首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The P2-P3 amide of dipeptide cathepsin K inhibitors can be replaced by the metabolically stable trifluoroethylamine group. The non-basic nature of the nitrogen allows the important hydrogen bond to Gly66 to be made. The resulting compounds are 10- to 20-fold more potent than the corresponding amide derivatives. Compound 8 is a 5 pM inhibitor of human cathepsin K with >10,000-fold selectivity over other cathepsins.  相似文献   

2.
Ketoheterocyclic inhibitors of cathepsin K have been disclosed. SAR of potency enhancing P2-P3 groups coupled with ketoheterocyclic warheads to provide cathepsin K inhibitors have been described. In addition, a novel route to access alpha-ketothiazoles using a key thioamide functionality has been disclosed. The mild method employed allows for the presence of diverse functional groups, such as amide and carbamate functionalities, commonly found in protease inhibitors that have peptidomimetic scaffolds. This new method should provide a quick entry into functionally diverse protease inhibitors.  相似文献   

3.
Amino ketone warheads were explored as alternatives to the nitrile group of a potent and selective cathepsin K inhibitor. The resulting compounds were potent and selective inhibitors of cathepsin K and these nitrile replacements had a significant effect on metabolism and pharmacokinetics.  相似文献   

4.
Starting with the preferential dopamine (DA) D3 agonist S32504, we prepared two series of derivatives of the general formula I-A and I-B, in an effort to improve both potency and selectivity. For the first set of derivatives, where the primary amide function of S32504 was replaced by either secondary and tertiary amide or ester, acid, nitrile and ketone, no improvement was obtained. Conversely, when the primary amide function was integrated in a lactam ring, an enhancement of affinity and selectivity was attained for the five-membered ring lactam but also for its five-membered ring lactone analogue.  相似文献   

5.
To improve the pharmacokinetics of a previously reported series of dipeptidyl nitrile cathepsin B inhibitors, the P(2)-P(3) amide group was replaced with an arylamine. Further optimization of this template resulted in highly potent and selective inhibitors with excellent oral availability.  相似文献   

6.
The trifluoroethylamine group found in cathepsin K inhibitors like odanacatib can be replaced by a difluoroethylamine group. This change increased the basicity of the nitrogen which positively impacted the log D. This translated into an improved oral bioavailability in pre-clinical species. Difluoroethylamine compounds exhibit a similar potency against cathepsin K and selectivity profile against other cathepsins when compared to trifluoroethylamine analogs.  相似文献   

7.
The prodomains of several cysteine proteases of the papain family have been shown to be potent inhibitors of their parent enzymes. An increased interest in cysteine proteases inhibitors has been generated with potential therapeutic targets such as cathepsin K for osteoporosis and cathepsin S for immune modulation. The propeptides of cathepsin S, L and K were expressed as glutathione S-transferase-fusion proteins in Escherichia coli. The proteins were purified on glutathione affinity columns and the glutathione S-transferase was removed by thrombin cleavage. All three propeptides were tested for inhibitor potency and found to be selective within the cathepsin L subfamily (cathepsins K, L and S) compared with cathepsin B or papain. Inhibition of cathepsin K by either procathepsin K, L or S was time-dependent and occurred by an apparent one-step mechanism. The cathepsin K propeptide had a Ki of 3.6-6.3 nM for each of the three cathepsins K, L and S. The cathepsin L propeptide was at least a 240-fold selective inhibitor of cathepsin K (Ki = 0.27 nM) and cathepsin L (Ki = 0.12 nM) compared with cathepsin S (Ki = 65 nM). Interestingly, the cathepsin S propeptide was more selective for inhibition of cathepsin L (Ki = 0.46 nM) than cathepsin S (Ki = 7.6 nM) itself or cathepsin K (Ki = 7.0 nM). This is in sharp contrast to previously published data demonstrating that the cathepsin S propeptide is equipotent for inhibition of human cathepsin S and rat and paramecium cathepsin L [Maubach, G., Schilling, K., Rommerskirch, W., Wenz, I., Schultz, J. E., Weber, E. & Wiederanders, B. (1997), Eur J. Biochem. 250, 745-750]. These results demonstrate that limited selectivity of inhibition can be measured for the procathepsins K, L and S vs. the parent enzymes, but selective inhibition vs. cathepsin B and papain was obtained.  相似文献   

8.
Based on our previous study with trifluoroethylamine as a P2-P3 amide isostere of cathepsin K inhibitor, further optimization led to identification of compound 22 (L-873724) as a potent and selective non-basic cathepsin K inhibitor. This compound showed excellent pharmacokinetics and efficacy in an ovariectomized (OVX) rhesus monkey model. The volumes of distribution close to unity were consistent with this compound not being lysosomotropic, which is a characteristic of basic cathepsin K inhibitors.  相似文献   

9.
We have prepared a series of cathepsin K inhibitors bearing the keto-1,3,4-oxadiazole warhead capable of forming a hemithioketal complex with the target enzyme. By modifying binding moieties at the P1, P2, and prime side positions of the inhibitors, we have achieved selectivity over cathepsins B, L, and S, and have achieved sub-nanomolar potency against cathepsin K. This series thus represents a promising chemotype that could be used in diseases implicated by imbalances in cathepsin K activity such as osteoporosis.  相似文献   

10.
A series of azepanone inhibitors of cathepsin S is described. Selectivity over both cathepsin K and cathepsin L was achieved by varying the P2 substituent. Ultimately, a balanced potency and selectivity profile was achieved in compound 39 possessing a 1-methylcyclohexyl alanine at P2 and nicotinamide as the P′ substituent. The cellular potency of selected analogs is also described.  相似文献   

11.
Cathepsin K is a cysteine proteinase, primarily expressed in osteoclasts, which has a strong collagenolytic activity and plays an essential role involved in bone matrix degradation. Its inhibition could provide a novel approach to the treatment and prevention of osteoporosis. One structural class of lead compounds in our cathepsin K inhibitors program is based on an arylaminoethyl amide scaffold, which has potential metabolic weak points that might be stabilized by appropriate chemical modification(s). For the identification of potential metabolic "soft spots" and the rational design of improved derivatives, early biotransformation of a potent arylaminoethyl amide cathepsin K inhibitor (NVP-AAV490-NX) was investigated in plasma, urine and liver homogenates of rats after intravenous bolus administration of 10 mg/kg. The detection and identification of metabolites was achieved by high-resolution mass spectrometry (time-of-flight MS) and multi-dimensional mass spectrometry (ion trap MS). Both mass spectrometers were combined with reversed-phase capillary high-performance liquid chromatography columns. It was demonstrated that both mass analyzers complement each other and that, even in the sub-nanogram range, the resulting set of MS data can be successfully used to elucidate most of the metabolic changes unambiguously, solely by mass spectrometric techniques. The proposed metabolite structures were additionally corroborated by exact mass measurement of the protonated molecular ions to confirm the predicted elemental composition, by determination of the number of the exchangeable hydrogen atoms replacing water against deuterium oxide as mobile phase and, in one case, by an MS(3) product ion experiment in order to elucidate the site of conjugation.  相似文献   

12.
A mutant of the cysteine protease papain, displaying nitrile hydratase and amidase activities, was expressed in Pichia pastoris and used for the hydrolysis of peptide nitriles in aqueous-organic media. The rate of hydrolysis of these nitriles is lowered by increasing acetone concentration. This is caused by an increase of the Michaelis constant, and a variation of Vmax proportional to the amount of water in the mixture. The hydrolysis of the amide is less affected by the increase in co-solvent, which results in lower accumulation of this intermediate product. With the peptide nitrile tested, high nitrile concentrations could be used to promote the production of the amide and prevent its hydrolysis to the acid by diminishing the relative rate of amide hydrolysis. A number of non-peptidyl nitriles were also tested as potential substrates but activity was detected for only one compound with structural resemblance to peptide nitriles.  相似文献   

13.
Bone resorption in balance with bone formation is vital for the maintenance of the skeleton and is mediated by osteoclasts. Cathepsin K is the predominant protease in osteoclasts that degrades the bulk of the major bone forming organic component, type I collagen. Although the potent collagenase activity of cathepsin K is well known, its mechanism of action remains elusive. Here, we report a cathepsin K-specific complex with chondroitin sulfate, which is essential for the collagenolytic activity of the enzyme. The complex is an oligomer consisting of five cathepsin K and five chondroitin sulfate molecules. Only the complex exhibits potent triple helical collagen-degrading activity, whereas monomeric cathepsin K has no collagenase activity. The primary substrate specificity of cathepsin K is not altered by complex formation, suggesting that the protease-chondroitin sulfate complex primarily facilitates the destabilization and/or the specific binding of the triple helical collagen structure. Inhibition of complex formation leads to the loss of collagenolytic activity but does not impair the proteolytic activity of cathepsin K toward noncollagenous substrates. The physiological relevance of cathepsin K complexes is supported by the findings that (i) the content of chondroitin sulfate present in bone and accessible to cathepsin K activity is sufficient for complex formation and (ii) Y212C, a cathepsin K mutant that causes pycnodysostosis (a bone sclerosing disorder) and that has no collagenase activity but remains potent as a gelatinase, is unable to form complexes. These findings reveal a novel mechanism of bone collagen degradation and suggest that targeting cathepsin K complex formation would be an effective and specific treatment for diseases with excessive bone resorption such as osteoporosis.  相似文献   

14.
Inhibition of the protein kinase, MEK1, is a potential approach for the treatment of cancer. Inhibitors may act by prevention of activation (PoA), which involves interfering with phosphorylation of nonactivated MEK1 by the upstream kinase, B-RAF. Modulation also may occur by inhibition of catalysis (IoC) during phosphorylation of the downstream substrate, ERK2, by activated MEK1. Here, five MEK inhibitors are characterized in terms of binding affinity, PoA, and IoC. The compounds are a butadiene (U-0126), an N-alkoxy amide (CI-1040), two CI-1040 analogues (an anthranilic acid and an N-alkyl amide), and a cyanoquinoline. Some compounds give different mechanisms of inhibition (ATP-competitive, noncompetitive, or uncompetitive) in PoA compared to IoC or show a change in potency between the assays. The inhibitors also exhibit different shifts in potency when either PoA or IoC is compared with binding to nonactivated MEK. The inhibitor potency ranking, therefore, is dependent upon the assay format. When the ATP concentration equals K m, IoC IC 50 increases in the order CI-1040 approximately cyanoquinoline < anthranilic acid approximately U-0126 < alkyl amide. Conversely, the K d from nonactivated MEK1 for four of the compounds varies between more than 6-fold lower and over 18-fold higher than this IC 50, with U-0126 having the lowest K d and CI-1040 having the highest. In PoA when the ATP concentration equals K m, U-0126 has the lowest IC 50, becoming more potent than CI-1040, the cyanoquinoline, and the anthranilic acid. These observations have implications for understanding structure-activity relationships of MEK inhibitors and illustrate how assays can be designed to favor different compounds.  相似文献   

15.
Using binding models which were based on the X-ray crystal structure of an amino acid-based active site-spanning inhibitor complexed with cathepsin K, Cbz-leucine mimics have been developed, leading ultimately to the design of a potent cathepsin K inhibitor free of amino acid components. These mimics, which consist of alpha-substituted biphenylacetyl groups in place of Cbz-leucine moieties, effectively mimic all aspects of the Cbz-leucine moieties which are important for inhibitor binding. The predicted directions of binding for the inhibitors were confirmed by mass spectral analysis of their complexes with cathepsin K, which gave results consistent with acylation of the enzyme and loss of the acylhydrazine portion of the inhibitor which binds on the S' side of the active site. The binding models were found to be very predictive of relative inhibitor potency as well as direction of inhibitor binding. These results strengthen the validity of a strategy involving iterative cycles of structure-based design and inhibitor synthesis and evaluation for the discovery of non-peptide inhibitors.  相似文献   

16.
The synthesis of a series of highly potent and selective inhibitors of cathepsin K based on the 3,4-disubstituted azetidin-2-one warhead is reported. A high degree of potency and selectivity was achieved by introducing a basic nitrogen into the distal part of the P3 element of the molecule. Data from kinetic and mass spectrometry experiments are consistent with the interpretation that compounds of this series transiently acylate the sulfhydrile of cathepsin K.  相似文献   

17.
The effects on potency of cruzain inhibition of replacing a nitrile group with alternative warheads were explored. The oxime was almost an order of magnitude more potent than the corresponding nitrile and has the potential to provide access to the prime side of the catalytic site. Dipeptide aldehydes and azadipeptide nitriles were found to be two orders of magnitude more potent cruzain inhibitors than the corresponding dipeptide nitriles although potency differences were modulated by substitution at P1 and P3. Replacement of the α methylene of a dipeptide aldehyde with cyclopropane led to a loss of potency of almost three orders of magnitude. The vinyl esters and amides that were characterized as reversible inhibitors were less potent than the corresponding nitrile by between one and two orders of magnitude.  相似文献   

18.
The synthesis of the tripeptide D-Phe-Pro-Arg with the nitrile group instead of the carboxylgroup is described. Initially, the corresponding peptide amide was synthesized by conventional methods in solution using Boc and Fmoc as the protecting group for D-Phe. The dehydration in order to create the nitrile moiety was achieved by treating the peptide amide with phosphorus oxichloride or trifluoroacetic anhydride. Best results were obtained by the use of phosphorus oxichloride in pyridine as the solvent in the presence of imidazole. After deprotection of the N-terminal amino acid the crude product was purified by chromatography on Butyl-Fractogel HW-40 (S). The purity of the final product was checked on a RP18 phase by hplc. The existence of the nitrile group was demonstrated by i.r. and 13C-n.m.r. spectra. The peptide nitrile exhibited a strong inhibition of thrombin compared to the tripeptide amide.  相似文献   

19.
The nature of the inhibition of thiol proteases by a new class of mechanism-based inhibitors, 1,5-diacylcarbohydrazides, is described. These potent, time-dependent, active-site spanning inhibitors include compounds that are selective for cathepsin K, a cysteine protease unique to osteoclasts. The 1,5-diacylcarbohydrazides are slow substrates for members of the papain superfamily with inhibition resulting from slow enzyme decarbamylation. Enzyme-catalyzed hydrolysis of 2,2'-N, N'-bis(benzyloxycarbonyl)-L- leucinylcarbohydrazide is accompanied by formation of a hydrazide-containing product and a carbamyl-enzyme intermediate that is sufficiently stable to be observed by mass spectrometry and NMR. Stopped-flow studies yield a saturation limited value of 43 s(-)(1) for the rate of cathepsin K acylation by 2,2'N, N'-bis(benzyloxycarbonyl)-L-leucinylcarbohydrazide. Inhibition potency varies among proteases tested as reflected by 2-3 orders of magnitude differences in K(i) and K(obs)/I, but all eventually form the same stable covalent intermediate. Reactivation rates are equivalent for all enzymes tested (1 x 10(-)(4) s(-)(1)), indicating hydrolysis of a common carbamyl-enzyme form. NMR spectroscopic studies with cathepsin K and 2,2'-N,N'-bis(benzyloxycarbonyl)-L-leucinylcarbohydrazide provide evidence of inhibitor cleavage to generate a covalent carbamyl-enzyme intermediate rather than a tetrahedral complex. The product Cbz-leu-hydrazide does not appear enzyme-bound after cleavage in the NMR spectra, suggesting that the stable inhibited form of the enzyme is the thioester complex. 1, 5-diacylcarbohydrazides represent a new class of unreactive cysteine protease inhibitors that share a common mechanism of action across members of the papain superfamily. Both S and S' subsite interactions are exploited in achieving high selectivity and potency.  相似文献   

20.
A series of tetrahydropyrido-pyrazole cathepsin S (CatS) inhibitors with thioether acetamide functional groups were prepared with the goal of improving upon the cellular activity of amidoethylthioethers. This Letter describes altered amide connectivity, in conjunction with changes to other binding elements, resulting in improved potency, as well as increased knowledge of the relationship between this chemotype and human CatS activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号