首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Molecular studies revealed that autoregulatory negative feedback loops consisting of so-called “clock genes” constitute the circadian clock in Drosophila. However, this hypothesis is not fully supported in other insects and is thus to be examined. In the cricket Gryllus bimaculatus, we have previously shown that period (per) plays an essential role in the rhythm generation. In the present study, we cloned cDNA of the clock gene timeless (tim) and investigated its role in the cricket circadian oscillatory mechanism using RNA interference. Molecular structure of the cricket tim has rather high similarity to those of other insect species. Real-time RT-PCR analysis revealed that tim mRNA showed rhythmic expression in both LD and DD similar to that of per, peaking during the (subjective) night. When injected with tim double-stranded RNA (dstim), tim mRNA levels were significantly reduced and its circadian expression rhythm was eliminated. After the dstim treatment, however, adult crickets showed a clear locomotor rhythm in DD, with a free-running period significantly shorter than that of control crickets injected with Discosoma sp. Red2 (DsRed2) dsRNA. These results suggest that in the cricket, tim plays some role in fine-tuning of the free-running period but may not be essential for oscillation of the circadian clock.  相似文献   

2.
To investigate the photoreception that controls daily oscillations at the periphery in insects, we decapitated larvae of the silkworm Bombyx mori (Lepidoptera: Bombycidae) by ligature, and observed rhythms in their peripheral tissues under several light conditions. We measured the mRNA expression of period (per) and timeless (tim), which are homologues of Drosophila clock genes that function in the core oscillator of the circadian clock system. The expression of both per and tim significantly changed in the midgut, Malpighian tubules and silk glands of decapitated larvae exposed to photophase and scotophase that were reversed from the original daily light–dark cycle under which the larvae were housed. Under constant darkness, the daily expression of tim mRNA persisted for at least one cycle in the midgut and silk gland. In addition, an appropriate light stimulus under constant darkness induced a significant phase shift in the endogenous timing system (probably a circadian clock) that determined peak levels of tim mRNA expression in the midgut and silk glands of decapitated larvae. Since light regulated the gene expression rhythm in peripheral tissues of decapitated silkworm larvae, neither the brain nor eyes were essential for photoreception to control daily oscillations in these tissues. Thus, peripheral tissues in insects might directly use light even at the larval stage.  相似文献   

3.
Circadian clocks (oscillators) regulate multiple life functions in insects. The circadian system located in the male reproductive tract of Lepidoptera is one of the best characterized peripheral oscillators in insects. Our previous research on the cotton leafworm, Spodoptera littoralis, demonstrated that this oscillator controls the rhythm of sperm release from the testis and coordinates sperm maturation in the upper vas deferens (UVD). We demonstrated previously that a protein that functions as yolk protein in females is also produced in cyst cells surrounding sperm bundles in the testis, and is released into the UVD. Here, we investigated the temporal expression of the yolk protein 2 (yp2) gene at the mRNA and protein level in the testis of S. littoralis, and inquired whether their expression is regulated by PER-based molecular oscillator. We describe a circadian rhythm of YP2 accumulation in the UVD seminal fluid, where this protein interacts with sperm in a circadian fashion. However, we also demonstrate that yp2 mRNA and YP2 protein levels within cyst cells show only a diurnal rhythm in light/dark (LD) cycles. These rhythms do not persist in constant darkness (DD), suggesting that they are non-circadian. Interestingly, the per gene mRNA and protein levels in cyst cells are rhythmic in LD but not in DD. Nevertheless, per appears to be involved in the diurnal timing of YP2 protein accumulation in cyst cells.  相似文献   

4.
The circadian clocks govern many metabolic and behavioral processes in an organism. In insects, these clocks and their molecular machinery have been found to influence reproduction in many different ways. Reproductive behavior including courtship, copulation and egg deposition, is under strong influence of the daily rhythm. At the molecular level, the individual clock components also have their role in normal progress of oogenesis and spermatogenesis. In this study on the desert locust Schistocerca gregaria, three circadian clock genes were identified and their expression profiles were determined. High expression was predominantly found in reproductive tissues. Similar daily expression profiles were found for period (per) and timeless (tim), while the clock (clk) mRNA level is higher 12 h before the first per and tim peak. A knockdown of either per or tim resulted in a significant decrease in the progeny produced by dsRNA treated females confirming the role of clock genes in reproduction and providing evidence that both PER and TIM are needed in the ovaries for egg development. Since the knockdown of clk is lethal for the desert locust, its function remains yet to be elucidated.  相似文献   

5.
6.
Though our knowledge of the molecular details of the circadian clock has advanced rapidly, the functional elements of the photoperiodic clock remain largely unknown. As a first step to approach this issue, we report here the sequences and expression patterns of period (per), timeless (tim), cycle (cyc) and cryptochrome (cry) mRNAs in the flesh fly Sarcophaga crassipalpis. Nucleotide and deduced amino acid sequences of the genes in S. crassipalpis show high similarity to homologous genes in other insects that have been investigated. S. crassipalpis TIM has a unique C-terminus that contains a poly Q region. A diel rhythmicity of per and tim mRNA abundance was detected in the adult heads (peak during scotophase), while cry and cyc mRNA abundance remained fairly constant throughout. The abundance of cyc mRNA was quite low when compared to per, tim and cry mRNA. Rearing temperature affected the amount of per and tim mRNAs: abundance of per mRNA increased at 20 °C when compared to 25 °C, but that of tim mRNA decreased. Photoperiod influenced the expression patterns of per and tim mRNA: the peak of per mRNA expression shifted in concert with onset of the scotophase, while a shift in tim mRNA expression was less pronounced. The amplitude of tim mRNA was severely dampened under long daylength, but that of per mRNA was not affected. These distinct patterns of expression suggest that this information could be used to determine photoperiodic responses such as diapause.  相似文献   

7.
In the first (lamina) and second (medulla) optic neuropils of Drosophila melanogaster, sodium pump subunit expression changes during the day and night, controlled by a circadian clock. We examined α-subunit expression from the intensity of immunolabeling. For the β-subunit, encoded by Nervana 2 (Nrv2), we used Nrv2-GAL4 to drive expression of GFP, and measured the resultant fluorescence in whole heads and specific optic lobe cells. All optic neuropils express the α-subunit, highest at the beginning of night in both lamina and medulla in day/night condition and the oscillation was maintained in constant darkness. This rhythm was lacking in the clock arrhythmic per0 mutant. GFP driven by Nrv2 was mostly detected in glial cells, mainly in the medulla. There, GFP expression occurs in medulla neuropil glia (MNGl), which express the clock gene per, and which closely contact the terminals of clock neurons immunoreactive to pigment dispersing factor. GFP fluorescence exhibited circadian oscillation in whole heads from Nrv2-GAL4 + UAS-S65T-GFP flies, although significant GFP oscillations were lacking in MNGl, as they were for both subunit mRNAs in whole-head homogenates. In the dissected brain tissues, however, the mRNA of the α-subunit showed a robust daily rhythm in concentration changes while changes in the β-subunit mRNA were weaker and not statistically significant. Thus in the brain, the genes for the sodium pump subunits, at least the one encoding the α-subunit, seem to be clock-controlled and the abundance of their corresponding proteins mirrors daily changes in mRNA, showing cyclical accumulation in cells.  相似文献   

8.
9.
The circadian clock gene period (Gryllus bimaculatus period, Gbper) plays a core role in circadian rhythm generation in adults of the cricket Gryllus bimaculatus. We examined the role of Gbper in nymphal crickets that show a diurnal rhythm rather than the nocturnal rhythm of the adults. As in the adult optic lobes, Gbper mRNA levels in the head of the third instar nymphs showed daily cycling in light-dark cycles with a peak at mid night, and the rhythm persisted in constant darkness. Injection of Gbper double-stranded RNA (dsRNA) into the abdomen of third instar nymphs knocked-down the mRNA levels to 25% of that in control animals. Most Gbper dsRNA injected nymphs lost their circadian locomotor activity rhythm, while those injected with DsRed2 dsRNA as a negative control clearly maintained the rhythm. These results suggest that nymphs and adults share a common endogenous clock mechanism involving the clock gene Gbper.  相似文献   

10.
Pigment‐dispersing factor (PDF) is an important neurotransmitter in insect circadian systems. In the cricket Gryllus bimaculatus, it affects nocturnal activity, the free‐running period and photic entrainment. In this study, to investigate whether these effects of PDF occur through a circadian molecular machinery, we measured mRNA levels of clock genes period (per) and timeless (tim) in crickets with pdf expression knocked‐down by pdf RNAi. The pdf RNAi decreased per and tim mRNA levels during the night to reduce the amplitude of their oscillation. The phase of the rhythm advanced by about 4 h in terms of trough and/or peak phases. On the other hand, pdf mRNA levels were little affected by per and tim RNAi treatment. These results suggest that PDF affects the circadian rhythm at least in part through the circadian molecular oscillation while the circadian clock has little effect on the pdf expression.  相似文献   

11.
Circadian clocks (oscillators) regulate multiple aspects of insect behaviour and physiology. The circadian system located in the male reproductive tract of Lepidoptera orchestrates rhythmic sperm release from testis and sperm maturation in the upper vas deferens (UVD). Our previous research on the cotton leafworm, Spodoptera littoralis, suggested rhythmic changes in the V-ATPase levels in the UVD epithelium, which correlated with rhythmic pH fluctuations in the UVD lumen. However, it was not known whether UVD cells contain clock mechanism that generates these daily fluctuations. In the current paper, we show circadian rhythm in the expression of clock gene period at the mRNA and protein level in the UVD epithelium. To determine the role of PER in V-ATPase and pH regulation, testes–UVD complexes were treated in vitro with double-stranded fragments of per mRNA (dsRNA). This treatment, which transiently lowered per mRNA and protein in the UVD, altered expression of V-ATPase c subunit. In addition, per RNAi caused a significant delay in the UVD lumen acidification. These data demonstrate that the UVD molecular oscillator involving the period gene plays an essential role in the regulation of rhythmic V-ATPase activity and periodic acidification of the UVD lumen.  相似文献   

12.
13.
14.
The photoperiodic response is crucial for many insects to adapt to seasonal changes in temperate regions. It was recently shown that the circadian clock genes period (per) and cycle (cyc) are involved in the photoperiodic regulation of reproductive diapause in the bean bug Riptortus pedestris females. Here, we investigated the involvement of per and cyc both in the circadian rhythm of cuticle deposition and in the photoperiodic diapause of R. pedestris males using RNA interference (RNAi). RNAi of per and cyc disrupted the cuticle deposition rhythm and resulted in distinct cuticle layers. RNAi of per induced development of the male reproductive organs even under diapause-inducing short-day conditions, whereas RNAi of cyc suppressed development of the reproductive organs even under diapause-averting long-day conditions. Thus, the present study suggests that the circadian clock operated by per and cyc governs photoperiodism of males as that of females.  相似文献   

15.
Whether a clock that generates a circatidal rhythm shares the same elements as the circadian clock is not fully understood. The mangrove cricket, Apteronemobius asahinai, shows simultaneously two endogenous rhythms in its locomotor activity; the circatidal rhythm generates active and inactive phases, and the circadian rhythm modifies activity levels by suppressing the activity during subjective day. In the present study, we silenced Clock (Clk), a master gene of the circadian clock, in A. asahinai using RNAi to investigate the link between the circatidal and circadian clocks. The abundance of Clk mRNA in the crickets injected with double-stranded RNA of Clk (dsClk) was reduced to a half of that in control crickets. dsClk injection also reduced mRNA abundance of another circadian clock gene period (per) and weakened diel oscillation in per mRNA expression. Examination of the locomotor rhythms under constant conditions revealed that the circadian modification was disrupted after silencing Clk expression, but the circatidal rhythm remained unaffected. There were no significant changes in the free-running period of the circatidal rhythm between the controls and the crickets injected with dsClk. Our results reveal that Clk is essential for the circadian clock, but is not required for the circatidal clock. From these results we propose that the circatidal rhythm of A. asahinai is driven by a clock, the molecular components of which are distinct from that of the circadian clock.  相似文献   

16.
Daily fluctuation of permethrin-resistance was found in adult mosquito Aedes aegypti, the major vector of dengue viruses in Taiwan. We hypothesized there is a relationship between resistance and the circadian clock. To test our hypothesis we correlated changes in the knock-down time (KT50) response to permethrin with the expression of the pyrethroid-resistant gene CYP9M9 and the clock gene period (per) during a 12:12 h photoperiodic cycle. Rhythmic expression of per peaked at early scotophase of the light-dark cycle and at early subjective night in constant darkness. The values of KT50 and the expression of CYP9M9 also exhibited circadian rhythms in both susceptible and permethrin-resistant mosquito strains, from which we inferred a link to the circadian clock. The KT50 was significantly longer in the light than in the dark phase, and the level of CYP9M9 mRNA was maximal in early scotophase, dropped to a minimum in the midnight and then slowly increased through the photophase. Existence of a clock control over mosquito sensitivity to permethrin was further indicated by reduced expression of CYP9M9 and reduced mosquito resistance to permethrin after temporal silencing of the per gene. These data provide the first evidence on the circadian control of insect resistance to permethrin.  相似文献   

17.
18.
19.
The relative constancy of the circadian period over a wide range of temperatures is a general property of circadian rhythms. Insights into the molecular mechanisms of temperature compensation are emerging from genetic and molecular genetic studies of the period (per) and timeless (tim) genes in Drosophila. These genes encode proteins that are thought to be part of a negative feedback cycle, which results in circadian oscillations of both per and tim mRNA, as well as a complex of the two proteins. Complex formation is temporally regulated and apparently necessary for nuclear localization of both per and tim proteins. While insights into the roles of per and tim in temperature compensation have been intriguing, they have also been somewhat perplexing. For instance, the interaction of wild-type per peptides is relatively insensitive to temperature in the yeast two-hybrid assay or in assays employing in-vitro-translated peptides, while the interaction of perL mutant peptides is reduced at a high temperature. Apparently, the perL mutation increases an intramolecular interaction between different parts of the per peptide in these assays, and this interaction reduces the amount of per homodimer. On the other hand, the same assays show that the intermolecular interaction between the per and tim peptides is reduced at a high temperature by the perL mutation; this reduction does not require the competing intramolecular interaction. Despite this difference, in all of the experiments employing these assays the perL mutation has rendered per-per and per-tim peptide interactions sensitive to high temperature, so it is likely that one or both of these reduced interactions contribute to the longer circadian periods at high temperature in perL mutant flies. However, the timSL and perS mutations, as well as deletion of the Thr-Gly repeats from per, affect temperature compensation but have not been shown to affect these molecular interactions of per and tim. Finally, a recent report of oscillating per and tim proteins in the cytoplasm (rather than the nuclei) of silk moth neurons may suggest an alternative mechanism for per and tim function in these cells. (Chronobiology International 14(5), 455–468, 1997)  相似文献   

20.
While roles of the clock genes period (per) and timeless (tim) are relatively well understood in relation to circadian clocks, their potential roles in insect photoperiodism remain enigmatic. In this study, the expression of per and tim genes under two contrasting photoperiods is described in the central nervous system of photoperiodically sensitive, newly hatched first instar larvae of the flesh fly, Sarcophaga crassipalpis. Using qPCR, diel oscillations were observed in the mRNA levels of both genes under long-day (15 h light:9 h dark, promotes direct development) and short-day conditions (11 h light:13 h dark, induces pupal diapause). Peak per and tim mRNA oscillations were closely associated with the light/dark transition. The conspicuous difference between the two photoperiodic conditions was that the sharp increase in per and tim mRNA abundance occurred during the light phase under long days but during the dark phase under short days. The diel oscillations were, at least in part, driven by an endogenous component, as demonstrated by transferring larvae to continuous darkness. The cells displaying Tim- and Per-like immunoreactivities (Tim- and Per-LIRs) were localized using anti-Drosophila-Per and anti-Chymomyza-Tim antibodies. Per-LIR and Tim-LIR co-localized in three groups of cells in each brain hemisphere. Two other groups, one in the brain hemispheres and the other in the fused ventral nerve ganglion, expressed only the Per-LIR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号