首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Breast cancer is the most common cause of cancer death in the western world. The expression differences of many proteins are associated with breast cancer progression or suppression. The purpose of the study was to determine the expression of nm23 protein in the invasion status and metastatic potential of breast cancer by using tissue microarray and to determine its role in breast cancer based on the expression of nm23 gene product.  相似文献   

2.

Background  

Carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) is a transmembrane protein with multiple functions in different cell types. CEACAM1 expression is frequently mis-regulated in cancer, with down-regulation reported in several tumors of epithelial origin and de novo expression of CEACAM1 in lung cancer and malignant melanoma. In this report we analyzed the regulation of CEACAM1 expression in three breast cancer cell lines that varied in CEACAM1 expression from none (MCF7) to moderate (MDA-MB-468) to high (MCF10A, comparable to normal breast).  相似文献   

3.

Background  

SATB1 is a nuclear protein that has been recently reported to be a 'genome organizer' which delineates specific epigenetic modifications at target gene loci, directly up-regulating metastasis-associated genes while down-regulating tumor-suppressor genes. In this study, the level of mRNA expression of SATB1 and SATB2 were assessed in normal and malignant breast tissue in a cohort of women with breast cancer and correlated to conventional clinico-pathological parameters.  相似文献   

4.

Background  

Previous data from our laboratory has indicated that a functional link exists between the G-protein-coupled inwardly rectifying potassium (GIRK) channel and the beta-adrenergic receptor pathway in breast cancer cell lines, and these pathways were involved in growth regulation of these cells. Alcohol is an established risk factor for breast cancer and has been found to open GIRK. In order to further investigate GIRK channels in breast cancer and possible alteration by ethanol, we identified GIRK channel protein expression in breast cancer cells.  相似文献   

5.

Background  

A consensus prognostic gene expression classifier is still elusive in heterogeneous diseases such as breast cancer.  相似文献   

6.

Background  

In order to unravel the interactions between the epithelium and the extra cellular matrix (ECM) in breast tissue progressing to cancer, it is necessary to understand the relevant interactions in healthy tissue under normal physiologic settings. Proteoglycans in the ECM play an important role in the signaling between the different tissue compartments. The proteoglycan decorin is abundant in the breast stroma. Decreased expression in breast cancer tissue is a sign of a poor tumor prognosis. The heparane sulphate proteoglycans syndecan-1 and syndecan-4 promote the integration of cellular adhesion and proliferation. The aim of this study was to investigate the gene expression and location of decorin, syndecan-1 and syndecan-4 in the healthy breast during the menstrual cycle.  相似文献   

7.

Purpose

Insulin-like growth factor (IGF) signaling through human insulin receptor isoform A (IR-A) contributes to tumorigenesis and intrinsic resistance to anti-IGF1R therapy. In the present study, we (a) developed quantitative TaqMan real time-PCR-based assays (qRT-PCR) to measure human insulin receptor isoforms with high specificity, (b) evaluated isoform expression levels in molecularly-defined breast cancer subtypes, and (c) identified the IR-A:IR-B mRNA ratio as a potential biomarker guiding patient stratification for anti-IGF therapies.

Experimental Design

mRNA expression levels of IR-A and IR-B were measured in 42 primary breast cancers and 19 matched adjacent normal tissues with TaqMan qRT-PCR assays. The results were further confirmed in 165 breast cancers. The tumor samples were profiled using whole genome microarrays and subsequently subtyped using the PAM50 breast cancer gene signature. The relationship between the IR-A:IR-B ratio and cancer subtype, as well as markers of proliferation were characterized.

Results

The mRNA expression levels of IR-A in the breast tumors were similar to those observed in the adjacent normal tissues, while the mRNA levels of IR-B were significantly decreased in tumors. The IR-A:IR-B ratio was significantly higher in luminal B breast cancer than in luminal A. Strong concordance between the IR-A:IR-B ratio and the composite Oncotype DX proliferation score was observed for stratifying the latter two breast cancer subtypes.

Conclusions

The reduction in IR-B expression is the key to the altered IR-A:IR-B ratio observed in breast cancer. The IR-A:IR-B ratio may have biomarker utility in guiding a patient stratification strategy for an anti-IGF therapeutic.  相似文献   

8.

Background  

Gene expression measurements from breast cancer (BrCa) tumors are established clinical predictive tools to identify tumor subtypes, identify patients showing poor/good prognosis, and identify patients likely to have disease recurrence. However, diverse breast cancer datasets in conjunction with diagnostic clinical arrays show little overlap in the sets of genes identified. One approach to identify a set of consistently dysregulated candidate genes in these tumors is to employ meta-analysis of multiple independent microarray datasets. This allows one to compare expression data from a diverse collection of breast tumor array datasets generated on either cDNA or oligonucleotide arrays.  相似文献   

9.

Background  

Somatostatin receptor (SSTR) expression is positively correlated with tumor size and inversely correlated with epidermal growth factor receptor (ErbB) levels and tumor differentiation. In the present study, we compared SSTR1-5 and ErbB1-4 mRNA and protein expression in two breast cancer cell lines: MCF-7 (ER+) and MDA-MB-231 (ERα-).  相似文献   

10.

Background

Adipocytes make up the major component of breast tissue, accounting for 90% of stromal tissue. Thus, the crosstalk between adipocytes and breast cancer cells may play a critical role in cancer progression. Adipocyte-breast cancer interactions have been considered important for the promotion of breast cancer metastasis. However, the specific mechanisms underlying these interactions are unclear. In this study, we investigated the mechanisms of adipocyte-mediated breast cancer metastasis.

Methods

Breast cancer cells were cocultured with mature adipocytes for migration and 3D matrix invasion assays. Next, lentivirus-mediated loss-of-function experiments were used to explore the function of lysyl hydroxylase (PLOD2) in breast cancer migration and adipocyte-dependent migration of breast cancer cells. The role of PLOD2 in breast cancer metastasis was further confirmed using orthotopic mammary fat pad xenografts in vivo. Clinical samples were used to confirm that PLOD2 expression is increased in tumor tissue and is associated with poor prognosis of breast cancer patients. Cells were treated with cytokines and pharmacological inhibitors in order to verify which adipokines were responsible for activation of PLOD2 expression and which signaling pathways were activated in vitro.

Results

Gene expression profiling and Western blotting analyses revealed that PLOD2 was upregulated in breast cancer cells following coculture with adipocytes; this process was accompanied by enhanced breast cancer cell migration and invasion. Loss-of-function studies indicated that PLOD2 knockdown suppressed cell migration and disrupted the formation of actin stress fibers in breast cancer cells and abrogated the migration induced by following coculture with adipocytes. Moreover, experiments performed in orthotopic mammary fat pad xenografts showed that PLOD2 knockdown could reduce metastasis to the lung and liver. Further, high PLOD2 expression correlated with poor prognosis of breast cancer patients. Mechanistically, adipocyte-derived interleukin-6 (IL-6) and leptin may facilitate PLOD2 upregulation in breast cancer cells and promote breast cancer metastasis in tail vein metastasis assays. Further investigation revealed that adipocyte-derived IL-6 and leptin promoted PLOD2 expression through activation of the JAK/STAT3 and PI3K/AKT signaling pathways.

Conclusions

Our study reveals that adipocyte-derived IL-6 and leptin promote PLOD2 expression by activating the JAK/STAT3 and PI3K/AKT signaling pathways, thus promoting breast cancer metastasis.
  相似文献   

11.
12.

Background  

Urokinase-type Plasminogen Activator (uPA), a serine protease, plays a pivotal role in human breast cancer metastasis by mediating the degradation of extracellular matrix proteins and promoting cell motility. In more advanced breast cancers, uPA activity is significantly up regulated and serves as a prognostic indicator of poor patient outcome. Classically, regulation of uPA activity, especially in breast cancers, is thought to be mediated by Type 1 Plasminogen Activator Inhibitor (PAI-1). However, we have recently found that a lesser known natural inhibitor of uPA, Protease Nexin 1 (PN-1), is expressed in normal human mammary tissue. Based on this observation, we investigated if PN-1 is also expressed in human breast cancers where it may contribute to the regulation of uPA and participate in the development of a metastatic phenotype.  相似文献   

13.
14.

Background  

During the last years the analysis of microRNA expression patterns has led to completely new insights into cancer biology. Furthermore, these patterns are a very promising tool for the development of new diagnostic and prognostic markers. However, most human tumour samples for which long term clinical records are available exist only as formalin-fixed paraffin-embedded specimens. Therefore, the aim of this study was to examine the feasibility of microRNA profiling studies in routinely processed formalin-fixed paraffin-embedded human breast cancer specimens using fluorescence labelled bead technology.  相似文献   

15.
16.

Background  

The Wnt family of secreted proteins is implicated in the regulation of cell fate during development, as well as in cell proliferation, morphology, and migration. Aberrant activation of the Wnt/β-catenin signaling pathway leads to the development of several human cancers, including breast cancer. Secreted frizzled-related protein 1 (SFRP1) antagonizes this pathway by competing with the Frizzled receptor for Wnt ligands resulting in an attenuation of the signal transduction cascade. Loss of SFRP1 expression is observed in breast cancer, along with several other cancers, and is associated with poor patient prognosis. However, it is not clear whether the loss of SFRP1 expression predisposes the mammary gland to tumorigenesis.  相似文献   

17.

Background  

Large discrepancies in signature composition and outcome concordance have been observed between different microarray breast cancer expression profiling studies. This is often ascribed to differences in array platform as well as biological variability. We conjecture that other reasons for the observed discrepancies are the measurement error associated with each feature and the choice of preprocessing method. Microarray data are known to be subject to technical variation and the confidence intervals around individual point estimates of expression levels can be wide. Furthermore, the estimated expression values also vary depending on the selected preprocessing scheme. In microarray breast cancer classification studies, however, these two forms of feature variability are almost always ignored and hence their exact role is unclear.  相似文献   

18.

Background

A contemporary view of the cancer genome reveals extensive rearrangement compared to normal cells. Yet how these genetic alterations translate into specific proteomic changes that underpin acquiring the hallmarks of cancer remains unresolved. The objectives of this study were to quantify alterations in protein expression in two HER2+ cellular models of breast cancer and to infer differentially regulated signaling pathways in these models associated with the hallmarks of cancer.

Results

A proteomic workflow was used to identify proteins in two HER2 positive tumorigenic cell lines (BT474 and SKBR3) that were differentially expressed relative to a normal human mammary epithelial cell line (184A1). A total of 64 (BT474-184A1) and 69 (SKBR3-184A1) proteins were uniquely identified that were differentially expressed by at least 1.5-fold. Pathway inference tools were used to interpret these proteins in terms of functionally enriched pathways in the tumor cell lines. We observed "protein ubiquitination" and "apoptosis signaling" pathways were both enriched in the two breast cancer models while "IGF signaling" and "cell motility" pathways were enriched in BT474 and "amino acid metabolism" were enriched in the SKBR3 cell line.

Conclusion

While "protein ubiquitination" and "apoptosis signaling" pathways were common to both the cell lines, the observed patterns of protein expression suggest that the evasion of apoptosis in each tumorigenic cell line occurs via different mechanisms. Evidently, apoptosis is regulated in BT474 via down regulation of Bid and in SKBR3 via up regulation of Calpain-11 as compared to 184A1.  相似文献   

19.
20.
M Xue  Y Ge  J Zhang  Q Wang  L Hou  Y Liu  L Sun  Q Li 《PloS one》2012,7(8):e43483

Background

Fucoidan is a sulfated polysaccharide derived from brown algae that has been reported to perform multiple biological activities, including antitumor activity. In this study, we examined the influence of crude fucoidan on mouse breast cancer in vitro and in vivo.

Materials and Methods

In vitro, fluorescent staining, flow cytometry and Western blot were performed to analyze apoptosis and vascular endothelial growth factor (VEGF) expression of mouse breast cancer 4T1 cells. In vivo, therapy experiments were conducted on Babl/c mice bearing breast cancer. The tumor volume and weight were measured. The number of apoptotic cells and microvascular density (MVD) in tumor tissues were assessed by TUNEL and CD34 immunostaining. Immunohistochemical assays and ELISA assay were used to detect the expression of VEGF in tissues.

Results

In vitro studies showed that crude fucoidan significantly decreased the viable number of 4T1 cells, induced apoptosis and down-regulated the expression of VEGF. The expression of Bcl-2 was decreased, and the ratio of Bcl-2 to Bax was significantly decreased. The expression of Survivin and phosphorylated extracellular signal regulated protein kinases (ERKs) was decreased. Cytochrome C was released from mitochondria into cytosol, and the cleaved Caspase-3 protein rose after fucoidan treatment. Intraperitoneal injection of fucoidan in breast cancer models reduced the tumor volume and weight. The enhanced antitumor efficacy was associated with decreased angiogenesis and increased induction of apoptosis.

Conclusion

These findings indicated that crude fucoidan inhibited mouse breast cancer growth in vitro and in vivo. These data suggest that fucoidan may serve as a potential therapeutic agent for breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号