 (750 μl l−1) (E-resprouts). At their respective CO2 growth concentration, no differences were observed in photosynthesis and chlorophyll fluorescence parameters between the two kinds of resprout. E-resprouts appeared earlier and showed lower stomatal conductance, higher water-use efficiency and increased growth (higher leaf, stem and root biomass and increased height). Analyses of leaf chemical composition showed the effect of elevated [CO2] on structural polysaccharide (higher cellulose content), but no accumulation of total non-structural carbohydrate on area or dry weight basis was seen. Four months after appearance, downregulation of photosynthesis and electron transport components was observed in E-resprouts: lower photosynthetic capacity, photosystem II quantum efficiency, photochemical quenching of fluorescence and relative electron transport rate. Reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) activity, deduced from the maximum carboxylation velocity of RuBisCo, accounts for the observed acclimation. Increased susceptibility of photosynthetic apparatus to increasing irradiance was detected in E-resprouts.  相似文献   

14.
The effect of long-term exposure to different inorganic carbon, nutrient and light regimes on CAM activity and photosynthetic performance in the submerged aquatic plant, Littorella uniflora (L.) Aschers was investigated. The potential CAM activity of Littorella was highly plastic and was reduced upon exposure to low light intensities (43 μmol m−2 s−1), high CO2 concentrations (5.5 mM, pH 6.0) or low levels of inorganic nutrients, which caused a 25–80% decline in the potential maximum CAM activity relative to the activity in the control experiments (light: 450 μmol m−2 s−1; free CO2: 1.5 mM). The CAM activity was regulated more by light than by CO2, while nutrient levels only affected the activity to a minor extent. The minor effect of low nutrient regimes may be due to a general adaptation of isoetid species to low nutrient levels.
The photosynthetic capacity and CO2 affinity was unaffected or increased by exposure to low CO2, irrespective of nutrient levels. High CO2, low nutrient and low light, however, reduced the capacity by 22–40% and the CO2 affinity by 35-45%, relative to control.
The parallel effect of growth conditions on CAM activity and photosynthetic performance of Littorella suggest that light and dark carbon assimilation are interrelated and constitute an integrated part of the carbon assimilation physiology of the plant. The results are consistent with the hypothesis that CAM is a carbon-conserving mechanism in certain aquatic plants. The investment in the CAM enzyme system is beneficial to the plants during growth at high light and low CO2 conditions.  相似文献   

15.
Three levels of atmospheric CO2 and 2 levels of relative humidity (RH) during the rooting period were tested for their effect on several factors presumed to influence adventitious root formation in leafy pea ( Pisum sativum L. cv. Alaska) cuttings. Compared to normal CO2 levels (350 μl l−1), neither 1800 nor 675 μl l−1 CO2 affected the rooting percentage or the number of roots per cutting. However, 1800 μl l−1 CO2 increased root and shoot dry weight, root length, carbohydrate levels in the base of the cuttings and water potential (Ψw) of cuttings compared to normal levels of CO2. Compared to 87% RH. 55% RH decreased all of the above parameters, including the number of roots per cutting. A polyvinyl chloride antitranspirant (which partially blocks stomata and slows photosynthesis) applied simultaneously with 87% RH increased Ψw and root length but lowered all of the other above parameters, compared to 87% RH without antitranspirant. Increasing current photosynthate (products of photosynthetic activity after excision), carbohydrate, or Ψw either alone or together was associated with increased root system size but not necessarily with increased rooting percentage or root number. The data are consistent with a hypothesis that the number of roots per cutting increased with increasing current photosynthate and carbohydrate until some other factor became limiting. Also, the effect of Ψw on rooting percentage and root number was mediated through its effect on current photosynthate and carbohydrate.  相似文献   

16.
Bean ( Phaseolus vulgaris L. cv. Golden Saxa) plants were grown under low artificial light or under natural daylight. The rate of net photosynthesis (PN) was measured at: CO2 partial pressure, p(CO2), of 0.03, 0.09 or 0.15 kPa; O2 partial pressure, p(O2), of 2, 21 or 31 kPa and at light intensities of 350 or 1000 μmol m−2 s−1 (photosynthetically active radiation). In plants which had been grown under natural light, stimulation of PN at 21 kPa p(O2) was found only at elevated p(CO2) and high light. It is proposed that this phenomenon is dependent on a high capacity of the photosynthetic apparatus to regenerate ribulose 1.5-bisphosphate.  相似文献   

17.
The oxygen requirement for stomatal opening in maize plants ( Zea mays L. hybrid INRA 508) was studied at different CO2 concentrations and light intensities. In the absence of CO2, stomatal opening always required O2, but this requirement decreased with increasing light intensity. In darkness, the lowest O2 partial pressure needed to obtain a weak stomatal movement was about 50 Pa. This value was lowered to ca 10 Pa in light (320 μmol m−2 s−1).
On the other hand. in the absence of O2, CO2enabled stomatal opening to occur in the light, presumably due to the evolved photosynthetic O2. Thus, CO2, which generally reduced stomatal aperture, could induce stomatal movement in anoxia and light. The effect of CO2 on stomatal opening was closely dependent on O2 concentration and light intensity. Stomatal aperture appeared CO2-independent at an O2 partial pressure which was dependent on light intensity and was about 25 Pa at 320 umol m−2 s−1.
The presence of a plasmalemma oxidase, in addition to mitochondrial oxidase, might explain the differences in the O2 requirement at various light intensities. The possible involvement of such a system in relation to the effect of CO2 is discussed.  相似文献   

18.
A high-altitude ecotype of tomato ( Lycopersicon hirsutum f. typicum Humb. and Bonpl.) has previously been shown to resist further loss of photosynthetic function after three to four days of chilling stress. This study examined the influence of PPFD prior to, and during chilling on the development of protective zeaxanthin and energy-dependent quenching mechanisms in this ecotype. Five-week-old tomato plants were acclimated to either low PPFD (60 μmol m−2 s−1) or high PPFD (550 μmol m−2 S−1) at 25/20°C (day/night) for three days, and then exposed to a temperature of 5/5°C and a PPFD of either 60 or 550 μmol m−2 s−1 for three days. The plants acclimated to low PPFD had lower Chl a/b ratio, and lower level of total Chl per leaf area, total xanthophyll cycle pool and β-carotene. The capacity of their photosynthetic system to resist photoinhibition and to recover photosynthetic function was also lower compared to that of the plants acclimated at high PPFD but exposed to the same chilling stress. In the plants chilled at low PPFD, energy-dependent quenching preceded the formation of zeaxanthin on the first day of chilling and there was an overall reduction in the conversion of violaxanthin to zeaxanthin as compared to the plants chilled at high PPFD. During the last day of chilling-induced photoinhibition, energy-dependent quenching in any of the treatments did not increase, but zeaxanthin levels increased continuously throughout the three days of chilling. Our results suggest that light-acclimation before chilling affects the capacity of the plants to resist chilling-induced photoinhibition. In addition, photoinhibitory quenching appears to be a major component for quenching excessive energy at the latter stage of long-term chilling.  相似文献   

19.
The functioning of the photosynthetic apparatus during leaf senescence was investigated in alstroemeria cut flowers by a combination of gas-exchange measurements and analysis of in vivo chlorophyll fluorescence. Chlorophyll loss in leaves of alstroemeria cut flowers is delayed by light and by a treatment of the cut flowers with gibberellic acid (GA3). The maximal photosynthesis of the leaves was approximately 6 μmol CO2 m−2 s−1 at I 350 μmol m−2 s−1 (PAR) which is relatively low for intact C3 leaves. Qualitatively the gas-exchange rates followed the decline in chlorophyll content for the various treatments, i.e. light and GA3-treatment delayed the decline in photosynthetic rates. However, when chlorophyll loss could not yet be observed in the leaves, photosynthetic rates were already strongly decreased. In vivo fluorescence measurements revealed that the decrease in CO2 uptake is (partly) due to a decreased electron flow through photosystem II. Furthermore, analysis of the fluorescence data showed a high nonphotochemical quenching under all experimental conditions, indicating that the consumption of reducing power in the Calvin cycle is very low. The chlorophyll, remaining after 9 days incubation of leaves with GA3 in the dark should be considered as a 'cosmetic' pigment without any function in the supply of assimilates to the flowers.  相似文献   

20.
Pinus banksiana seedlings were grown for 9 months in enclosures in greenhouses at CO2 concentrations of 350 or 750 μmol mol−1 with either low (0.005 to 0. 3 W m−2) or high (0.25 to 0. 90 W m−2) ultraviolet-B (UV-B) irradiances. Total seedling dry weight decreased with high UV treatment but was unaffected by CO2 enrichment. High UV treatment also shifted biomass partitioning in favor of leaf production. Both CO2 and UV treatments decreased the dark respiration rate and light compensation point. High UV light inhibited photosynthesis at 350 but not at 750 μmol mol−1 CO2 due to a UV induced increase in ribulose-1, 5-bisphosphate carboxylase/oxygenase efficiency and ribulose-1, 5-bisphosphate regeneration. Stomatal density was increased by high UV irradiance but was unchanged by CO2 enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号