首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Hebblewhite M  Merrill EH 《Oecologia》2007,152(2):377-387
While migration is hypothesized to reduce predation risk for ungulates, there have been few direct empirical tests of this hypothesis. Furthermore, few studies examined multiscale predation risk avoidance by migrant ungulates, yet recent research reveals that predator–prey interactions occur at multiple scales. We test the predation risk reduction hypothesis at two spatial scales in a partially migratory elk (Cervus elaphus) population by comparing exposure of migrant and resident elk to wolf (Canis lupus) predation risk. We used GPS and VHF telemetry data collected from 67 migrant and 44 resident elk over the summers of 2002–2004 in and adjacent to Banff National Park (BNP), Canada. We used wolf GPS and VHF telemetry data to estimate predation risk as a function of the relative probability of wolf occurrence weighted by a spatial density model that adjusted for varying pack sizes. We validated the predation risk model using independent data on wolf-killed elk, and showed that combining wolf presence and spatial density best predicted where an elk was likely to be killed. Predation risk on summer ranges of migrant elk was reduced by 70% compared to within resident elk summer ranges. Because wolves avoided areas near high human activity, however, fine-scale selection by resident elk for areas near high human activity reduced their predation risk exposure to only 15% higher than migrants, a difference significant in only one of three summers. Finally, during actual migration, elk were exposed to 1.7 times more predation risk than residents, even though migration was rapid. Our results support the hypothesis that large-scale migrations can reduce predation. However, we also show that where small-scale spatial variation in predation risk exists, nonmigratory elk may equally reduce predation risk as effectively as migrants under some circumstances.  相似文献   

2.
Wolf (Canis lupus) diets and potential effects on prey have been a prominent subject of interest to wildlife researchers and managers since reintroduction into Yellowstone National Park, Wyoming, USA, in 1995 and 1996. Post-reintroduction, wolves expanded south and recolonized areas in the southern Yellowstone ecosystem. Elk (Cervus elaphus) in this area are supplementally fed during winter (Dec–Mar) at state-managed feedgrounds, resulting in high-density congregations of elk. From December to March 2000–2007, we determined the winter predation patterns of wolves by examining the remains of 289 wolf kills on 3 state-managed feedgrounds and adjacent winter range near Jackson, Wyoming. During winters 2002–2005, we also monitored the movements of radio-collared elk on feedgrounds to describe the response of elk to the presence of wolf kills. Thirty-seven percent (n = 106) of kills were located on elk feedgrounds where elk composition included 49% calves, 42% adult females, 5% adult males, and 5% unknown. Sixty-three percent (n = 183) of kills were located on winter range adjacent to feedgrounds and prey species consisted of 90% elk (38% calves, 35% adult females, 24% adult males, 2% unknown), 9% moose (Alces alces; 13% calves, 69% adult females, 6% adult males, 1% unknown), 1% mule deer (Odocoileus hemionus; 1 fawn, 1 adult female), and 0.5% adult female bison (Bison bison). Mean age of elk killed on feedgrounds was 4.2 years (range = 0–20) and 4.6 years (range = 0–23) on winter range. Calves were selected more than available in most years with female elk killed less than expected. Adult males were killed more than expected in 2005–2007. Eighty-eight percent (n = 198) of the time elk remained on the feedground even when wolves made a kill. Less commonly, elk left the feedground, gathered in larger herds on adjacent feedgrounds absent of wolves, and returned within a few days (6%, n = 13) or left the feedground for another feedground and did not return for the rest of the winter (6%; n = 14). Elk were less likely to leave feedgrounds in the presence of a wolf kill when there were more elk on that feedground. Elk left feedgrounds with greater topography and tree cover (Alkali and Fish Creek) and gathered on the flat, open feedgrounds (Patrol Cabin) more frequently than they left flat, open feedgrounds for feedgrounds with greater topography and tree cover. Our results indicate wolves in our study area primarily preyed on elk and exhibited a strong preference for elk calves. High-density concentrations of elk on feedgrounds will continue to be an attractant for wolves. Although elk leave feedgrounds for reasons other than wolf presence, any displacement of elk from feedgrounds due to wolves will be temporary. State managers have the ability to alter management strategies (e.g., increasing wolf harvest, phasing out elk feeding, increasing the intensity of elk feeding) in an effort to affect predator-prey relationships. © 2019 The Wildlife Society.  相似文献   

3.
In the period following wolf ( Canis lupus ) reintroduction to Yellowstone National Park (1995–2004), the northern Yellowstone elk ( Cervus elaphus ) herd declined from ∼17 000 to ∼8000 elk (8.1% yr−1). The extent to which wolf predation contributed to this decline is not obvious because the influence of other factors (human harvest and lower than average annual rainfall) on elk dynamics has not been quantified. To assess the contribution of wolf predation to this elk decline, we built and assessed models based on elk-related data prior to wolf reintroduction (1961 to 1995). We then used the best of these models to predict how elk dynamics might have been realized after wolf reintroduction (1995 to 2004) had wolves never been reintroduced. The best performing model predicted 64% of the variance in growth rate and included elk abundance, harvest rate, annual snowfall, and annual precipitation as predictor variables. The best performing models also suggest that harvest may be super-additive. That is, for every one percent increase in harvest rate, elk population growth rate declines by more than one percent. Harvest rate also accounted for ∼47% of the observed variation in elk growth rate. According to the best-performing model, which accounts for harvest rate and climate, the elk population would have been expected to decline by 7.9% per year, on average, between 1995 and 2004. Within the limits of uncertainty, which are not trivial, climate and harvest rate are justified explanations for most of the observed elk decline. To the extent that this is true, we suggest that between 1995 and 2004 wolf predation was primarily compensatory.  相似文献   

4.
Elk (Cervus canadensis) are high-profile game animals for many states in the western United States, yet over the past several decades some populations have experienced a persistent and broad-scale decline in recruitment. Over this same period, gray wolves (Canis lupus) have become an integral component of many western landscapes and agencies are increasingly challenged to maximize hunting opportunities of ungulates via predator management while simultaneously ensuring wolf conservation. To better understand the implications of predator management on elk populations, we monitored survival of 1,244 adult female elk and 806 6-month-old calves from 29 populations distributed throughout Idaho, USA, from 2004 to 2016. We developed predictive models of mortality that related mortality risk to wolf pack size, winter conditions, and individual-level characteristics. Annual mortality rates (excluding harvest) for adult females and calves were 0.09 and 0.40, respectively. Calf mortality was predicted best with a model that included additive effects of chest girth at time of capture, mean size of surrounding wolf packs, and snow depth. Adult female mortality was predicted best with a model that included female age, mean size of surrounding wolf packs, and snow depth. Based on a sensitivity analysis, chest girth had the largest effect on risk of mortality for calves followed by pack size and snow depth. Other than the effect of senescence in the oldest (>15 yr) individuals, pack size and snow depth had the largest effect on risk of mortality for adult females. We estimated cause-specific mortality and predation was the dominant cause of known-fate mortalities for adult females (35% mountain lion [Puma concolor] and 32% wolf) and calves (45% mountain lion and 28% wolf), whereas malnutrition accounted for 9% and 10% of adult female and calf mortalities, respectively. Wolves preferentially selected smaller calves and older adult females, whereas mountain lions showed little preference for calf size or age class of adult females. Our study indicates managers can increase elk survival by reducing wolf pack sizes on surrounding winter ranges, especially in areas where, or during years when, snow is deep. Additionally, managers interested in improving over-winter calf survival can implement actions to increase the size of calves entering winter by increasing the nutritional quality of summer and early fall forage resources. Although our study was prompted by management questions related to wolves, mountain lions killed more elk than wolves and differences in selection of individual elk indicate mountain lions may have comparably more of an effect on elk population dynamics. Although we were unable to relate changes in mountain lion populations to elk survival in our study, future research should seek a better understanding of multi-predator systems, including how management of one predator affect others and ultimately how these interactions affect elk survival. © 2019 The Wildlife Society  相似文献   

5.
Partial migration is widespread in ungulates, yet few studies have assessed demographic mechanisms for how these alternative strategies are maintained in populations. Over the past two decades the number of resident individuals of the Ya Ha Tinda elk herd near Banff National Park has been increasing proportionally despite an overall population decline. We compared demographic rates of migrant and resident elk to test for demographic mechanisms partial migration. We determined adult female survival for 132 elk, pregnancy rates for 150 female elk, and elk calf survival for 79 calves. Population vital rates were combined in Leslie‐matrix models to estimate demographic fitness, which we defined as the migration strategy‐specific population growth rate. We also tested for differences in factors influencing risk of mortality between migratory strategies for adult females using Cox‐proportional hazards regression and time‐varying covariates of exposure to forage biomass, wolf predation risk, and group size. Despite higher pregnancy rates and winter calf weights associated with higher forage quality, survival of migrant adult females and calves were lower than resident elk. Resident elk traded high quality food to reduce predation risk by selecting areas close to human activity, and by living in group sizes 20% larger than migrants. Thus, residents experienced higher adult female survival and calf survival, but lower pregnancy and calf weights. Cause‐specific mortality of migrants was dominated by wolf and grizzly bear mortality, whereas resident mortality was dominated by human hunting. Demographic differences translated into slightly higher (2–3%), but non‐significant, resident population growth rate compared to migrant elk, suggesting demographic balancing between resident strategies during our study. Despite statistical equivalence, our results are also consistent with slow long‐term declines in migrants because of high predation because of higher wolf‐caused mortality in migrants. These results emphasize that migrants and residents will make different tradeoffs between forage and risk may affect the demographic balance of partially migratory populations, which may explain recent declines in migratory behavior in many ungulate populations around the world.  相似文献   

6.
In 2001 and 2002, 52 elk (Cervus canadensis; 21 males, 31 females), originally obtained from Elk Island National Park, Alberta, Canada, were transported and released into Cataloochee Valley in the northeastern portion of Great Smoky Mountains National Park (GRSM, Park), North Carolina, USA. The annual population growth rate (λ) was negative (0.996, 95% CI = 0.945–1.047) and predation by black bears (Ursus americanus) on elk calves was identified as an important determinant of population growth. From 2006 to 2008, 49 bears from the primary elk calving area (i.e., Cataloochee Valley) were trapped and translocated about 70 km to the southwestern portion of the Park just prior to elk calving. Per capita recruitment (i.e., the number of calves produced per adult female that survive to 1 year of age) increased from 0.306 prior to bear translocation (2001–2005) to 0.544 during years when bears were translocated (2006–2008) and λ increased to 1.118 (95% CI = 1.096–1.140). Our objective was to determine whether per capita calf recruitment rates after bear removal (2009–2019) at Cataloochee were similar to the higher rates estimated during bear removal (i.e., long-term response) or if they returned to rates before bear removal (i.e., short-term response), and how those rates compared with recruitment from portions of our study area where bears were not relocated. We documented 419 potential elk calving events and monitored 129 yearling and adult elk from 2001 to 2019. Known-fate models based on radio-telemetry and observational data supported calf recruitment returning to pre-2006 levels at Cataloochee (short-term response); recruitment of Cataloochee elk before and after bear relocation was lower (0.184) than during bear relocation (0.492). Recruitment rates of elk outside the removal area during the bear relocation period (0.478) were similar to before and after rates (0.420). In the Cataloochee Valley, cause-specific annual calf mortality rates due to predation by bears were 0.319 before, 0.120 during, and 0.306 after bear relocation. In contrast, the cause-specific annual mortality rate of calves in areas where bears were not relocated was 0.033 after the bear relocation period, with no bear predation on calves before or during bear relocation. The mean annual population growth rate for all monitored elk was 1.062 (95% CI = 0.979–1.140) after bear relocation based on the recruitment and survival data. Even though the effects of bear removal were temporary, the relocations were effective in achieving a short-term increase in elk recruitment, which was important for the reintroduction program given that the elk population was small and vulnerable to extirpation.  相似文献   

7.
ABSTRACT Changes in resource selection associated with human predation risk may alter elk distributions and availability for harvest. We used Global Positioning System data collected from telemetered female elk (Cervus elaphus) to evaluate effects of refuges (areas where hunting was prohibited), spatial variation in hunting risk, and landscape attributes on resource selection within an established Greater Yellowstone Area, USA, winter range. We also evaluated elk distributions during and outside of a late-season hunting period. Refuge areas and landscape attributes such as habitat type and snow water equivalents (SWE) affected resource selection. Elk selection for flat grasslands increased as SWE increased, likely because these areas were windswept, leaving grasses exposed for foraging. Elk distributions differed during hunting and no-hunting periods. During the hunting period, elk shifted to privately owned refuge areas and the estimated odds of elk occupying refuge areas more than doubled. Risk-driven changes in resource selection resulted in reduced availability of elk for harvest. Elk selection for areas where hunting is prohibited presents a challenge for resource managers that use hunting as a tool for managing populations and influences grazing patterns on private ranchlands.  相似文献   

8.
Loss of migratory behavior or shifts in migratory ranges are growing concerns to wildlife managers. How ungulates prioritize safety from predators at the expense of high-quality foraging opportunities during calving may be key to understanding these shifts and long-term reproductive success. We compared trade-offs in selection for forage and predation risk by elk (Cervus canadensis) following 3 migratory tactics (western and eastern migration and resident) during 2 time periods in a declining (by almost 70% from 2002–2016), partially migratory elk population adjacent to Banff National Park in Alberta, Canada. We hypothesized that regardless of migratory tactic, maternal elk would show stronger trade-offs between high-quality foraging associated with higher predation risk and forage resources of lower-quality yet lower risk on calving ranges than on ranges used during summer because of vulnerability of their offspring. Additionally, we hypothesized these trade-offs would occur at high (2002–2006) and low (2013–2016) elk population sizes. We used a machine-learning algorithm to predict dates of parturition based on global positioning system (GPS) movements of elk equipped with vaginal implants (n = 60) and predictions were within 1.43 ± 0.85 (SE) days of the known date. We applied the model to an additional 58 GPS-collared elk without vaginal implants. Based on changes in localized movements, we defined calving areas as the 26 days post-parturition and compared habitat characteristics of calving areas to 10 similar-sized areas centered on random locations during summer for the same individual in a latent selection framework. Across the 2 time periods, parturition occurred from 8 May–11 July with median parturition dates differing among migratory tactics and residents shifting towards an earlier parturition date in the later period. All elk, regardless of migratory tactic and time period, selected calving areas with greater forage resources than were available on areas used during summer, with no evidence for greater selection of areas that reduced predation risk at the expense of higher-quality foraging. Calving season selection for areas with abundant forage exposed western migrants to high risk of bear (Ursus spp.) predation, residents to high risk of wolf (Canis lupus) predation, and eastern migrants to low risk of bear and wolf predation. Patterns in exposure to predation risk during calving between migratory tactics were consistent with the recent decline in western migrants and increase in eastern migrants, implying that conditions on calving areas contributed to observed changes in the number of elk following these tactics. © 2021 The Wildlife Society.  相似文献   

9.
This study examined patterns of mortality and determinants of survival among elk recently restored to four sites in Ontario, Canada (1998–2005). We predicted that: (1) elk located in release sites closer to the core of their historic range would have higher survival; (2) survival would increase as an animal's time and experience on the landscape increased; and (3) survival rates would decline as animals moved farther away from the release site. During the study, 443 elk were radiocollared and released; 218 mortalities were documented. Predation by wolves was the most important proximate cause of mortality, followed by death due to injuries from translocation and/or capture myopathy, accidents, emaciation, poaching, and Parelaphostrongylus tenuis infection. Overall, annual survival of elk across Ontario ranged from 0.45 (0.37–0.53) to 0.81 (0.66–0.90), with rates being lowest in the years immediately following release and highest in the final years of the study; this pattern was due to high initial mortality from translocation injuries and/or capture myopathy and possibly lack of familiarity with novel habitat. Model‐averaged hazards further support this finding, as the most important factor influencing elk survival was the length of holding period, with elk released after limited holding being less likely to survive than those held for longer periods. Our results suggest that mortalities caused by capture myopathy and transportation‐related injuries are important sources of risk for translocated elk. The method of introduction to the novel landscape and behavior in the first year should be accommodated via soft‐release and appropriate release areas.  相似文献   

10.
The reintroduction of wolves (Canis lupus) to Yellowstone provided the unusual opportunity for a quasi-experimental test of the effects of wolf predation on their primary prey (elk – Cervus elaphus) in a system where top-down, bottom-up, and abiotic forces on prey population dynamics were closely and consistently monitored before and after reintroduction. Here, we examined data from 33 years for 12 elk population segments spread across southwestern Montana and northwestern Wyoming in a large scale before-after-control-impact analysis of the effects of wolves on elk recruitment and population dynamics. Recruitment, as measured by the midwinter juvenile∶female ratio, was a strong determinant of elk dynamics, and declined by 35% in elk herds colonized by wolves as annual population growth shifted from increasing to decreasing. Negative effects of population density and winter severity on recruitment, long recognized as important for elk dynamics, were detected in uncolonized elk herds and in wolf-colonized elk herds prior to wolf colonization, but not after wolf colonization. Growing season precipitation and harvest had no detectable effect on recruitment in either wolf treatment or colonization period, although harvest rates of juveniles∶females declined by 37% in wolf-colonized herds. Even if it is assumed that mortality due to predation is completely additive, liberal estimates of wolf predation rates on juvenile elk could explain no more than 52% of the total decline in juvenile∶female ratios in wolf-colonized herds, after accounting for the effects of other limiting factors. Collectively, these long-term, large-scale patterns align well with prior studies that have reported substantial decrease in elk numbers immediately after wolf recolonization, relatively weak additive effects of direct wolf predation on elk survival, and decreased reproduction and recruitment with exposure to predation risk from wolves.  相似文献   

11.
Decomposing variation in juvenile recruitment is a key component of understanding population dynamics for partially migratory ungulates. We investigated reproductive parameters of adult female elk (Cervus canadensis) with calves at heel, and survivorship, cause-specific mortality, and intrinsic and extrinsic factors affecting risk of mortality for calves in a partially migratory elk population from 2013–2016 in Alberta, Canada. Elk calves born to resident mothers had 45% lower survivorship on average compared to migrant calves (0.24 vs. 0.69) and nearly twice the mortality rate (0.37 vs. 0.19) from bears (Ursus spp.), the dominant source of mortality. Contrary to our predictions, we found that increasing levels of maternal ingesta-free body fat were associated with increasing risk of calf mortality, indicating predation may have overwhelmed nutritional effects. We found no evidence that timing of calf birth or birth weight differed between migratory tactics or influenced mortality risk. We found that as percentage of cut forest increased, risk of calf mortality marginally decreased, which benefited migrant elk that were exposed to more clear-cuts compared to residents. Exposure to bear predation risk was unimportant during the hiding phase (≤10 days after birth) for either migratory tactic, presumably because neonatal hiding behavior reduced vulnerability. In contrast, bear predation risk was important for mortality risk after 10 days in age, especially for resident elk calves, which were exposed to higher bear predation risk compared to migrants. We conclude that relative differences in bear predation between migratory tactics are contributing to the dynamics of partial migration in this population through additive effects on calf mortality. Thus, wildlife managers should anticipate that recovering grizzly bear (U. arctos) populations may substantially lower elk recruitment through effects on summer calf survival, especially in areas with diverse carnivore assemblages.  相似文献   

12.
Because some native ungulates have lived without top predators for generations, it has been uncertain whether runaway predation would occur when predators are newly restored to these systems. We show that landscape features and vegetation, which influence predator detection and capture of prey, shape large-scale patterns of predation in a newly restored predator–prey system. We analysed the spatial distribution of wolf ( Canis lupus ) predation on elk ( Cervus elaphus ) on the Northern Range of Yellowstone National Park over 10 consecutive winters. The influence of wolf distribution on kill sites diminished over the course of this study, a result that was likely caused by territorial constraints on wolf distribution. In contrast, landscape factors strongly influenced kill sites, creating distinct hunting grounds and prey refugia. Elk in this newly restored predator–prey system should be able to mediate their risk of predation by movement and habitat selection across a heterogeneous risk landscape.  相似文献   

13.
A growing number of studies suggest ratio-dependence may be common in many predator–prey systems, yet in large mammal systems, evidence is limited to wolves and their prey in Isle Royale and Yellowstone. More importantly, the consequences of ratio-dependent predation have not been empirically examined to understand the implications for prey. Wolves recolonized Banff National Park in the early 1980s, and recovery was correlated with significant elk declines. I used time-series data of wolf kill rates of elk, wolf and elk densities in winter from 1985–2007 to test for support for prey-, ratio-, or predator dependent functional and numeric responses of wolf killing rate to elk density. I then combined functional and numeric responses to estimate the total predation response to identify potential equilibrium states. Evidence suggests wolf predation on elk was best described by a type II ratio-dependent functional response and a type II numeric response that lead to inversely density-dependent predation rate on elk. Despite support for ratio-dependence, like other wolf-prey systems, there was considerable uncertainty amongst functional response models, especially at low prey densities. Consistent with predictions from ratio-dependent models, however, wolves contributed to elk population declines of over 80 % in our Banff system. Despite the statistical signature for ratio-dependence, the biological mechanism remains unknown and may be related to multi-prey dynamics in our system. Regardless, ratio-dependent models strike a parsimonious balance between theory and empiricism, and this study suggests that large mammal ecologists need to consider ratio-dependent models in predator–prey dynamics.  相似文献   

14.
We studied 2 years of postrelease telemetry data of elk (Cervus elaphus) translocated to their historic range limit in Ontario, Canada and sought to determine if postrelease movements were related to behavior, demography of released animals, or site–specific attributes such as length of holding period. During 1998–2004 we radio‐tracked 341 elk in 10 release groups via ground and aerial telemetry and monitored movement patterns relative to gender, age, and pre‐release holding period (4–112 days). We found that elk that were held for short periods prior to release (4–11 days) moved longer distances than those subject to extended conditioning (17–112 days), suggesting that an extended conditioning period is beneficial from the standpoint of promoting philopatry. When all elk were pooled by sex and age class, male calves remained in closer proximity (8.0 ± 13.2 km) to release sites than adult females (19.1 ± 20.6 km), adult males (19.7 ± 15.1 km), and female calves (14.4 ± 20.4 km). Most calves dispersed in a southeasterly direction whereas adults tended to travel southwest. Our results reveal that elk movement characteristics are influenced by factors such as release protocol and group demographics; these findings provide further insight regarding appropriate release methods for restoring natural populations near their historical range limit.  相似文献   

15.
Mortality from cerebrospinal parelaphostrongylosis caused by the meningeal worm (Parelaphostrongylus tenuis) has been hypothesized to limit elk (Cervus elaphus nelsoni) populations in areas where elk are conspecific with white-tailed deer (Odocoileus virginianus). Elk were reintroduced into Michigan (USA) in the early 1900s and subsequently greatly increased population size and distribution despite sympatric high-density (>or=12/km2) white-tailed deer populations. We monitored 100 radio-collared elk of all age and sex classes from 1981-94, during which time we documented 76 mortalities. Meningeal worm was a minor mortality factor for elk in Michigan and accounted for only 3% of mortalities, fewer than legal harvest (58%), illegal kills (22%), other diseases (7%), and malnutrition (4%). Across years, annual cause-specific mortality rates due to cerebrospinal parelaphostrongylosis were 0.033 (SE=0.006), 0.029 (SE=0.005), 0.000 (SE=0.000), and 0.000 (SE=0.000) for calves, 1-yr-old, 2-yr-old, and >or=3-yr-old, respectively. The overall population-level mortality rate due to cerebrospinal parelaphostrongylosis was 0.009 (SE=0.001). Thus, meningeal worm had little impact on elk in Michigan during our study despite greater than normal precipitation (favoring gastropods) and record (>or=14 km2) deer densities. Further, elk in Michigan have shown sustained population rates-of-increase of >or=18%/yr and among the highest levels of juvenile production and survival recorded for elk in North America, indicating that elk can persist in areas with meningeal worm at high levels of population productivity. It is likely that local ecologic characteristics among elk, white-tailed deer, and gastropods, and degree of exposure, age of elk, individual and population experience with meningeal worm, overall population vigor, and moisture determine the effects of meningeal worm on elk populations.  相似文献   

16.
Migration is expected to benefit individuals through exposure to higher quality forage and reducing predation rates more than non‐migratory conspecifics. Previous studies of partially migratory ungulates (with migrant and resident individuals) have focused on bottom–up factors regulating resident and migrant segments, yet differential predation between strategies could also be a density‐dependent regulatory mechanism. Our study tested for density‐dependence in mortality, as well as mechanisms of ­bottom–up or top–down regulation in the resident and migrant portions of the partially migratory Ya Ha Tinda elk population. We tested for density dependence in adult female and juvenile survival rates, and then discriminated between predator‐ and food‐regulation hypotheses by testing for density‐dependence amongst mortality causes for adult female elk. Notably, the population declined almost 70% from near previously published estimates of carrying capacity over 10 years, providing ideal conditions to test for density dependence. In contrast to predictions, we found only weak support for density dependence in adult survival and juvenile survival. We also found few differences between migrant and resident elk in adult or juvenile survival, though juvenile survival differences were biologically significant. Predation by humans and grizzly bears was density dependent, but similar between migratory strategies. Predation by wolves was the leading known cause of mortality, yet remained constant with declining elk density equally for both migrant and resident elk, indicating wolf predation was density‐independent. Instead of being strongly regulated by food or predation, we found adult female survival was driven by density‐independent predation and climatic factors. The few differences between migratory strategies suggest equivalent fitness payoffs for migrants and residents. This population is being limited by density‐independent predation leading to declines of both migratory strategies. Our results challenge classical predator–prey theory, and call for better integration between predator–prey and migration theory.  相似文献   

17.
ABSTRACT We analyzed counts of northern Yellowstone elk (Cervus elaphus) in Yellowstone National Park, Wyoming, USA, over 70 years to evaluate the effects of changing management on population trends. Population reduction efforts and hunter harvests during 1932–1968 removed 71,330 elk and decreased estimated abundance from 16,000 to 6,000 elk. Abundance increased to approximately 17,000 elk (λ = 1.19) when removals ceased and harvests were very small during 1969–1975. Moderate to liberal hunter harvests of antlerless elk outside the Park during 1976–2004 removed a relatively consistent proportion (26 ± 0.1 [SD]%) of females that migrated outside the park, mostly from prime-age (3–15 yr) classes with high reproductive value. Substantial winterkill was infrequent (1989, 1997), but it significantly reduced calf survival when it occurred. Wolves (Canis lupus) were reintroduced in 1995–1996 and rapidly increased in abundance (λ = 1.23) and distribution. Estimated wolf kill of elk now exceeds hunter harvest, but has a smaller effect on population dynamics because wolves concentrate on calves and older females (>14 yr) with low reproductive value. During 1995–2004, estimated abundance decreased from 23,000 to 12,000 elk. The recent ratio of wolves to elk is relatively low compared to the estimated equilibrium ratio, suggesting that the wolf population may yet increase in the future. Thus, reduction of harvests of prime-aged female elk to decrease removals of animals with high reproductive value and increase adult female survival appears essential. We analyzed the relative impact of removals by hunters and by wolves using Fisher's (1930) reproductive value and found that the impact of hunters is far more important than that by wolves, a finding of broad significance.  相似文献   

18.
Understanding space-use patterns by elk (Cervus canadensis) is essential to alleviating human-elk conflicts, particularly when crop depredation by elk can make it harder to justify to the public the need to restore elk populations to regions with agricultural landscapes. In 2016–2017, we used global positioning system data from 20 female elk to investigate their selection for agricultural cover during the agricultural season (1 May–31 Oct) in northwestern Minnesota, USA. We estimated resource selection functions with resource availability defined at the home range scale. Elk space use was primarily determined by distance to forest cover in areas proximate to agricultural fields. During diurnal periods, elk selected areas with forest cover near agricultural fields planted with legumes and cereal. During nocturnal periods, elk selected for agricultural fields with little to no canopy and that were planted with legumes. We suggest that management of elk in northwestern Minnesota will require practices that discourage the use of agriculture by elk while improving natural habitats within areas managed for elk restoration. We suggest that forestry practices (i.e., thinning and burning) could improve cover and forage openings for elk in restoration areas. Furthermore, managers could work with agricultural producers where elk occur to plant crops favored by elk (i.e., legumes) outside known home ranges and plant fields within home ranges with crops that elk avoided (i.e., hay). Collectively, these practices may shift the ranges of elk herds into restoration areas and lower conflict between the public and elk restoration efforts. © 2020 The Wildlife Society.  相似文献   

19.
Wildfire activity across the western United States has increased in recent decades, with wildfires burning at a higher severity and larger scale. The effect of wildfires on forest structure and wildlife habitat is largely influenced by wildfire severity; however, few studies have evaluated the effects of wildfire severity on resource selection of ungulates, particularly during hunting seasons, when knowledge of resource selection is essential for making informed management decisions. To fill this knowledge gap, we fit resource selection probability functions for female elk (Cervus canadensis) in years 2 and 3 post-wildfire to evaluate the effects of wildfire severity and other environmental and anthropogenic factors on elk resource selection during 4 autumn periods with varying levels of hunter pressure (prehunt, archery-only, backcountry rifle, and rifle). The probability of female elk selecting low-severity burned forests during the prehunt, archery-only, backcountry rifle, and rifle periods was 0.99 (95% credible interval [CrI] = 0.98–1.00), 0.99 (CrI = 0.97–1.00), 0.99 (CrI = 0.99–1.00), and 0.0010 (CrI = 0.00067–0.0015]), respectively, and did not strongly differ from the probability of selecting high-severity burned forests. During the prehunt period, elk also selected areas with greater forage quality and areas farther from open roads. Elk selected similar resources during the archery period, and selected areas with higher hunter pressure. Elk started leaving hunting districts that had higher snowpack (i.e., snow water equivalent; β = −0.84, CrI = −0.96–−0.72) and allowed rifle hunting (β = −5.39, CrI = −5.80–−4.97) but still selected areas with higher hunter pressure (β = 0.92, CrI = 0.78–1.07) during the backcountry rifle period. During the rifle period, elk continued avoiding areas with high snowpack (β = −3.96, CrI = −4.22–−3.71) and started selecting areas with lower hunter pressure (β = −1.71, CrI = −1.79–−1.64) and lower canopy cover. Overall, wildfire affected elk distributions in early autumn 2 and 3 years after fire in our study area, with limited differences in resource selection between wildfire severity categories. By late autumn, hunter pressure and snowpack were the primary factors influencing elk distribution, and wildfire had little influence on selection. When estimating wildfire effects on elk movements during autumn and establishing appropriate hunting regulations, managers should consider the hunting season, hunter pressure, timing and amount of snowpack, location of traditional winter range, and the seasonal elk range burned, as all these factors may contribute to how elk use the landscape in autumn.  相似文献   

20.
Kittle AM  Fryxell JM  Desy GE  Hamr J 《Oecologia》2008,157(1):163-175
Resource selection is a fundamental ecological process impacting population dynamics and ecosystem structure. Understanding which factors drive selection is vital for effective species- and landscape-level management. We used resource selection probability functions (RSPFs) to study the influence of two forms of wolf (Canis lupus) predation risk, snow conditions and habitat variables on white-tailed deer (Odocoileus virginianus), elk (Cervus elaphus) and moose (Alces alces) resource selection in central Ontario's mixed forest French River-Burwash ecosystem. Direct predation risk was defined as the frequency of a predator's occurrence across the landscape and indirect predation risk as landscape features associated with a higher risk of predation. Models were developed for two winters, each at two spatial scales, using a combination of GIS-derived and ground-measured data. Ungulate presence was determined from snow track transects in 64 16- and 128 1-km(2) resource units, and direct predation risk from GPS radio collar locations of four adjacent wolf packs. Ungulates did not select resources based on the avoidance of areas of direct predation risk at any scale, and instead exhibited selection patterns that tradeoff predation risk minimization with forage and/or mobility requirements. Elk did not avoid indirect predation risk, while both deer and moose exhibited inconsistent responses to this risk. Direct predation risk was more important to models than indirect predation risk but overall, abiotic topographical factors were most influential. These results indicate that wolf predation risk does not limit ungulate habitat use at the scales investigated and that responses to spatial sources of predation risk are complex, incorporating a variety of anti-predator behaviours. Moose resource selection was influenced less by snow conditions than cover type, particularly selection for dense forest, whereas deer showed the opposite pattern. Temporal and spatial scale influenced resource selection by all ungulate species, underlining the importance of incorporating scale into resource selection studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号