首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the environmental benefits associated with wind energy, studies have confirmed the occurrence of significant levels of bat and bird fatalities at windfarms, which raise concerns about the long-term effects of these infra-structures on these populations. Reliable estimates of windfarm fatalities are fundamental for accurate environmental assessment studies and supporting management actions. A spatially explicit agent-based model (ABM) was developed to investigate how searcher “controlled” variables, i.e., different field monitoring protocols, monitoring periods and periodicities influence the success of carcasses detection in field trials and estimator accuracy. Different rates of bat mortality due to collision, scavenger pressures and habitat complexity were simulated in order to reproduce variable conditions that might take place at onshore wind facilities. Based on our findings we propose a reduction in the monitoring periods and a shortening in the periodicity of searches in order to reduce bias in the estimations and increase the confidence limits of impact assessments associated with mortality estimates at onshore windfarms.  相似文献   

2.
As wind turbine-caused mortality of birds and bats increases with increasing wind energy capacity, accurate fatality estimates are needed to assess effects, identify collision factors, and formulate mitigation. Finding a larger proportion of collision victims reduces the magnitude of adjustment for the proportion not found, thus reducing opportunities for bias. We tested detection dogs in trials of bat and small-bird carcasses placed randomly in routine fatality monitoring at the Buena Vista and Golden Hills Wind Energy projects, California, USA, 2017. Of trial carcasses placed and confirmed available before next-day fatality searches, dogs detected 96% of bats and 90% of small birds, whereas humans at a neighboring wind project detected 6% of bats and 30% of small birds. At Golden Hills dogs found 71 bat fatalities in 55 searches compared to 1 bat found by humans in 69 searches within the same search plots over the same season. Dog detection rates of trial carcasses remained unchanged with distance from turbine, and dogs found more fatalities than did humans at greater distances from turbines. Patterns of fatalities found by dogs within search plots indicated 20% of birds and 4–14% of bats remained undetected outside search plots at Buena Vista and Golden Hills. Dogs also increased estimates of carcass persistence by finding detection trial carcasses that the trial administrator had erroneously concluded were removed. Compared to human searches, dog searches resulted in fatality estimates up to 6.4 and 2.7 times higher for bats and small birds, respectively, along with higher relative precision and >90% lower cost per fatality detection. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

3.
The main objectives of this work were to examine the performance of a holistic stochastic dynamic methodology (StDM) in predicting the trends of the vertebrate species richness (amphibians, reptiles, birds and mammals) in response to changes induced by the ongoing wind farm installation in mountain areas of northwest Portugal. The StDM is a sequential modelling process developed in order to estimate the ecological status of changed ecosystems that have been damaged by anthropogenic disturbances. The performance of two complementary temporal approaches was tested, taking into account either annual or seasonal influences. The data used in the dynamic model construction included true gradients of environmental changes and was sampled from 2004 to 2006. The dynamic model developed was preceded by a conventional multivariate statistical procedure performed to discriminate the significant relationships between the selected ecological components, such as the species richness of each vertebrate group and the structural changes in habitat conditions. The results show the capacity of the model in capturing the dynamics of the studied system by predicting consistent trends for the global vertebrate species richness under complex and variable environmental scenarios. The average annual approach is considered sufficient for the aims of the most Environmental Impact Assessments while the seasonal approach is recommended for more detailed studies, namely regarding specific population, guilds or community dynamics.  相似文献   

4.
Although considerable effort has been made to identify the appropriate climatic conditions for bird surveys, considered as standard conditions, in many occasions these conditions are not fulfilled. These are for instance the case of environmental impact assessments (EIA), where the field work is, recurrently, carried out in variable and non-standard weather conditions or in the scope of general ecological monitoring (GEM) programs, where different taxa (birds and other animal groups) are sampled simultaneously with distinct methodological requirements. The present work examined the applicability of a stochastic dynamic methodology (StDM) for predicting the richness and diversity of passerine surveys in mountain habitats characterized by variable and, predominantly, non-standard weather conditions. The relative variations of these metrics are the underlying database of our StDM model, providing some basis to analyse the accuracy of bird surveys. This model focuses on the interactions between conceptually isolated key-components, such as the passerine richness and diversity, and the influence of the prevailing climatic conditions.The proposed model was preceded by a conventional multivariate statistical procedure performed to discriminate the significant relationships between the selected metrics versus climatic variables. Since this statistical analysis is static, the dataset recorded from the field included true gradients of weather conditions (ranging from standard to extreme conditions). The results of the StDM simulations revealed significant variations in the performance of passerine surveys in response to several combinations of non-standard weather conditions, which enable us to calculate the appropriated correction factors for discrete climatic scenarios. This could be used, in the future, to improve the quality of passerine diversity and richness estimates, namely in the scope of EIA studies when the climatic conditions are inevitably adverse for rigorous passerine surveys.  相似文献   

5.
ABSTRACT Until large numbers of bat fatalities began to be reported at certain North American wind energy facilities, wildlife concerns regarding wind energy focused primarily on bird fatalities. Due in part to mitigation to reduce bird fatalities, bat fatalities now outnumber those of birds. To test one mitigation option aimed at reducing bat fatalities at wind energy facilities, we altered the operational parameters of 21 turbines at a site with high bat fatalities in southwestern Alberta, Canada, during the peak fatality period. By altering when turbine rotors begin turning in low winds, either by changing the wind-speed trigger at which the turbine rotors are allowed to begin turning or by altering blade angles to reduce rotor speed, blades were near motionless in low wind speeds, which resulted in a significant reduction in bat fatalities (by 60.0% or 57.5%, respectively). Although these are promising mitigation techniques, further experiments are needed to assess costs and benefits at other locations.  相似文献   

6.
Studying migratory behavior of bats is challenging. Thus, most information regarding their migratory behavior is anecdotal. Recently, however, fatalities of migratory bats at some wind energy facilities across North America have provided the opportunity and impetus to study bat migration at fine spatial and temporal scales. Using acoustic monitoring and carcass searches, we examined temporal and spatial variation in activity levels and fatality rates of bats at a wind energy facility in southern Alberta, Canada. Our goals were to better understand the influence of weather variables and turbine location on the activity and fatality of hoary bats (Lasiurus cinereus) and silver-haired bats (Lasionycteris noctivagans), and to use that understanding to predict variation in fatality rates at wind energy facilities and recommend measures to reduce fatalities. Overall activity of migratory bats and of silver-haired bats increased in low wind speeds and warm ambient temperatures, and was reduced when the wind was from the North or Northeast, whereas hoary bat activity increased with falling barometric pressure. Fatalities of migratory bats in general increased with increased activity of migratory bats, increased moon illumination, and falling barometric pressure and were influenced by the interaction between barometric pressure change and activity. Fatalities of silver-haired bats increased with increased activity, moon illumination, and winds from the south-east. Hoary bat fatalities increased with falling barometric pressure. Our results indicate that both the activity and fatality of migratory bats are affected by weather variables, but that species differ in their responses to environmental conditions. Spatially, fatalities were not influenced by the position of turbines within a turbine row, but were influenced by the location of turbines within the facility. Our findings have implications for our understanding of bat migration and efforts to reduce fatalities at wind energy facilities. To maximize the reduction of bat fatalities, operators of wind energy facilities could incorporate migratory bats' response to environmental variables, such as barometric pressure and fraction of moon illuminated, into their existing mitigation strategies. © 2011 The Wildlife Society.  相似文献   

7.
Bird and bat fatalities increase with wind energy expansion and the only effective fatality-reduction measure has been operational curtailment, which has been documented for bats but not for birds. We performed opportune before-after, control-impact (BACI) experiments of curtailment effects on bird and bat fatalities and nocturnal passage rates during fall migration at 2 wind projects, where 1 continued operating and the other shut down from peak migration to the study's end (study 1). We also performed BACI experiments during a 3-year study of curtailment and operational effects on bird fatalities among wind turbines of varying operational status (study 2). In study 1, wind turbine curtailment significantly reduced near-misses and rotor-disrupted flights of bats, and it significantly reduced fatalities of bats but not of birds. In study 2, converting wind turbines from inoperable to operable status did not significantly increase bird fatalities, and bird species of hole or sheltered-ledge nesters or roosters on human-made structures died in substantial numbers at vacant towers. Of bird species represented by fatalities in study 2, 79% were found at inoperable wind turbines. Because the migration season is relatively brief, seasonal curtailment would greatly reduce bat fatalities for a slight loss in annual energy generation, but it might not benefit many bird species. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

8.
Wind farms are steadily growing across Europe, with potentially detrimental effects on wildlife. Indeed, cumulative impacts in addition to local effects should be considered when planning wind farm development at a regional scale, and mapping the potential risk to bats at this scale would help in the large-scale planning of wind turbines and focus field surveys on vulnerable areas. Although modelling offers a powerful approach to tackle this goal, its application has been thus far neglected. We developed a simple regional-scale analysis in an area of central Italy (Molise region) that is undergoing considerable wind farm development. We implemented species distribution models (SDMs) for two bat species vulnerable to wind farm impact, Nyctalus leisleri and Pipistrellus pipistrellus. We developed risk maps by overlaying SDMs for the two species with turbine locations, assessed the alteration of the landscape patterns of foraging habitat patches determined by the wind turbines, and identified highly vulnerable areas where wind farm construction would be particularly risky. SDMs were statistically robust (AUC ≥0.8 for both species) and revealed that 41 % of the region offers suitable foraging habitat for both species. These areas host over 50 % of the existing or planned wind farms, with 21 % of the turbines located within 150 m of forest edges, suggesting an increase in fatality risk. The alterations in suitable foraging patches consisted of a 7.7 % increase in the number of patches, a 10.7 % increase in the shape index, and a 8.1 % decrease in the mean patch area. The region’s western portion, which is most suitable to both species, requires careful consideration with regard to future wind farm planning.  相似文献   

9.
The impacts of wind energy on bat populations is a growing concern because wind turbine blades can strike and kill bats, and wind turbine development is increasing. We tested the effectiveness of 2 management actions at 2 wind-energy facilities for reducing bat fatalities: curtailing turbine operation when wind speeds were <5.0 m/second and combining curtailment with an acoustic bat deterrent developed by NRG Systems. We measured the effectiveness of the management actions using differences in counts of bat carcasses quantified by daily and twice-per-week standardized carcass searches of cleared plots below turbines, and field trials that estimated searcher efficiency and carcass persistence. We studied turbines located at 2 adjacent wind-energy facilities in northeast Illinois, USA, during fall migration (1 Aug–15 Oct) in 2018. We estimated the effectiveness of each management action using a generalized linear mixed-effects model with several covariates. Curtailment alone reduced overall bat mortality by 42.5% but did not reduce silver-haired bat (Lasionycteris noctivagans) mortality. Overall bat fatality rates were 66.9% lower at curtailed turbines with acoustic deterrents compared to turbines that operated at manufacturer cut-in speed. Curtailment and the deterrent reduced bat mortality to varying degrees between species, ranging from 58.1% for eastern red bats (Lasiurus borealis) to 94.4 for big brown bats (Eptesicus fuscus). Hoary (Lasiurus cinereus) and silver-haired bat mortality was reduced by 71.4% and 71.6%, respectively. Our study lacked a deterrent-only treatment group because of the expense of acoustic deterrents. We estimated the additional reduction in mortality with concurrent deployment of the acoustic deterrent and curtailment under the assumption that curtailment and the acoustic deterrent would have reduced mortality by the same percentage at adjacent wind-energy facilities. Acoustic deterrents resulted in 31.6%, 17.4%, and 66.7% additional reductions of bat mortality compared to curtailment alone for eastern red bat, hoary bat, and silver-haired bat, respectively. The effectiveness of acoustic deterrents for reducing bat mortality at turbines with rotor-swept area diameters >110 m is unknown because high frequency sound attenuates quickly, which reduces coverage of rotor-swept areas. Management actions should consider species differences in the ability of curtailment and deterrents to reduce bat mortality and increase energy production.  相似文献   

10.
Worldwide aquatic ecosystems have been impacted by broad-scale environmental pressures such as agriculture, point and non-point-source pollution and land-use changes overlapping in space and time, leading to the disruption of the structure and functioning of these systems. The present paper examined the applicability of a holistic Stochastic Dynamic Methodology (StDM) in predicting the tendencies of phytoplankton communities and physicochemical conditions in reservoirs as a response to the changes in the respective watershed soil use. The case of the Douro's basin (Portugal) was used to test the StDM performance in this multi-scale approach. The StDM is a sequential modelling process developed in order to predict the ecological status of changed ecosystems, from which management strategies can be designed. The data used in the dynamic model construction included true gradients of environmental changes and was sampled from 1995 to 2004. The dynamic model developed was preceded by a conventional multivariate statistical procedure performed to discriminate the significant relationships between the selected ecological components. The model validation was based on independent data, for all the state variables considered. Overall, the simulation results are encouraging since they seem to demonstrate the StDM reliability in capturing the dynamics of the studied reservoirs. The StDM model simulations were validated for the most part of the twenty-two components selected as ecological indicators, with a performance of 50% for the physicochemical variables, 75% for the phytoplankton variables, and 100% for the Carlson trophic state indices (TSI). This approach provides a useful starting point, as a contribution for the practical implementation of the European Water Framework Directive, allowing the development of a true integrated assessment tool for water quality management, both at the scale of the reservoir body and at the scale of the respective river watershed dynamics.  相似文献   

11.
Abstract Wind has become one of the fastest growing sources of renewable energy worldwide, but widespread and often extensive fatalities of bats have increased concern regarding the impacts of wind energy development on bats and other wildlife. We synthesized available information on patterns of bat fatalities from a review of 21 postconstruction fatality studies conducted at 19 facilities in 5 United States regions and one Canadian province. Dominance of migratory, foliage- and tree-roosting lasiurine species (e.g., hoary bat [Lasiurus cinereus]) killed by turbines was consistent among studies. Bat fatalities, although highly variable and periodic, consistently peaked in late summer and fall, coinciding with migration of lasiurines and other species. A notable exception was documented fatalities of pregnant female Brazilian freetailed bats (Tadarida brasiliensis) in May and June at a facility in Oklahoma, USA, and female silver-haired bats (Lasionycteris noctivagans) during spring in Tennessee, USA, and Alberta, Canada. Most studies reported that fatalities were distributed randomly across turbines at a site, although the highest number of fatalities was often found near the end of turbine strings. Two studies conducted simultaneously in the same region documented similar timing of fatalities between sites, which suggests broader patterns of collisions dictated by weather, prey abundance, or other factors. None of the studies found differences in bat fatalities between turbines equipped with lighting required by the Federal Aviation Administration and turbines that were unlit. All studies that addressed relationships between bat fatalities and weather patterns found that most bats were killed on nights with low wind speed (<6 m/sec) and that fatalities increased immediately before and after passage of storm fronts. Weather patterns may be predictors of bat activity and fatality; thus, mitigation efforts that focus on these high-risk periods could reduce bat fatality substantially. We caution that estimates of bat fatality are conditioned by length of study and search interval and that they are biased in relation to how searcher efficiency, scavenger removal, and habitat differences were or were not accounted for. Our review will assist managers, biologists, and decision-makers with understanding unifying and unique patterns of bat fatality, biases, and limitations of existing efforts, and it will aid in designing future research needed to develop mitigation strategies for minimizing or eliminating bat fatality at wind facilities.  相似文献   

12.
ABSTRACT For comparing impacts of bird and bat collisions with wind turbines, investigators estimate fatalities/megawatt (MW) of rated capacity/year, based on periodic carcass searches and trials used to estimate carcasses not found due to scavenger removal and searcher error. However, scavenger trials typically place ≥10 carcasses at once within small areas already supplying scavengers with carcasses deposited by wind turbines, so scavengers may be unable to process and remove all placed carcasses. To avoid scavenger swamping, which might bias fatality estimates low, we placed only 1–5 bird carcasses at a time amongst 52 wind turbines in our 249.7-ha study area, each carcass monitored by a motion-activated camera. Scavengers removed 50 of 63 carcasses, averaging 4.45 days to the first scavenging event. By 15 days, which corresponded with most of our search intervals, scavengers removed 0% and 67% of large-bodied raptors placed in winter and summer, respectively, and 15% and 71% of small birds placed in winter and summer, respectively. By 15 days, scavengers removed 42% of large raptors as compared to 15% removed in conventional trials, and scavengers removed 62% of small birds as compared to 52% removed in conventional trials. Based on our methodology, we estimated mean annual fatalities caused by 21.9 MW of wind turbines in Vasco Caves Regional Preserve (within Altamont Pass Wind Resource Area, California, USA) were 13 red-tailed hawks (Buteo jamaicensis), 12 barn owls (Tyto alba), 18 burrowing owls (Athene cunicularia), 48 total raptors, and 99 total birds. Compared to fatality rates estimated from conventional scavenger trials, our estimates were nearly 3 times higher for red-tailed hawk and barn owl, 68% higher for all raptors, and 67% higher for all birds. We also found that deaths/gigawatt-hour of power generation declined quickly with increasing capacity factor among wind turbines, indicating collision hazard increased with greater intermittency in turbine operations. Fatality monitoring at wind turbines might improve by using scavenger removal trials free of scavenger swamping and by relating fatality rates to power output data in addition to rated capacity (i.e., turbine size). The resulting greater precision in mortality estimates will assist wildlife managers to assess wind farm impacts and to more accurately measure the effects of mitigation measures implemented to lessen those impacts.  相似文献   

13.
Bat fatality at wind energy facilities is a conservation issue, but its effect on bat populations is difficult to estimate. We have little understanding of wind turbine effects on bat population persistence, in part because we have poor knowledge of bat migration pathways and hence the source populations for individual fatalities. We used deuterium ratio analysis combined with genetic algorithm for rule-set prediction and the web-based isoscapes modeling, analysis, and prediction in a geographic information system environment as a novel approach. Our objectives were to explore the utility of these methods together and map the geographic extents of eastern red bat (Lasiurus borealis) specimens salvaged in 2008–2010 from a single, 92-km2 wind energy facility in Illinois, USA. Results indicate that combining these methods can be successful and support their use with species where ranges may be less well defined. Because of the migratory nature of this species and the range of deuterium values of pixels in our isotope model, we predicted that 18% and 82% of the specimens would have isotope results inside and outside of the wind facility's isocline respectively. We concluded that 71.4% of the specimens had isotope signatures placing them outside the wind facility's isocline. It could be argued that the wide distribution of bat fatalities dilutes the overall effect of those fatalities on the bat species; however, if other facilities show a similar pattern, each facility could have cumulative and far reaching population-level effects. © 2019 The Wildlife Society.  相似文献   

14.
Bat fatalities at wind energy facilities in North America are predominantly comprised of migratory, tree‐dependent species, but it is unclear why these bats are at higher risk. Factors influencing bat susceptibility to wind turbines might be revealed by temporal patterns in their behaviors around these dynamic landscape structures. In northern temperate zones, fatalities occur mostly from July through October, but whether this reflects seasonally variable behaviors, passage of migrants, or some combination of factors remains unknown. In this study, we examined video imagery spanning one year in the state of Colorado in the United States, to characterize patterns of seasonal and nightly variability in bat behavior at a wind turbine. We detected bats on 177 of 306 nights representing approximately 3,800 hr of video and > 2,000 discrete bat events. We observed bats approaching the turbine throughout the night across all months during which bats were observed. Two distinct seasonal peaks of bat activity occurred in July and September, representing 30% and 42% increases in discrete bat events from the preceding months June and August, respectively. Bats exhibited behaviors around the turbine that increased in both diversity and duration in July and September. The peaks in bat events were reflected in chasing and turbine approach behaviors. Many of the bat events involved multiple approaches to the turbine, including when bats were displaced through the air by moving blades. The seasonal and nightly patterns we observed were consistent with the possibility that wind turbines invoke investigative behaviors in bats in late summer and autumn coincident with migration and that bats may return and fly close to wind turbines even after experiencing potentially disruptive stimuli like moving blades. Our results point to the need for a deeper understanding of the seasonality, drivers, and characteristics of bat movement across spatial scales.  相似文献   

15.
Worldwide forests have been impacted by broad-scale anthropogenic pressures, such as fire and logging, leading to the disruption of the structure and functioning of these systems. The present paper examined the applicability of a holistic Stochastic Dynamic Methodology (StDM) in predicting the tendencies of passerine bird communities in maritime pine (Pinus pinaster) stands as a response to the changes induced by fire occurrence. The StDM is a sequential modelling process developed in order to predict the ecological status of changed ecosystems, from which management strategies can be designed. The case of the pine stands of central Portugal was used to test the StDM performance in the scope of the wildfire problems. The datasets used in the dynamic model construction included the main gradients of environmental and biological characteristics of the studied maritime pine stands over space and time. The ecological integrity of the pine stands can be partly assessed by the observation of the occurrence of passerine indicators. The dynamic model developed was preceded by a conventional multivariate statistical procedure performed to discriminate the significant relationships between conceptually isolated key-components of the studied ecosystems. The final model provided some basis to analyse the responses of selected passerine indicators to fire scenarios that characterize the region. In this context, the simulation results are encouraging since they seem to demonstrate the StDM reliability in capturing the passerine community dynamics by predicting the behavioural pattern of indicators roughly associated with their structural and functional composition and habitat main characteristics.  相似文献   

16.
Over recent years, it became widely accepted that alternative, renewable energy may come at some risk for wildlife, for example, when wind turbines cause large numbers of bat fatalities. To better assess likely populations effects of wind turbine related wildlife fatalities, we studied the geographical origin of the most common bat species found dead below German wind turbines, the noctule bat (Nyctalus noctula). We measured stable isotope ratios of non-exchangeable hydrogen in fur keratin to separate migrants from local individuals, used a linear mixed-effects model to identify temporal, spatial and biological factors explaining the variance in measured stable isotope ratios and determined the geographical breeding provenance of killed migrants using isoscape origin models. We found that 72% of noctule bat casualties (n = 136) were of local origin, while 28% were long-distance migrants. These findings highlight that bat fatalities at German wind turbines may affect both local and distant populations. Our results indicated a sex and age-specific vulnerability of bats towards lethal accidents at turbines, i.e. a relatively high proportion of killed females were recorded among migratory individuals, whereas more juveniles than adults were recorded among killed bats of local origin. Migratory noctule bats were found to originate from distant populations in the Northeastern parts of Europe. The large catchment areas of German wind turbines and high vulnerability of female and juvenile noctule bats call for immediate action to reduce the negative cross-boundary effects of bat fatalities at wind turbines on local and distant populations. Further, our study highlights the importance of implementing effective mitigation measures and developing species and scale-specific conservation approaches on both national and international levels to protect source populations of bats. The efficacy of local compensatory measures appears doubtful, at least for migrant noctule bats, considering the large geographical catchment areas of German wind turbines for this species.  相似文献   

17.
Fatalities of migratory bats, many of which use low frequency (<35 kHz; LowF) echolocation calls, have become a primary environmental concern associated with wind energy development. Accordingly, strategies to improve compatibility between wind energy development and conservation of bat populations are needed. We combined results of continuous echolocation and meteorological monitoring at multiple stations to model conditions that explained presence of LowF bats at a wind energy facility in southern California. We used a site occupancy approach to model nightly LowF bat presence while accounting for variation in detection probability among echolocation detectors and heights. However, we transposed the spatial and temporal axes of the conventional detection history matrix such that occupancy represented proportion of nights, rather than monitoring points, on which LowF bats were detected. Detectors at 22 m and 52 m above ground had greater detection probabilities for LowF bats than detectors at 2 m above ground. Occupancy of LowF bats was associated with lower nightly wind speeds and higher nightly temperatures, mirroring results from other wind energy facilities. Nevertheless, we found that building separate models for each season and considering solutions with multiple covariates resulted in better fitting models. We suggest that use of multiple environmental variables to predict bat presence could improve efficiency of turbine operational mitigations (e.g., changes to cut-in speeds) over those based solely on wind speed. Increased mitigation efficiencies could lead to greater use of mitigations at wind energy facilities with benefits to bat populations. © 2011 The Wildlife Society.  相似文献   

18.
Barotrauma is a significant cause of bat fatalities at wind turbines   总被引:1,自引:0,他引:1  
Bird fatalities at some wind energy facilities around the world have been documented for decades, but the issue of bat fatalities at such facilities — primarily involving migratory species during autumn migration — has been raised relatively recently [1] and [2]. Given that echolocating bats detect moving objects better than stationary ones [3], their relatively high fatality rate is perplexing, and numerous explanations have been proposed [1]. The decompression hypothesis proposes that bats are killed by barotrauma caused by rapid air-pressure reduction near moving turbine blades [1], [4] and [5]. Barotrauma involves tissue damage to air-containing structures caused by rapid or excessive pressure change; pulmonary barotrauma is lung damage due to expansion of air in the lungs that is not accommodated by exhalation. We report here the first evidence that barotrauma is the cause of death in a high proportion of bats found at wind energy facilities. We found that 90% of bat fatalities involved internal haemorrhaging consistent with barotrauma, and that direct contact with turbine blades only accounted for about half of the fatalities. Air pressure change at turbine blades is an undetectable hazard and helps explain high bat fatality rates. We suggest that one reason why there are fewer bird than bat fatalities is that the unique respiratory anatomy of birds is less susceptible to barotrauma than that of mammals.  相似文献   

19.
Joris Everaert 《Bird Study》2013,60(2):220-230
Capsule Local factors can lead to strong variation in mortality rate and collision risk that obscures possible effects of turbine size in wind farms.

Aims The impact of bird collisions was studied at eight land-based wind farm sites with a total of 66 small to large turbines in order to assess the mortality rate and collision risk.

Methods Searches for collision fatalities were performed under all turbines with a minimum search interval of 14 days. Mortality rate was calculated with corrections for available search area, scavenging and search efficiency. Flight movements of birds crossing five of the wind farm sites were recorded during a minimum of four days per site. Actual collision risk was then calculated as the number of collision fatalities relative to the average surveyed flight intensity.

Results Mortality rate was 21 birds per turbine per year on average. Most fatalities were local common species (e.g. gulls) but rarer species were also found (e.g. terns, raptors and waders). Collision risk of gulls was 0.05% and 0.08% on average for birds, respectively, flying at turbine and rotor height through the wind farms (0.09% and 0.14% maximum). Large gulls had a significant higher collision risk than small gulls at rotor height. Mortality rate and collision risk were not significantly related to turbine size. The results were integrated in a widely used collision risk model to obtain information of micro-avoidance, i.e. the proportion of birds that fly through the wind farm but avoid passing through the rotor swept area of the turbines. For gulls, this micro-avoidance was 96.1% and 96.3% on average for birds, respectively, flying at turbine and rotor height through the wind farms.

Conclusion The results indicate that local factors can lead to strong variation in mortality rate and collision risk that obscures possible effects of turbine size in wind farms. However, large turbines have more installed capacity (MW), so repowering wind farms with larger but fewer wind turbines, could reduce total mortality at certain locations.  相似文献   

20.
The reasons why bats are coming into contact with wind turbines are not yet well understood. One hypothesis is that bats are attracted to wind turbines and this attraction may be because bats perceive or misperceive the turbines to provide a resource, such as a foraging or roosting site. During post-construction fatality searches at a wind energy facility in the southern Great Plains, U.S., we discovered bat feces near the base of a wind turbine tower, which led us to hypothesize that bats were actively roosting and/or foraging at turbines. Thus over 2 consecutive years, we conducted systematic searches for bat feces on turbines at this site. We collected 72 bat fecal samples from turbines and successfully extracted DNA from 56 samples. All 6 bat species known to be in the area were confirmed and the majority (59%) were identified as Lasiurus borealis; a species that also comprised the majority of the fatalities (60%) recorded at the site. The presence of bat feces provides further evidence that bats were conducting activities in close proximity to wind turbines. Moreover, feces found in areas such as turbine door slats indicated that bats were using turbines as night or foraging roosts, and further provided evidence that bats were active near the turbines. Future research should therefore aim to identify those features of wind turbines that bats perceive or misperceive as a resource, which in turn may lead to new minimization strategies that effectively reduce bat fatalities at wind farms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号