首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the effects of light on thermoperiodic regulation of adult eclosion rhythm in the onion fly, Delia antiqua, the responses to two thermoperiods, 29°C (12 h):21°C (12 h) and 25.5°C (12 h):24.5°C (12 h), with different amplitude and same average temperature, were examined in continuous darkness (DD) and continuous light (LL). Irrespective of the temperature step between warm phase (W) and cool phase (C), temperature cycles effectively entrained the adult eclosion rhythm in both DD and LL. Eclosion peaks, however, varied with light conditions and temperature step between W and C. It advanced by approximately 2–3 h in DD than in LL and at smaller temperature step. Background light conditions and temperature step also affect the amplitude of eclosion rhythm. It became lower in LL than in DD and at smaller temperature steps. On transfer to constant temperature (25°C), eclosion rhythm was elicited earliest in the pupae at 8°C temperature step in DD and latest in those at 1°C temperature step in LL. Pupae at 1°C temperature step in DD and at 8°C temperature step in LL demonstrated intermediate responses, but the eclosion rhythm was elicited 1 day earlier in the former than in the latter. This might be ascribed to the interaction between background light and temperature step under thermoperiodic conditions. The results suggest that continuous light and a smaller temperature step weaken the coupling strength between eclosion rhythm and thermoperiod, but the light effect is stronger than the temperature step effect.  相似文献   

2.
The influence of pupal diapause on adult eclosion rhythm of Delia antiqua was investigated. When non-diapause and diapause pupae were exposed to various photoperiods at 15, 20 and 25 °C, both of them emerged as adults close to the light-on time, but the phase of eclosion varied with photoperiod and temperature. Moreover, there was a significant difference in the eclosion time between non-diapause and diapause pupae; the eclosion peak of diapause pupae was earlier than that of non-diapause pupae. When non-diapause and diapause pupae were transferred to constant darkness (DD) after having experienced LD 12:12 at 15, 20 and 25 °C, both showed circadian rhythmicity in eclosion. Although the free-running period (τ) decreased slightly as temperature increased in both non-diapause and diapause pupae, the latter tended to show shorter τ than the former. This observation suggests that the observed difference in eclosion time in LD cycles between non-diapause and diapause pupae is due to differences in τ.  相似文献   

3.
When non-diapause and diapause pupae of Deliaantiqua were exposed to various thermoperiods where thermophase (T) was 25 °C and the cryophase (C) was 15 or 20 °C (TC15 or TC20) in constant darkness (DD), the majority of both types of flies emerged before the rise in temperature. Eclosion time was delayed at the lower cryophase temperature. Moreover, there was a significant difference in the time of adult eclosion between non-diapause and diapause pupae; diapause pupae eclosed earlier than non-diapause pupae. When the two types of pupae were transferred to a constant low temperature (15 or 20 °C) after having experienced TC15 or TC20 12:12 h, they showed circadian rhythmicity in eclosion. The free-running period (τ) of the eclosion rhythm changed after transfer to constant low temperatures in both non-diapause and diapause pupae, suggesting that this change represents a transient cycle until the temperature-sensitive oscillator is coupled again to the temperature-insensitive pacemaker. However, diapause pupae tended to show a shorter τ than non-diapause pupae. This observation suggests that the difference in adult eclosion time under thermoperiodic conditions between non-diapause and diapause pupae is related to their different τ s.  相似文献   

4.
The effect of various combinations of photoperiod and temperature on the induction and termination of the mature larval diapause of a Missouri strain of the southwestern corn borer. Diatraea grandiosella, was examined. Larval exposure to regimes in which the low phase of a 30°:23°C thermoperiod coincided with a scotophase of 10 to 14 hr duration led to high incidence of diapause. Larval exposure to 30°:24°C, 33°:21°C, and 36°:18°C thermoperiods with half cycles of 12 hr in continuous darkness yielded a diapause incidence of 16%, 22%, and 59%, respectively, whereas exposure to a 30°:24°C thermoperiod in continuous illumination yielded a completely nondiapause generation. Larval exposure to one of a series of 36°:18°C thermoperiods in which the duration of the high phase was increased in 2 hr increments from 0 to 24 hr in continuous darkness showed that “short-day” thermoperiods yielded a high incidence of diapause. However, no clearly defined critical thermoperiod was observed. An examination of photoperiodic and thermoperiodic effects on diapause development showed that, in general, those combinations of temperature and light cycles which were diapause inductive also retarded diapause development. The relationship between seasonal photoperiods and thermoperiods in southeastern Missouri was examined.  相似文献   

5.
Soil temperature cycles are considered to play an important role in the entrainment of circadian clocks of underground insects. However, because of the low conductivity of soil, temperature cycles are gradually dampened and the phase of the temperature cycle is delayed with increasing soil depth. The onion fly, Delia antiqua, pupates at various soil depths, and its eclosion is timed by a circadian clock. This fly is able to compensate for the depth-dependent phase delay of temperature change by advancing the eclosion time with decreasing amplitude of the temperature cycle. Therefore, pupae can eclose at the appropriate time irrespective of their location at any depth. However, the mechanism that regulates eclosion time in response to temperature amplitude is still unknown. To understand whether this mechanism involves the circadian clock or further downstream physiological processes, we examined the expression patterns of period (per), a circadian clock gene, of D. antiqua under temperature cycles that were square wave cycles of 12-h warm phase (W) and 12-h cool phase (C) with the temperature difference of 8 °C (WC 29:21 °C) and 1 °C (WC 25.5:24.5 °C). The phase of oscillation in per expression was found to commence 3.5 h earlier under WC 25.5:24.5 °C as compared to WC 29:21 °C. This difference was in close agreement with the eclosion time difference between the two temperature cycles, suggesting that the mechanism that responds to the temperature amplitude involves the circadian clock.  相似文献   

6.
Eclosion rhythm of the high-altitude Himalayan strain of Drosophila ananassae from Badrinath (altitude 5123 m) was temperature-dependent and at 21°C, it was entrained by cycles of 12 h light: 12 h darkness (LD 12:12) and free-ran in constant darkness, however, it was arrhythmic at 13°C or 17°C under identical experimental conditions (Khare, P. V., Barnabas, R. J., Kanojiya, M., Kulkarni, A. D., Joshi, D. S. (2002). Temperature dependent eclosion rhythmicity in the high altitude Himalayan strains of Drosophila ananassae. Chronobiol. Int. 19:1041-1052). The present studies were designed to see whether or not these strains could be entrained at 13°C, 17°C, and 21°C by two types of LD cycles in which the photoperiod at 100 lux intensity varied from 6 h to 18 h, and the light intensity of LD 14:10 cycles varied from 0.001 lux to 1000 lux. All LD cycles entrained this strain at 21°C but not at 13°C or 17°C. These results demonstrate that the entrainment of eclosion rhythm depends on the ambient temperature and not on the photoperiod or light intensity of LD cycles. Thus the temperature has taken precedence over the light in the entrainment process of eclosion rhythm of the high altitude Himalayan strain of D. ananassae. This may be the result of natural selection in response to the environmental temperature at Badrinath that resembles that of the sub-Arctic region but the photoperiod or light intensity are of the subtropical region.  相似文献   

7.
The interaction of thermoperiod and photoperiod in their influence on the reproductive maturation of females and on the induction of the maternal effect determining larval diapause of the progeny of the blowfly, Calliphora vicina, was first investigated under laboratory conditions. Under the combination of a day length of 12 h with a thermoperiod (the alternation of 12 h long periods with temperatures of 10 and 20°C) the reproductive maturation of females was faster than at the corresponding mean constant temperature of 15°C. Under the “natural” thermoperiod, when the period with a temperature of 10°C coincided with “night-time” (the dark phase of the diurnal light-dark cycle) the maturation of females was slower than that under the “inverted” thermoperiod, when the period with a temperature of 10°C coincided with “day-time” (the light phase of the diurnal light-dark cycle). The proportion of diapausing individuals was maximal in the progeny of females kept at 20°C and decreased with the increase in temperature. Under thermoperiods (the alternations of 12 h long periods with temperatures of 20 and 26°C) the proportion of diapausing progeny was lower than that under the corresponding mean constant temperature of 23°C, but under the inverted thermoperiod with a high night temperature this effect was much stronger. In combination with the results of our previous studies, these data support the hypothesis that the effects of “night” and “day” temperatures are substantially different only when the thermal response interacts with a strong photoperiodic response.  相似文献   

8.
The aim of this study was to evaluate whether the day–night cycle phase is a critical factor modulating diurnal rhythm of isolated honeybee's thermal preference or other factors are involved. The insects were exposed to standard (LD 12:12) and reversed (DL 12:12) photoperiods as well as to constant light and constant darkness conditions. Thermal preference and motor activity of honeybees were recorded for 3–5 days in a thermal gradient system. Under the standard (control) photoperiod conditions mean values of temperature selected by honeybees changed rhythmically within the period of about 24 h. Honeybees, exposed to the modified light–darkness cycle distinctly modified their rhythm of thermal preference. Under the reversed photoperiod conditions period of selected ambient temperature was much longer than before, until a complete reversal of the circadian oscillation was established at the end of the experiment. Experiments performed under constant light and constant darkness yielded undisturbed 24 h rhythms of both ambient temperature selection and locomotor activity. Under these conditions only a slight, nonsignificant flattening of the temperature selection curves was noticed. Both lack of substantial changes in the amplitude and occurring phase shifts of the rhythm, recorded in our experiments suggest its endogenous character. Our results prove that diurnal rhythm of ambient temperature selection by bee workers may be entrained by light–dark cycles. This implies a critical role of photoperiod in the modulation of nychthemeral oscillations of thermal preference in honeybees.  相似文献   

9.
Eclosion rhythm of the high-altitude Himalayan strain of Drosophila ananassae from Badrinath (altitude 5123 m) was temperature-dependent and at 21°C, it was entrained by cycles of 12 h light: 12 h darkness (LD 12:12) and free-ran in constant darkness, however, it was arrhythmic at 13°C or 17°C under identical experimental conditions (Khare, P. V., Barnabas, R. J., Kanojiya, M., Kulkarni, A. D., Joshi, D. S. (). Temperature dependent eclosion rhythmicity in the high altitude Himalayan strains of Drosophila ananassae. Chronobiol. Int. 19:1041–1052). The present studies were designed to see whether or not these strains could be entrained at 13°C, 17°C, and 21°C by two types of LD cycles in which the photoperiod at 100 lux intensity varied from 6 h to 18 h, and the light intensity of LD 14:10 cycles varied from 0.001 lux to 1000 lux. All LD cycles entrained this strain at 21°C but not at 13°C or 17°C. These results demonstrate that the entrainment of eclosion rhythm depends on the ambient temperature and not on the photoperiod or light intensity of LD cycles. Thus the temperature has taken precedence over the light in the entrainment process of eclosion rhythm of the high altitude Himalayan strain of D. ananassae. This may be the result of natural selection in response to the environmental temperature at Badrinath that resembles that of the sub-Arctic region but the photoperiod or light intensity are of the subtropical region.  相似文献   

10.
In addition to photoperiod, thermoperiod (or thermocycle) might be an important Zeitgeber for entraining the circadian oscillator controlling adult eclosion rhythm in the Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae). This is confirmed by exposing larvae receiving diapause‐preventing treatments to various thermocycles with different means and amplitudes of temperature. The thermocycles investigated in the present study are TC 8 : 16 h, TC 12 : 12 h, TC 16 : 8 h and TC 20 : 4 h, where T and C represent thermophase (30 °C) and cryophase (20 °C), respectively. For all thermocycles, the peak of adult eclosion rhythm occurs at around the mid‐thermophase. This indicates that the larvae use both ‘temperature‐rise’ and ‘temperature‐fall’ signals to adjust the eclosion phase in each thermocycle. The absence (DD) or presence (LL) of light affects this time‐keeping system slightly under the given thermocycle. The rhythmic adult eclosion noted after exposure of larvae to 30 °C DD for 14 days is recorded in the thermocycles (TC 12 : 12 h, DD; mean temperature = 25 °C) with different amplitudes of 27.5/22.5 °C, 26.5/23.5 °C and 25.5/24.5 °C. The peak in adult eclosion advances in time as the amplitude of the temperature cycle decreases. In the temperature cycle of 25.5/24.5 °C, a peak occurs at the end of the cryophase, 2 h before the temperature‐rise. The adult eclosion rhythm is also observed under various thermocycles (TC 12 : 12 h, DD) consisting of different temperature levels (30 to 20 °C) with different amplitudes. It is found that the temporal position of the peak advances significantly when the amplitude of the thermocycle becomes lower.  相似文献   

11.
When pupae of Delia antiqua were transferred to constant darkness (DD) from light-dark (LD) cycles or constant light (LL), the sensitivity to light of the circadian clock controlling eclosion increased with age. The daily rhythm of eclosion appeared in both non-diapause and diapause pupae only when this transfer was made during late pharate adult development. When transferred from LL to DD in the early pupal stage, the adult eclosion was weakly rhythmic in non-diapause pupae but arrhythmic in diapause pupae. However, the sensitivity of the circadian clock to temperature cycles or steps was higher in diapause pupae than in non-diapause pupae; in the transfer to a constant 20 degrees C from a thermoperiod of 25 degrees C (12 h)/20 degrees C (12 h) on day 10 after pupation or from chilling (7.5 degrees C) in DD, the adult eclosion from diapause pupae was rhythmic but that from non-diapause pupae arrhythmic. In a transfer to 20 degrees C from the thermoperiod after the initiation of eclosion, rhythmicity was observed in both types of pupae. The larval stage was insensitive to the effect of LD cycle initiating the eclosion rhythm. In D. antiqua pupae in the soil under natural conditions, therefore, the thermoperiod in the late pupal stage would be the most important 'Zeitgeber' for the determination of eclosion timing.  相似文献   

12.
The dynamics of adult eclosion inTrichogramma evanescens Westw. were studied under (1) constant light and temperature of 20 °C, (2) photoperiods L12:D12 and L16:D8 at 20 °C, (3) thermoperiod 4 h 27 °/20 h 20 °C at constant light, (4) joint action of photo- and thermoperiod. The emergence was arhythmic in constant light combined with constant temperature, while a sharp monophasic rhythm was observed with the isolated action of photo- or thermoperiod. The ‘light-on’ and ‘temperature step-up’ signals were shown to act in one direction. When both signals were combined, they manifested themselveses competing entraining stimuli which, in turn, revealed an apparent individual variation in relative reactivity to the light and temperature signals. Some perspectives which follow from these observations are discussed.  相似文献   

13.
The rice stem borer, Chilo suppressalis, enters facultative diapause as fully grown larvae in response to short-day conditions during the autumn. Our results showed that the critical night length for diapause induction in C. suppressalis was between 10 h 22 min and 10 h 45 min at 22, 25 and 28 °C, 11 h 18 min at 31 °C, and between 10 h 5 min and 10 h 20 min under field conditions (average temperature ranged from 27.2 to 30.7 °C). The diapause incidence declined in ultra-long nights (18-22 h scotophases) and DD, and increased in ultra-short nights (2-6 h scotophases) and LL. Moreover, we found that the third instar was the stage most sensitive to the photoperiod, and night length played an essential role in the initiation of diapause. Night-interruption experiments with a 1-h light pulse at LD 12:12 (light 12:dark 12) exhibited two troughs of diapause inhibition, with one occurring in early scotophase and the other in late scotophase. Field observations for six years showed that most larvae entered winter diapause in August in response to declining day lengths, despite the high temperatures prevailing during August. By periodically transferring the field-collected overwintering larvae to different photoperiods and temperatures, the results showed that photoperiod had a significant influence on diapause development during the early phase of diapause, while high temperature significantly accelerated the termination of larval diapause.  相似文献   

14.
Both light and temperature can influence the pineal's synthesis of the indoleamine melatonin. An investigation of the effects of light and temperature cycles on the pineal melatonin rhythm (PMR) showed the following: (1) Both daily light cycles and daily temperature cycles could entrain the PMR; melatonin levels peaked during the dark phase of a light-dark cycle or the cool phase of a temperature cycle. (2) The PMR could be entrained by a temperature cycle as low as 2 degrees C in amplitude in lizards held in constant light or constant darkness. (3) The length of the photoperiod or thermoperiod affected the phase, amplitude, or duration of the PMR. (4) When presented together, the effects of light and temperature cycles on the PMR depended on the phase relationship between the light and temperature cycles, as well as on the strength of the entraining stimuli, such as the amplitude of the temperature cycle. (5) Exposure to a constant cold temperature (10 degrees C) eliminated the PMR, yet a rhythm could still be expressed under a 24-hr temperature cycle (32 degrees C/10 degrees C), and the rhythm peaked during the 10 degrees C phase of the cycle. (6) A 6-hr dark pulse presented during the day did not elicit a premature rise in melatonin levels. These studies show how environmental stimuli can control the pineal rhythm of melatonin synthesis and secretion. Previous studies have supported a model in which the lizard's pineal acts as a circadian pacemaker within a multioscillator circadian system, and have implicated melatonin as a hormone by which the pineal may communicate with the rest of the system. The lizard pineal, therefore, may act as a photo- and thermoendocrine transducer translating light and temperature information into an internal cue in the form of the PMR. The PMR, in turn, may control the phase and period of circadian clocks located elsewhere, insuring that the right internal events occur at the right time of day.  相似文献   

15.
The duration of the vegetative phase (i.e. days from sowingto panicle initiation) in sorghum [Sorghum bicolor (L.) Moench]is affected by photoperiod and temperature. Plants of severalcontrasting genotypes of sorghum were grown in controlled-environmentgrowth cabinets with either synchronous or asynchronous photoperiodsand thermoperiods. Apical development was recorded. Diurnalasynchrony between photoperiod and thermoperiod reduced durationsto panicle initiation when the temperature warmed after lightswent on and cooled after lights went off, but increased thesedurations when the temperature warmed before lights went onand cooled before lights went off. These effects were shownin the maturity lines 60M and SM100 and also in the USA cv.RS610 and the Sudanese landrace IS22365, but their magnitudevaried with genotype, photothermal regime, and the degree ofasynchrony. The greatest effect was detected in IS22365 grownat 30/21 °C (12 h/12 h) with a 12 h d-1photoperiod whenthe temperature warmed 2.5 h before lights went on and cooled2.5 h before lights went off, when the duration from sowingto panicle initiation was 69 d compared with 37 d in the control(synchronous photoperiod and thermoperiod in each diurnal cycle). Reciprocal transfers of plants of IS22365 between short andlong days revealed that asynchrony principally affected theduration of the photoperiod-insensitive pre-inductive phaseof development; i.e. asynchrony affected the time (age) at whichthe plants were first able to respond to photoperiod. In thatinvestigation in controlled-environment growth chambers, thesubsequent photoperiod-sensitive inductive phase continued untilpanicle initiation. Subsequent reciprocal transfer experimentsin controlled-environment glasshouses in four different alternatingtemperature regimes employed synchronous photoperiods and thermoperiodsin short (11 h) days with temperature warming 1.5 h after thebeginning of the day in long (12.5 h) days. In those investigations,photoperiod sensitivity ended some time before (2.5–8.1d, mean 5.7 d) panicle initiation in IS22365, Naga White andSeredo. Moreover, whereas the duration of the photoperiod-insensitivepre-inductive phase was affected by temperature, the durationsof the photoperiod-sensitive inductive and the photoperiod-insensitivepost-inductive phases were not. Sorghum bicolor (L.) Moench; sorghum; asynchrony; photoperiod; thermoperiod; vegetative phase; panicle initiation  相似文献   

16.
We determined if the photoperiod regime affects the thermal biology of the tadpoles of Odontophrynus occidentalis from the Monte desert (Argentina). Variables measured were: selected body temperature (Tsel), critical thermal maximum (CTmax) and thermal critical minimum (CTmin). The tadpoles were acclimated to 15±2 °C for 15 days, and they were divided in three experimental groups: 24 h light, 24 h dark and 12 h/12 h light/dark. Data indicate that the photoperiod had an important effect upon the thermal biology of the Odontophrynus occidentalis tadpoles. The treatment group exposed to 24 h of light showed the highest selected temperature and thermal extremes. We suggest that changes in photoperiod may allow these organisms to anticipate the future changes in their thermal environment, as longer days usually involve higher temperatures.  相似文献   

17.
A. Kureck 《Oecologia》1979,40(3):311-323
Summary Chironomus thummi emerged from cold water (9–12°C) during daylight, from warm water (16–25°C) mainly after dusk. At medium temperatures no intermediate peak occurred, but the pattern became biphasic. The midges switched from one eclosion time to the other without any transition. This happened in constant as well as in falling and rising temperatures. The biphasic pattern is explained by some intraspecific variability of the critical temperature. Midges bred in cold water changed the pattern at the same temperature level as those bred in warm water, indicating that there was no long-term adaptation. Both eclosion times were synchronized with the light-dark cycle (LD), and continued in constant light (LL) as well as in constant darkness (DD) with a free running circadian rhythm. A single step from LL to DD given to arhythmic populations resulted in rhythmic eclosion persisting for up to two weeks. The phase and shape of the peaks depended on the temperature level and resembled the two alternate patterns in LD.The duration of development in this polyvoltine species is scarcely affected by the photoperiod. Since eclosion is not restricted to a short suitable season, the variable pattern may be an adjustment to different seasonal temperature levels.Supported by a grant from the Deutsche Forschungsgemeinschaft  相似文献   

18.
The photosynthesis-deficient ZC mutant ofEuglena gracilis Klebs (strain Z) was cultured at 16°C on an aerated, magnetically stirred, mineral medium containing 0.1% ethanol (pH 7.0). Cell division could be entrained by a 12: 12 light: dark cycle (LD: 12, 12) or even by a one-pulse skeleton photoperiod (LD: 1,23) The rhythm free-ran in DD for at least 8 days with a circadian period (=25.5 h) in populations that had been previously entrained by LD. The freerunning rhythm could be phase-shifted by a single 1-h light pulse (3000 lx). The strong (Type 0) phase-response curve derived from the resetting effects of such signals given at different circadian times was similar to that for the photosynthetic wild-type strain. These results demonstrate that the presence of a functional chloroplast compartment is not necessary for the circadian clock to function inEuglena and suggest that phase resetting of the circadian clock by light occurs via a similar pathway in both photosynthetic and non-photosynthetic cell types.  相似文献   

19.
This study reports body temperature regulation (Tb) and circadian rhythms of undisturbed feral cats in their natural environment in Australia over a continuous period of three months. It furthermore compares these data with Tb data collected of feral cats, after a period of one year in captivity. In free-ranging, undisturbed feral cats, a distinct robust, regular circadian rhythm (strength of rhythm) (21–59.8%) with higher body temperature in the dark (active) phase (mean±STD: 39.2±0.27 °C) and significantly lower body temperature during the light (rest) phase (mean±STD: 38.1±0.47 °C, P<0.001) was found. The acrophase (time of the daily peak) of the three free-ranging cats investigated varied from 22:34 h (LG 2), 22:57 h (LG 1) to 23:17 h (LG 3). In the course of captivity, the cats’ circadian rhythms shifted from nocturnality to a diurnal tendency, with an acrophase ranging from 12:00 h (MtK 2), 12:23 h (MtK 1) to 16:25 h (MtK 3). This change in rhythmicity was accompanied by a significant decrease in robustness (1.7–5.2%) and mean body temperature levels (37.77±0.34 °C) as well as minima and maxima (36–39 °C versus 35.5–41.9 °C, free-ranging cats) of three captive cats, resulting in a significant shift towards a decrease in amplitude.  相似文献   

20.
The effects of thermoperiods on diapause induction under continuous darkness (DD), continuous light (LL), and an L12:D12 photoperiod were investigated in the cabbage beetle, Colaphellus bowringi Baly (Coleoptera: Chrysomelidae), a short‐day species. Diapause could be induced by thermoperiod under both LL and DD; however, in the range of 24–30 °C, lower incidences of diapause were observed under LL than under DD. The critical cryophase was found to be dependent on the mean temperature of the thermoperiod applied. Although the thermoperiodic response pattern was similar under LL and DD, the incidence of diapause was higher under LL when the duration of the cryophase did not exceed 12 h. In contrast, when the duration of the cryophase was longer than 12 h, the incidence of diapause under LL was lower or equal to that under DD. When a thermoperiod of 24 °C (cryophase) and 28 °C (thermophase) was applied, the incidence of diapause was higher under LL than under DD, regardless of the duration of the cryophase. Thermoperiodic responses under a photoperiod of L12:D12 and under DD further revealed that induction of diapause was strongly influenced by the photophase temperature. Moreover, the incidence of diapause was lower when the thermophase coincided with the photophase than when the cryophase coincided with the photophase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号