首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Irradiation of DNA in aqueous solution or in cells with gamma-rays results in different mutational spectra, indicating that in both situations different patterns of DNA damages are induced. One of the causes for these different types of damages might be the formation of secondary, organic radicals, if cells are irradiated. Some organic compounds, including the amino acid phenylalanine, are well known to produce radicals during irradiation. Under oxic conditions these secondary radicals react with oxygen, thus forming peroxyl radicals which can be very harmful to DNA, and which may, therefore, induce DNA damage leading to mutations. This study examines the influence of the presence of phenylalanine during gamma-irradiation of DNA in aqueous solution under oxic conditions. The results indicate that the formation of phenylalanine radicals influences the types of induced mutations in the gamma-radiation-induced mutation spectrum. The most prominent difference is the increase in G:C to T:A transversions and the decrease in G:C to A:T transitions in the presence of phenylalanine. Further, it appears that the gamma-radiation-induced mutation spectrum after irradiation of DNA in aqueous solution is more comparable to the intracellular gamma-radiation-induced mutation spectrum in E. coli cells, if phenylalanine is present during irradiation. Therefore, these results suggest that the presence of phenylalanine during irradiation of DNA in aqueous solution gives a better impression of gamma-radiation-induced mutations in bacterial systems than water only.  相似文献   

2.
DNA double-strand breaks (DSBs) are 2.9 times more frequently induced in yeast cells exposed to sparsely ionizing 30-MeV electrons under oxic compared to anoxic conditions. The rejoining of DSBs induced under anoxic conditions was investigated under conditions allowing repair of potentially lethal damage and compared to the rejoining of DSBs induced in oxic cells. In contrast to the biphasic rejoining kinetics of DSBs induced in oxic cells, the rejoining kinetics of DSBs induced in anoxic cells is complicated by the formation of secondary DSBs. These arise during postirradiation incubation of cells, presumably as a consequence of repair processes acting on radiation-induced lesions other than DSBs. These secondary DSBs may at least partially explain the finding that a greater fraction of unrejoinable DSBs is present in cells irradiated under anoxic compared to oxic conditions. As a consequence, the oxygen enhancement ratio of the yield of the remaining DSBs is decreasing in the course of DSB rejoining.  相似文献   

3.
Experiments in which the yields of radiation-induced OH and H radicals were varied, showed that both types of water radicals inactivate phi X174 RF DNA to about the same extent as measured by transfection of the (irradiated) DNA to E. coli wild-type spheroplasts. On the other hand, using spheroplasts prepared from E. coli strains, deficient in one of the proteins involved in excision DNA repair (uvrA- or uvrC-) or in post-replication repair (recA-), clear differences between damage originating from OH or H radical attack were found. Part of the radiation damage due to H radicals appeared to be repairable by an uvrA-gene-dependent repair mechanism, whereas this repair pathway does not play an important role in the case of OH radical damage. The reverse applies to uvrC-gene-dependent repair, which only affects OH radical damage (obtained under anoxic conditions), but has no influence on damage due to H radicals. Irradiation of double-stranded phi X174 (RF) DNA in the presence of oxygen however, yields damage--due to OH radicals only--which appeared not to be sensitive to either uvrC- or uvrA-gene-dependent repair. Furthermore, post-replication repair (recA) has only very little effect on the amount of inactivation by H or OH radicals, when irradiation is carried out under anoxic conditions. We did not find significant inactivation due to hydrated electrons, whether the biological activity was determined by use of wild-type spheroplasts or of strains deficient in excision or post-replication repair proteins.  相似文献   

4.
The effect of diamide on the radiosensitivity of T-cells was investigated under oxic and anoxic conditions. The compound was found to sensitize the cells under both conditions. Under oxic conditions, exposure for 10 min before and during irradiation to 0.1, 0.5 and 1.0 mM diamide produced dose-modifying factors of 0.81, 0.60 and 0.55, respectively. Under anoxic conditions, exposure for 10 min before and during irradiation to 0.5 mM produced a dose-modifying factor of 0.34. When the cells in oxic conditions were exposed for just 20 min before irradiation, the sensitizing effect was smaller, but some sensitization effect was still apparent after a 120 min interval between diamide treatment and irradiation. Diamide also sensitized the cells after irradiation, but this effect was less than when it was present during irradiation. The presence of whole rat-blood in the incubation medium prevented sensitization. No sensitization could be detected in the whole animal. It is proposed that sensitization is due to lack of capacity for repair of radicals by hydrogen transfer and biochemical repair processes.  相似文献   

5.
The relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) were determined in the yeast Saccharomyces cerevisiae for the induction of gene conversion (the product of recombinational repair) and mutation (the product of error prone repair) by 14.5-MeV neutrons in comparison with 60Co gamma rays and 150 KVp X rays. Neutron irradiation in oxic or anoxic conditions induced significantly higher yields of convertants and mutants than sparsely ionizing radiations under the same conditions. RBEs for both gene conversion and mutation under anoxia were significantly higher than under oxic conditions. RBEs for mutant induction under anoxia were lower than the RBEs for gene conversion under the same conditions. The data support the hypothesis that the production of lesions leading to the genetic consequences of gene conversion and mutation differ in their dependence upon LET and the presence of oxygen during irradiation, and therefore the two DNA repair processes which produce these end points recognize, at least in part, different classes of damage.  相似文献   

6.
Photorhabdus temperata is a bioluminescent bacterium that lives in mutualistic association with entomopathogenic nematodes of the genus Heterorhabditis. The bacterium exists in two morphologically distinguishable phases (primary and secondary). The swimming behavior of P. temperata was investigated. Both the primary and secondary variants were able to swim in liquid or semisolid media under appropriate conditions. Variation in the oxygen levels had little affect on the chemotaxis and motility of the primary form, but greatly influenced the behavior of the secondary form. Under oxic conditions the secondary form was nonmotile, but motility was induced under anoxic conditions. Several phenotypic traits of the primary form were not expressed under anoxic conditions. The constituents of the growth media affected the motility of both variants. P. temperata required additional NaCl or KCl for optimum motility and chemotaxis. Optimal chemotactic behavior required the presence of bacto-peptone and yeast extract in the swim-migration medium. A mutant that was isolated from the secondary form was able to swim under oxic conditions and possessed an altered salt requirement for motility.  相似文献   

7.
Gamma-ray-induced DNA single-strand scissions and the ability to repair the scissions in spermatogonia from young mice and in spermatozoa from adult mice were studied quantitatively by an alkaline sucrose density-gradient centrifugation method. The average size of DNAs in non-irradiated spermatogonia was 2.6–3.0 × 108 daltons, similar to those of a spermatid-rich population, and the size of DNA in non-irradiated spermatozoa was 1.2 × 108 daltons.In spermatogonia, the radiosensitivity of DNA was 0.42 single-strand breaks/ 1012 daltons of DNA/rad in oxic conditions and only 0.24 under anoxic conditions. In spermatozoa the break efficiency of DNA was 0.22 single-strand breaks/1012 daltons of DNA/rad under oxic conditions and altered little under anoxic irradiation. The DNA scissions were efficiently repaired in spermatogonia within 10 min, whereas the breaks in spermatozoa were not rejoined at all even after two days of post-irradiation time.The radiosensitivities of DNA, repair capability and non- and/or slow-reparable DNA scissions were compared in spermatogonium-rich, spermatid-rich and spermatozoan-rich populations.  相似文献   

8.
Chemical reduction of mitosenes under aerobic conditions in DMSO showed characteristic ESR signals of the mitosene derived semiquinone free radicals. However, these signals diminished strongly upon addition of water to the reaction mixture, indicating a short lifetime of the mitosene semiquinone free radicals under aqueous conditions. In addition, enzymatic one-electron reduction of these mitosenes with either xanthine oxidase or purified NADPH cytochrome P450 reductase under anaerobic conditions showed no signals of the mitosene semiquinone free radicals. Subsequent cyclic voltammetry measurements demonstrated facilitation of the further one-electron reduction of the mitosene semiquinone free radicals in the presence of water in comparison with non-aqueous conditions. The present results strongly suggest that in the presence of water relatively stable hydroquinones are formed upon reduction of mitosenes. Consequently, the steady state concentrations of mitosene semiquinone free radicals will be lowered substantially in aqueous environment. Thus under physiological conditions, two-electron reduction and formation of the mitosene hydroquinone might be important in processes leading to DNA alkylation by these mitosenes.  相似文献   

9.
When an aqueous solution of double-stranded DNA of bacteriophage PM2 containing phenylalanine and saturated with N2O is irradiated with gamma-rays, radiation-induced phenylalanine radicals are bound covalently. Under the conditions used, about 25 phenylalanine molecules may be bound per lethal hit. For single-stranded PM2 DNA, most of the phenylalanine radicals bound are non-lethal. Evidence is presented that, in double-stranded DNA, an appreciable fraction of the single-strand breaks is induced by phenylalanine radicals. Radiation products of phenylalanine and the phenylalanine bound to the DNA decrease the sensitivity of the DNA to the induction of single-strand breaks. There are indications that the high efficiency of protection by radiation products of phenylalanine is due to their positive charge, which will result in a relatively high concentrations fo these compounds in the vicinity of the negatively-charged DNA molecules.  相似文献   

10.
A meromictic lake ecosystem (Mahoney Lake, BC, Canada) was investigated to elucidate the significance of chemocline bacteria in the total carbon cycle under natural conditions. In this lake, primary production by oxygenic phototrophs was insufficient to support the observed net secondary production of the calanoid copepod Diaptomus connexus and the rotifer Brachionus plicatilis , indicating the presence of additional food sources for consumers. Mahoney Lake harbours the densest population of phototrophic sulphur bacteria ever reported in a natural body of water. This layer is located at the interface between oxic and anoxic water layers and is dominated by the purple sulphur bacterium Amoebobacter purpureus . The transfer rates of A. purpureus carbon to D. connexus determined in stratified mesocosms were very low (0.71 ngC copepod−1 day−1) and accounted for only 0.6% of the observed net biomass increase in the zooplankter. Stable stratification within the mesocosms prevented an upwelling of A. purpureus into the oxic part. However, measurements of carbon fluxes, infrared fluorescence microscopy and stable carbon analysis provided cumulative evidence that, under in situ conditions, the cell carbon of purple sulphur bacteria indeed enters the aerobic food chain via the grazing activity of D. connexus . Based on a two-source isotopic mixing model, A. purpureus represents at least 75–85% of the diet of D . connexus . Autumnal upwelling into oxic water layers and aggregation of A . purpureus cells appear to be the main factors determining the high carbon flux from purple sulphur bacteria to zooplankton under natural conditions, and most probably also play a key role in other aquatic ecosystems. Through this pathway, over 53% of the reduced organic matter of purple sulphur bacteria trapped in anoxic bottom waters is returned to the oxic realm.  相似文献   

11.
When poly(dA), poly(dA-dT), and salmon testis DNA were gamma-irradiated under nitrogen, the major deoxyadenosine damage product (excluding liberated adenine) was identified as the alpha-anomer of deoxyadenosine. The yields of alpha-deoxyadenosine from poly(dA), poly(dA-dT), and salmon testis DNA irradiated with a dose of 500 Gy under anoxic conditions were 1.5, 1.3, and 1.3%, respectively. No alpha-deoxyadenosine was detected after irradiation under oxic conditions. The presence of nucleotides with the alpha-configuration at the anomeric carbon atom in the DNA chain may have a significant effect on its tertiary structure and possibly modify its biological activity.  相似文献   

12.
Two types of X-ray-induced base damages, alkali-labile sites and thymine ring saturation products, were quantitated in PM2 DNA irradiated in the phage capsid under oxic and anoxic conditions. The extent of formation of these base damages was compared with the number of single- and double-strand breaks and lethal hits produced under the same conditions. The individual inactivation efficiencies of alkali-labile sites and thymine ring saturation products were determined by selectively inducing each of these damages in isolated PM2 DNA by chemical means in vitro and determining the rate of biological inactivation of the treated DNA by transfection. For each lethal X-ray hit induced in oxic conditions there were 1.06 alkali-labile sites, 0.40 thymine ring saturation products, 2.09 singe-strand breaks and 0.11 double-strand breaks in the PM2 genome. In anoxic conditions, the respective number of lesions was 1.00, 0.19, 1.73 and 0.09. The individual inactivation efficiencies of thymine ring saturation products and alkali-labile sites were found to be essentially equal, 7-8 lesions per lethal event in the PM2 genome. Alkali-labile sites and thymine ring saturation products together accounted for 15-20% of the biological inactivation of X-irradiated bacteriophage PM2. The presence or absence of oxygen during irradiation did not affect the contribution to inactivation made by alkali-labile sites, but the contribution by thymine ring saturation products to inactivation was about 2-fold higher in oxic compared with anoxic conditions. With the 4 lesions measured, we have accounted for some 28-34% of the lethal events in X-irradiated PM2 phage, most of the remaining events being caused by as yet unidentified base damages.  相似文献   

13.
Base excision repair (BER) is a very important repair mechanism to cope with oxidative DNA damage. One of the most predominating oxidative DNA damages after exposure to ionizing radiation is 7, 8-dihydro-8-oxoguanine (8oxoG). This damage is repaired by formamidopyrimidine-DNA glycosylase (Fpg), a DNA glycosylase which is part of BER. Correct repair of 8oxoG is of great importance for cells, because 8oxoG has strong miscoding properties. Mispairing of 8oxoG with adenine instead of cytosine results in G:C to T:A transversion mutations. To determine the effect of a Fpg-deficiency on the spontaneous and gamma-radiation-induced mutation spectrum in the lacZ gene, double-stranded (ds) M13 DNA, with the lacZalpha gene inserted as mutational target, was irradiated with gamma-rays in aqueous solution under oxic conditions. Subsequently, the DNA was transfected into a wild-type Escherichia coli strain (JM105) and an isogenic Fpg-deficient E. coli strain (BH410). Although the overall spontaneous mutation spectra between JM105 and BH410 seemed similar, remarkable differences could be observed when the individual base pair substitutions were viewed. The amount of C to A transversions, which are most probably caused by unrepaired 8oxoG, has increased 3. 5-fold in the spontaneous BH410 spectrum. When the gamma-radiation-induced mutation spectra of JM105 and BH410 were compared, there was even a larger increase of C to A transversions in the BH410 strain (7-fold). We can therefore conclude that the straightforward approach used in this study confirms the importance of Fpg in repair of gamma-radiation-induced damage, and most probably especially in the repair of 8oxoG.  相似文献   

14.
Bacterial biomass production is often estimated from incorporation of radioactively labeled leucine into protein, in both oxic and anoxic waters and sediments. However, the validity of the method in anoxic environments has so far not been tested. We compared the leucine incorporation of bacterial assemblages growing in oxic and anoxic waters from three lakes differing in nutrient and humic contents. The method was modified to avoid O(2) contamination by performing the incubation in syringes. Isotope saturation levels in oxic and anoxic waters were determined, and leucine incorporation rates were compared to microscopically observed bacterial growth. Finally, we evaluated the effects of O(2) contamination during incubation with leucine, as well as the potential effects of a headspace in the incubation vessel. Isotope saturation occurred at a leucine concentration of above about 50 nM in both oxic and anoxic waters from all three lakes. Leucine incorporation rates were linearly correlated to observed growth, and there was no significant difference between oxic and anoxic conditions. O(2) contamination of anoxic water during 1-h incubations with leucine had no detectable impact on the incorporation rate, while a headspace in the incubation vessel caused leucine incorporation to increase in both anoxic and O(2)-contaminated samples. The results indicate that the leucine incorporation method relates equally to bacterial growth rates under oxic and anoxic conditions and that incubation should be performed without a headspace.  相似文献   

15.
Using a human fibroblast strain deficient in glutathione synthetase and a related proficient control strain, the role of glutathione (GSH) in repair of potentially lethal damage (PLD) has been investigated in determining survival by plating cells immediately or 24 h after irradiation. After oxic or hypoxic irradiation, both cell strains repair radiation-induced damage. However, under hypoxic conditions, the proficient cells repair PLD as well as under oxic conditions while the deficient cells repair less PLD after irradiation under hypoxic than under oxic conditions. Therefore, the oxygen enhancement ratio (o.e.r.) for proficient cells is similar whether the cells are plated immediately or 24 h later (2.0 and 2.13, respectively). In contrast, the o.e.r. for deficient cells is lower when the cells are plated 24 h after irradiation than when they are plated immediately thereafter (1.16 as compared to 1.55). The results indicate that GSH is involved in PLD repair and, in particular, in the repair of damage induced by radiation delivered under hypoxic conditions.  相似文献   

16.
Bacterial biomass production is often estimated from incorporation of radioactively labeled leucine into protein, in both oxic and anoxic waters and sediments. However, the validity of the method in anoxic environments has so far not been tested. We compared the leucine incorporation of bacterial assemblages growing in oxic and anoxic waters from three lakes differing in nutrient and humic contents. The method was modified to avoid O2 contamination by performing the incubation in syringes. Isotope saturation levels in oxic and anoxic waters were determined, and leucine incorporation rates were compared to microscopically observed bacterial growth. Finally, we evaluated the effects of O2 contamination during incubation with leucine, as well as the potential effects of a headspace in the incubation vessel. Isotope saturation occurred at a leucine concentration of above about 50 nM in both oxic and anoxic waters from all three lakes. Leucine incorporation rates were linearly correlated to observed growth, and there was no significant difference between oxic and anoxic conditions. O2 contamination of anoxic water during 1-h incubations with leucine had no detectable impact on the incorporation rate, while a headspace in the incubation vessel caused leucine incorporation to increase in both anoxic and O2-contaminated samples. The results indicate that the leucine incorporation method relates equally to bacterial growth rates under oxic and anoxic conditions and that incubation should be performed without a headspace.  相似文献   

17.
18.
P Unrau 《Radiation research》1987,111(1):92-100
Mitotic gene conversion was induced in the diploid yeast strain D7.rad6 which lacks "error-prone repair" and thus does not mutate. Neutrons (14.5 MeV), 60Co gamma rays, and 150 kVp X rays delivered under oxic or anoxic conditions were compared for their ability to induce gene conversion. Doses were chosen to minimize cell killing. A lack of induced mutation in this strain at the ilv1-92 allele was confirmed. Gene conversion of the trp5-27/trp5-12 alleles was induced with a linear dose response, and the yield of convertants per gray was significantly enhanced over yields reported previously for a wild-type stain. The relative biological effectiveness (RBE) of neutrons relative to low-LET radiations was found to be about 2.2 for either oxic or anoxic radiation in contrast to wild-type where the oxic RBE was 1.7 and the anoxic RBE 2.7. Absence of the rad6 function was therefore associated with an altered RBE for the conversional end point. The oxygen enhancement ratio (OER) for gene conversion was found to be about 1.7 for all radiations in contrast to the wild type where the OER for neutrons was 1.7, but for low-LET radiations it was 2.7. As repair of ionizing damage in the rad6 strain did not lead to mutation, owing to the loss of "error-prone repair," the changes in yield, RBE, and OER were consistent with the hypothesis that some of the lesions processed by wild type to generate mutations could, in the rad6 strain, lead instead to gene conversion.  相似文献   

19.
The effects of carbon deprivation on survival of methanotrophic bacteria were compared in cultures incubated in the presence and absence of oxygen in the starvation medium. Survival and recovery of the examined methanotrophs were generally highest for cultures starved under anoxic conditions as indicated by poststarvation measurements of methane oxidation, tetrazolium salt reduction, plate counts, and protein synthesis. Methylosinus trichosporium OB3b survived up to 6 weeks of carbon deprivation under anoxic conditions while maintaining a physiological state that allowed relatively rapid (hours) methane oxidation after substrate addition. A small fraction of cells starved under oxic and anoxic conditions (4 and 10%, respectively) survived more than 10 weeks but required several days for recovery on plates and in liquid medium. A non-spore-forming methanotroph, strain WP 12, displayed 36 to 118% of its initial methane oxidation capacity after 5 days of carbon deprivation. Oxidation rates varied with growth history prior to the experiments as well as with starvation conditions. Strain WP 12 starved under anoxic conditions showed up to 90% higher methane oxidation activity and 46% higher protein production after starvation than did cultures starved under oxic conditions. Only minor changes in biomass and morphology were seen for methanotrophic bacteria starved under anoxic conditions. In contrast, starvation under oxic conditions resulted in morphology changes and an initial 28 to 35% loss of cell protein. These data suggest that methanotrophic bacteria can survive carbon deprivation under anoxic conditions by using maintenance energy derived solely from an anaerobic endogenous metabolism. This capability could partly explain a significant potential for methane oxidation in environments not continuously supporting aerobic methanotrophic growth.  相似文献   

20.
Field studies in fresh and marine waters consistently show diel fluctuations in concentrations of enterococci, indicators of water quality. We investigated sunlight inactivation of Enterococcus faecalis to gain insight into photoinactivation mechanisms and cellular responses to photostress. E. faecalis bacteria were exposed to natural sunlight in clear, filtered seawater under both oxic and anoxic conditions to test the relative importance of oxygen-mediated and non-oxygen-mediated photoinactivation mechanisms. Multiple methods were used to assess changes in bacterial concentration, including cultivation, quantitative PCR (qPCR), propidium monoazide (PMA)-qPCR, LIVE/DEAD staining using propidium iodide (PI), and cellular activity, including ATP concentrations and expression of the superoxide dismutase-encoding gene, sodA. Photoinactivation, based on numbers of cultivable cells, was faster in oxic than in anoxic microcosms exposed to sunlight, suggesting that oxygen-mediated photoinactivation dominated. There was little change in qPCR signal over the course of the experiment, demonstrating that the nucleic acid targets were not damaged to a significant extent. The PMA-qPCR signal was also fairly stable, consistent with the observation that the fraction of PI-permeable cells was constant. Thus, damage to the membrane was minimal. Microbial ATP concentrations decreased in all microcosms, particularly the sunlit oxic microcosms. The increase in relative expression of the sodA gene in the sunlit oxic microcosms suggests that cells were actively responding to oxidative stress. Dark repair was not observed. This research furthers our understanding of photoinactivation mechanisms and the conditions under which diel fluctuations in enterococci can be expected in natural and engineered systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号