首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Ultraviolet (UV) light (blacklight), which emits UV in the range of 320-400 nm, has been used worldwide in light trapping of insect pests. In this article, we test the hypothesis that one of the effects of UV light irradiation is to increase oxidative stress on insects. The effects of UV light irradiation on total antioxidant capacity, malondialdehyde (MDA) and protein carbonyl contents and the activities of superoxide dismutase (SOD), catalase (CAT), peroxidases (POX) and glutathione-S-transferase (GST) were investigated in Helicoverpa armigera adults. The adults were exposed to UV light for various time periods (0, 30, 60 and 90 min). We found that exposure to UV light for 30 min resulted in increased total antioxidant capacity, protein carbonyl content and activities of SOD, CAT, POX and GST. When the exposure time lasted for 60 and 90 min, the protein carbonyl content and activities of CAT and GST remained significantly higher than the control. However, the antioxidant capacity and SOD activity returned to control levels, and POX activity decreased at 60 and 90 min. Our results confirm the hypothesis that UV light irradiation increases the level of oxidative stress in H. armigera adults.  相似文献   

2.
Changes in temperature are known to cause a variety of physiological stress responses in insects and mites. Thermal stress responses are usually associated with the increased generation of reactive oxygen species (ROS), resulting in oxidative damage. In this study, we examined the time-related effect (durations for 1, 2, 3, and 5 h) of thermal stress conditions—i.e., relatively low (0, 5, 10, and 15 °C) or high (35, 38, 41, and 44 °C) temperatures—on the activities of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), peroxidase (POX), glutathione S-transferases (GSTs), and total antioxidant capacity (T-AOC) of the predatory mite Neoseiulus cucumeris. Also the lipid peroxidation (LPO) levels of the predatory mite were measured under thermal stress conditions. The results confirmed that thermal stress results in a condition of so-called oxidative stress and the four antioxidant enzymes play an important role in combating the accumulation of ROS in N. cucumeris. CAT and POX activity changed significantly when the mites were exposed to cold and heat shock, respectively. The elevated levels of SOD and GSTs activity, expressed in a time-dependent manner, may have an important role in the process of antioxidant response to thermal stress. However, the levels of LPO in N. cucumeris were high, serving as an important signal that these antioxidant enzyme-based defense mechanisms were not always adequate to counteract the surplus ROS. Thus, we hypothesize that thermal stress, especially extreme temperatures, may contribute much to the generation of ROS in N. cucumeris, and eventually to its death.  相似文献   

3.
High temperatures cause a variety of physiological stress responses in insects, including increased generation of reactive oxygen species (ROS), which can cause oxidative damage. This study investigated the effects of thermal stress on ROS generation, the expression of heat shock protein 70 (Hsp70) at the mRNA and protein levels, the activity of antioxidant enzymes (SOD, CAT), and apoptosis in hemocytes of Chilo suppressalis larvae. Results indicated that thermal stress significantly elevated the level of ROS and antioxidant enzyme activity in C. suppressalis larvae. Real-time quantitative PCR showed that hsp70 gene expression was induced by heat stress. Flow cytometric results revealed that the expression profile of Hsp70 at the protein level was in agreement with that at the mRNA level. The expression of Hsp70 at both the mRNA and protein levels reached a maximum at 36 °C in larval hemocytes. Exposure to tested temperatures did not cause any significant change in the rate of apoptosis in larval hemocytes. These results suggest that thermal stress leads to oxidative stress and that antioxidant enzymes and the Hsp70 play an important role in reducing oxidative damage in C. suppressalis larvae.  相似文献   

4.
This study investigated how Cd exposure affected oxidative biomarkers in Japanese flounder, Paralichthys olivaceus, at early life stages (ELS). Fish were exposed to waterborne Cd (0–48 µg L− 1) from embryonic to juvenile stages for 80 days. Growth, Cd accumulation, activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione S-transferase (GST, EC 2.5.1.18), and levels of glutathione (GSH) and lipid peroxidation (LPO) were investigated at three developmental stages. Flounder growth decreased and Cd accumulation increased with increasing Cd concentration. In metamorphosing larvae, CAT and SOD activities were inhibited and GSH level was elevated, while LPO was enhanced by increasing Cd concentrations. CAT and GST activities of settling larvae were inhibited but GSH level was elevated at high Cd concentrations. In juveniles, SOD activity and LPO level were increased but GST activity was inhibited as Cd concentration increased. Antioxidants in flounder at ELS were able to develop ductile responses to defend against oxidative stress, but LPO fatally occurred due to Cd exposure. These biochemical parameters could be used as effective oxidative biomarkers for evaluating Cd contamination and toxicity in marine environments: CAT, SOD, GSH, and LPO for metamorphosing stage; CAT, GSH, and GST for settling stage; and SOD, GST, and LPO for juvenile stage.  相似文献   

5.
High temperatures are known to cause physiological stress in organisms. This is often associated with enhanced generation of reactive oxygen species (ROS) leading to oxidative damage. The commercially important tropical tasar silkworm Antheraea mylitta has to endure high summer temperature before egg production on the onset of monsoon. In this study the status of pro-oxidants and antioxidants was studied in the testes of male pupae of tasar silkworm A. mylitta under thermal stress condition. Further, to find out the impact of temperature on physiological activity, oxygen consumption rate was measured. The result indicated higher level of thiobarbituric acid reactive substances (TBARS, as an index of lipid peroxidation) and total hydroperoxides in the male pupae exposed to high temperature (40±1 °C). Similarly, it was found that increased levels of antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), ascorbic acid (ASA) and low molecular thiols (L-SH) in testes are more prominent in high temperature rather than in moderate temperature (35±1 oC) suggesting the activation of physiological mechanism to scavenge the ROS produced during stress. Further more, the order of higher level of oxygen consumption rate was observed as high temperature (40±1°C) > moderate temperature (35±1°C) > control groups (28±1°C). Oxygen consumption rate was positively correlated with oxidative stress and antioxidant defence indices. We infer from these findings that the testes of A. mylitta pupae modulate testicular antioxidant responses to thermal stress.  相似文献   

6.
The protection of the developing organism from oxidative damage is ensured by antioxidant defense systems to cope with reactive oxygen species (ROS), which in turn can be influenced by dietary polyunsaturated fatty acids (PUFAs). PUFAs in membrane phospholipids are substrates for ROS-induced peroxidation reactions. We investigated the effects of dietary supplementation with omega-3 PUFAs on lipid peroxidation and antioxidant enzyme activities in rat cerebrum, liver and uterus. Pups born from dams fed a diet low in omega-3 PUFAs were fed at weaning a diet supplying low α-linolenic acid (ALA), adequate ALA or enriched with eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Malondialdehyde (MDA), a biomarker of lipid peroxidation, and the activities of superoxide dismutase 1 (SOD1), SOD2, catalase (CAT) and glutathione peroxidase (GPX) were determined in the three target organs. Compared to low ALA feeding, supplementation with adequate ALA or with EPA + DHA did not affect the cerebrum MDA content but increased MDA content in liver. Uterine MDA was increased by the EPA + DHA diet. Supplementation with adequate ALA or EPA + DHA increased SOD2 activity in the liver and uterus, while only the DHA diet increased SOD2 activity in the cerebrum. SOD1, CAT and GPX activities were not altered by ALA or EPA + DHA supplementation. Our data suggest that increased SOD2 activity in organs of the growing female rats is a critical determinant in the tolerance to oxidative stress induced by feeding a diet supplemented with omega-3 PUFAs. This is may be a specific cellular antioxidant response to ROS production within the mitochondria.  相似文献   

7.
Pigeonpea [Cajanus cajan (L.) Millsp.] is a waterlogging-sensitive legume crop. We studied the effect of waterlogging stress on hydrogen peroxide (H2O2) content, lipid peroxidation and antioxidant enzyme activities in two pigeonpea genotypes viz., ICPL-84023 (waterlogging resistant) and MAL-18 (waterlogging susceptible). In a pot experiment, waterlogging stress was imposed for 6 days at early vegetative stage (20 days after sowing). Waterlogging treatment significantly increased hydrogen peroxide accumulation and lipid peroxidation, which indicated the extent of oxidative injury posed by stress conditions. Enzyme activities of peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and polyphenol oxidase (PPO) increased in pigeonpea roots as a consequence of waterlogged conditions, and all the enzyme activities were significantly higher in waterlogged ICPL-84023 than in MAL-18. POX activity was the maximum immediately after imposing stress, therefore, it was suggested to be involved in early scavenging of H2O2, while rest of the enzymes (CAT, APX, SOD and PPO) were more important in late responses to waterlogging. Present study revealed that H2O2 content is directly related to lipid peroxidation leading to oxidative damage during waterlogging in pigeonpea. Higher antioxidant potential in ICPL-84023 as evidenced by enhanced POX, CAT, APX, SOD and PPO activities increased capacity for reactive oxygen species (ROS) scavenging and indicated relationship between waterlogging resistance and antioxidant defense system in pigeonpea.  相似文献   

8.
Temperature is one of the most important environmental factors, and is responsible for a variety of physiological stress responses in organisms. Induced thermal stress is associated with elevated reactive oxygen species (ROS) generation leading to oxidative damage. The ladybeetle, Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae), is considered a successful natural enemy because of its tolerance to high temperatures in arid and semi-arid areas in China. In this study, we investigated the effect of high temperatures (35, 37, 39, 41 and 43 °C) on the survival and activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-S-transferases (GST), and total antioxidant capacity (TAC) as well as malondialdehyde (MDA) concentrations in P. japonica adults. The results indicated that P. japonica adults could not survive at 43 °C. CAT, GST and TAC were significantly increased when compared to the control (25 °C), and this played an important role in the process of antioxidant response to thermal stress. SOD and POD activity, as well as MDA, did not differ significantly at 35 and 37 °C compared to the control; however, there were increased levels of SOD, POD and MDA when the temperature was above 37 °C. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play important roles in reducing oxidative damage in P. japonica adults. This study represents the first comprehensive report on the antioxidant defense system in predaceous coccinellids (the third trophic level). The findings provide useful information for predicting population dynamics and understanding the potential for P. japonica as a natural enemy to control pest insects under varied environmental conditions.  相似文献   

9.
Reactive oxygen species (ROS) directly or indirectly involves in multistage process of carcinogenesis. Antioxidant activity of methanolic extract of Operculina turpethum stems (MEOT) on 7,12 dimethylbenz(a)anthracene (DMBA) induced breast cancer was investigated in female Sprague-Dawley rats. Changes in the levels of lipid peroxidation and antioxidants system was evaluated in addition to tumour development. Twenty four female rats were divided into four groups: control, DMBA, DMBA + MEOT and MEOT. In the DMBA group, rats were intragastrically administered with 20 mg of DMBA using corn oil as vehicle. Animals of DMBA + MEOT group received a single dose of 20 mg of DMBA dissolved in corn oil intragastrically followed by O. turpethum extract (100 mg/kg body weight), while MEOT group received O. turpethum extract (100 mg/kg body weight) intragastrically daily for a period of 45 days. After the experimental period of 45 days, oxidative stress parameters were assessed in serum, liver and breast of both control and experimental groups. In addition to this, tumour weight of breast was also assessed. A significant increase in lipid peroxidation levels were observed in the tested samples of cancer induced rats while the activities of enzymic antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and non-enzymic antioxidants like glutathione (GSH), ascorbic acid (Vitamin C) and α-tocopherol (Vitamin E) were decreased in cancer-bearing animals when compared to control animals. A significant (P < 0.05) increase in the tumour weight was observed in the breast of DMBA group and the breast tumour weight decreased significantly (P < 0.05) in the DMBA + MEOT groups. Oral administration of MEOT remarkably reduced the lipid peroxidation activity and increased the antioxidants level in drug treated animals and decreased the tumour weight significantly (P < 0.05). This result suggests that MEOT shows antioxidant activity and play a protective role against DMBA induced breast cancer.  相似文献   

10.
An analysis of the components of the antioxidant defence system in exponential and stationary growth phases of filamentous fungus Phycomyces blakesleeanus and the response to the oxidative stress hydrogen peroxide were performed. There is a strong positive correlation between mycelial antioxidant capacity and the contents of gallic acid, d-erythroascorbate (d-EAA) or d-erythroascorbate monoglucoside (d-EAAG). These secondary metabolites are specifically synthesized by this fungus and reach maximal values in the stationary growth phase, suggesting that they can play some role in the antioxidant defence system of this fungus. There is a differential expression of the two more notable antioxidant activities, catalase (CAT) and superoxide dismutase (SOD), depending of the growth stage of P. blakesleeanus, CAT being expressed in the exponential and SOD in the stationary phase. Phycomyces blakesleeanus showed a high resistance to the oxidative stress caused by H2O2 (50 and 200 mM) which was higher in exponential phase. This higher resistance can be explained by the presence of CAT, glutathione peroxidase (GPx), and the probable contribution of glutathione-S-transferase (GST) and high levels of reduced form of glutathione (GSH). The transition to stationary phase was accompanied with a higher physiological oxidative damage illustrated by the higher protein carbonylation. In this growth stage the resistance of the fungus to the oxidative stress caused by H2O2 could be explained by the presence of SOD, GPx, and the probable contribution of GST as well as of secondary metabolites, mainly d-EAA and d-EAAG. These results highlight a specific response to oxidative stress by H2O2 depending on the growth phase of P. blakesleeanus.  相似文献   

11.
Hu L  Li H  Pang H  Fu J 《Journal of plant physiology》2012,169(2):146-156
Salinity could damage cellular membranes through overproduction of reactive oxygen species (ROS), while antioxidant capacities play a vital role in protecting plants from salinity caused oxidative damages. The objective of this study was to investigate the toxic effect of salt on the antioxidant enzyme activities, isoforms and gene expressions in perennial ryegrass (Lolium perenne L.). Salt-tolerant ‘Quickstart II’ and salt-sensitive ‘DP1′ were subjected to 0 and 250 mM NaCl for 12 d. Salt stress increased the content of lipid peroxidation (MDA), electrolyte leakage (EL) and hydrogen peroxide (H2O2), to a greater extent in salt-sensitive genotype. Salt-stressed plant leaves exhibited a greater activity of superoxide dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11) at 4 d after treatment (DAT), but a lower level of enzyme activity at 8 and 12 d, when compared to the control. Catalase (CAT, EC 1.11.1.6) activity was greater at 4 DAT and thereafter decreased in salt tolerant genotype relative to the control, whereas lower than the control during whole experiment period for salt-sensitive genotype. There were different patterns of five isoforms of SOD, POD and two isoforms of APX between two genotypes. Antioxidant gene expression was positively related to isoenzymatic and total enzymatic activities during 12-d salt-treated leaves of two genotypes, with a relatively higher level in salt-tolerant genotype. Thus, salt tolerance could be related to the constitutive/induced antioxidant gene, leading to more efficient enzyme stimulation and protection in perennial ryegrass.  相似文献   

12.
Temperature is a critical abiotic factor that causes physiological changes in arthropods. However, little is known about the effect of heat stress on the antioxidant responses of Araneae species. Hylyphantes graminicola is a dominant predator in many cropping systems in China. In the present study, the effect of short-term heat stress (36, 38, 40 or 42 °C) on the reactive oxygen species (ROS) levels, the activities of antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], peroxidases [POD] and glutathione-S-transferases GST]), total antioxidant capacity (TAC), malondialdehyde (MDA) concentrations and survival of H. graminicola spiderlings and adults were investigated. The results showed that H. graminicola adults had a significantly higher survival rate compared to spiderlings at 40 °C. The heat stress increased ROS contents in H. graminicola. The SOD, CAT, POD and GST activities increased in spiderlings and adults under heat stress. These data suggest a defensive function for these enzymes in alleviating oxidative damage. Specifically, SOD plays a key role in reducing the high level of superoxide radicals in spiderlings and adults. Moreover, the POD and CAT capabilities for scavenging H2O2 in spiderlings were similar, and CAT may play a more important role than POD in scavenging H2O2 in adults at 42 °C. The spiderling TAC increased significantly at 40 and 42 °C, and the adult TAC was stable at 36–40 °C but decreased at 42 °C. These data suggest that TAC was insufficient in H. graminicola adults under more severe stress conditions. These results further our understanding of the physiological response of Araneae species exposed to heat stress.  相似文献   

13.
Arsenic, an important human toxin, is naturally occurring in groundwater and its accumulation in plants and animals have assumed a menacing proportion in a large part of the world, particularly Asia. Epidemiological studies have shown a strong association between chronic arsenic exposure and various adverse health effects, including cardiovascular diseases, neurological defects and cancer of lung, skin, bladder, liver and kidney. The protective role of the fruits of Emblica officinalis (500 mg/kg b.wt.) was studied in adult Swiss albino mice against arsenic induced hepatopathy. Arsenic treated group (NaAsO2, 4 mg/kg b.wt.) had a significant increase in serum transaminases and lipid peroxidation (LPO) content in liver, whereas significant decrease was recorded in hepatic superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) and serum alkaline phosphatase activity. Combined treatment of Emblica and arsenic (pre and post) declined the serum transaminases and LPO content in liver whereas significant increase was noticed in SOD, CAT, GST and serum alkaline phosphatase activities. Liver histopathology showed that Emblica fruit extract had reduced karyolysis, karyorrhexis, necrosis and cytoplasmic vacuolization induced by NaAsO2 intoxication. Thus it can be concluded that pre- and post-supplementation of E. officinalis fruit extract significantly reduced arsenic induced oxidative stress in liver.  相似文献   

14.
We investigated the effect of long-term exposure to CBZ on the antioxidant system in brain tissue of rainbow trout. Fish were exposed to sublethal concentrations of CBZ (1.0 μg/L, 0.2 mg/L or 2.0 mg/L) for 7, 21, and 42 days. Oxidative stress indices (LPO and CP) and activities of antioxidant enzymes (SOD, CAT, GPx and GR) in fish brain were measured. In addition, non-enzymatic antioxidant (GSH) was determined after 42 days exposure. Carbamazepine exposure at 0.2 mg/L led to significant increases (p < 0.05) of LPO and CP after 42 days and, at 2.0 mg/L, after 21 days. Activities of the antioxidant enzymes SOD, CAT, and GPx in CBZ-treated groups slightly increased during the first period (7 days). However, activities of all measured antioxidant enzymes were significantly inhibited (p < 0.05) at 0.2 mg/L exposure after 42 days and after 21 days at 2.0 mg/L. After 42 days, the content of GSH in fish brain was significantly lower (p < 0.05) in groups exposed to CBZ at 0.2 mg/L and 2.0 mg/L than in other groups. Prolonged exposure to CBZ resulted in excess reactive oxygen species formation, finally resulting in oxidative damage to lipids and proteins and inhibited antioxidant capacities in fish brain. In short, a low level of oxidative stress could induce the adaptive responses of antioxidant enzymes, but long-term exposure to CBZ could lead to serious oxidative damage in fish brain.  相似文献   

15.
Hexavalent chromium (Cr6 +) is a common pollutant transient metal with high toxicity in the environment. The toxicological effects partly result from oxidative damage due to the production of excessive reactive oxygen species (ROS) in the reductive process of Cr6 +. To explore the influence of ROS induced directly by Cr6 + on the oxidative stress generation and antioxidant system, the full length cDNAs of antioxidant-related genes cat, gpx1 and Cu/Zn-sod were successfully acquired from pengze crucian carp first and analyzed. Furthermore, the mRNA expression of the antioxidant genes encompassing catalase (cat), copper/zinc superoxide dismutase (Cu/Zn-sod) and glutathione peroxidase (gpx1), antioxidant enzyme activities of CAT, SOD, and GPx and total protein content were further studied in the gill, intestine and liver of pengze crucian carp (Carassius auratus var. Pengze) juveniles upon acute exposure to Cr6 + at concentrations of 0.1, 1.0, 10 and 100 mg/L for 4 days. Differential significant changes of the antioxidant enzymes and gene expression were observed in different tissues. The findings contribute to better understanding the antioxidant mechanisms induced by Cr6 + and selecting the organic-specific sensitive biomarkers to monitor the safety of the aquatic ecosystem.  相似文献   

16.
Grapefruit is one of the most susceptible citrus genotypes to Asiatic Citrus Canker, caused by Xanthomonas axonopodis pv. citri (Xac), that can cause severe losses in citrus yield and quality. Although much is known about citrus response to Xac, little is known of the role of antioxidant metabolism. Grapefruit leaves were artificially injected with a strain of Xac obtained from a commercial grove in Florida and components of oxidative metabolism were measured. Symptoms observed included water soaking (2 dai; days after inoculation), raised and ruptured epidermis (6-8 dai), formation of necrotic lesions (16 dai), and leaf abscission (21 dai). The Xac population increased to a maximum (≈109 CFU/cm2) 8 dai and then declined to ≈107 CFU/cm2 by 20 dai. Lipid peroxidation was higher in infected leaves than uninoculated controls from 4 to 21 dai indicating greater oxidative stress. H2O2 concentration demonstrated a biphasic pattern with peak concentrations at 4 and 13 dai and minimum concentrations that were lower than the controls at 10 and 20 dai. The H2O2 concentration somewhat corresponded with superoxide dismutase (SOD) activity, which generates H2O2 via dismutase of superoxide ions. Total SOD activity in Xac-infected leaves increased to a maximum at 4 dai, the day of highest H2O2 concentration, and then declined and remained at or below controls. Mn-SOD and Fe-SOD activities both increased to maximum activities at 4 dai. Mn-SOD had four isoforms in Xac-infected leaves but only three in the controls. Fe-SOD had three isoforms in both infected and control plants. Suppression of H2O2 in Xac-infected leaves also corresponded to higher activities of the H2O2 catabolising enzymes catalase (CAT), ascorbate peroxidase (APOD), and peroxidase (POD). Two additional CAT isoforms were detected in infected leaves and not the controls. Three POD isoforms were detected in both control and infected leaves. Previous research has shown that Xac is sensitive to intraplant H2O2 concentration, however, the pattern of Xac in this study did not correspond to H2O2 concentration, which initially increased due to enhanced SOD activity, but was later suppressed apparently with the aid of peroxidases. In conclusion, Xac infection altered H2O2 metabolism in grapefruit leaves by changes in the activities and isoforms of SODs, CATs, PODs and APOD.  相似文献   

17.
Hypobaric hypoxia is a socio-economic problem affecting cognitive, memory and behavior functions. Severe oxidative stress caused by hypobaric hypoxia adversely affects brain areas like cortex, hippocampus, basal ganglia, and cerebellum. In the present study, we have investigated the antioxidant and memory protection efficacy of the synthetic NAP peptide (NAPVSIPQ) during long-term chronic hypobaric hypoxia (7, 14, 21 and 28 days, 25,000 ft) in rats. Intranasal supplementation of NAP peptide (2 μg/Kg body weight) improved antioxidant status of brain evaluated by biochemical assays for free radical estimation, lipid peroxidation, GSH and GSSG level. Analysis of expression levels of SOD revealed that NAP significantly activated antioxidant genes as compared to hypoxia exposed rats. We have also observed a significant increased expression of Nrf2, the master regulator of antioxidant defense system and its downstream targets such as HO-1, GST and SOD1 by NAP supplementation, suggesting activation of Nrf2-mediated antioxidant defense response. In corroboration, our results also demonstrate that NAP supplementation improved the memory function assessed with radial arm maze. These cumulative results suggest the therapeutic potential of NAP peptide for ameliorating hypobaric hypoxia-induced oxidative stress.  相似文献   

18.
Co-60 radiation has been broadly used for pest management because it results in male sterility and a lack of emergence of unparasitized hosts due to oxidative damage. Insect life is significantly affected by abiotic stress factors, including Co-60 radiation. In the present study, we determined the influence of Co-60 radiation on an important pest in southern China, the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). We exposed 30-h-old B. dorsalis eggs to Co-60 radiation at doses of (0, 5, 10, 15, 20, 25, 30, 35, and 40?Gy) and determined the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX). CAT and POX activity significantly increased in B. dorsalis in the 1st larvae instar after high-intensity radiation doses (25–40?Gy) and played an important role in the antioxidant response to intensive radiation. The activity of POX in B. dorsalis at the 2nd larval instar sharply decreased after different doses of radiation, except for 10 and 40?Gy. Our results demonstrated that Co-60 radiation affected the activity of antioxidant enzymes and disturbed the physiology of B. dorsalis, especially at early stages (the 1st, 2nd larvae instar). These three antioxidant defense enzymes cooperatively play an important role in protecting B. dorsalis from oxidative damage.  相似文献   

19.
Oxidative stress significantly damages sperm functions such as motility, functional integrity, endogenous antioxidant enzyme activities and fertility due to lipid peroxidation induced by reactive oxygen species (ROS). The aim of this study was to determine the effects of antioxidants such as taurine and cysteine in Bioxcell® extender on standard semen parameters, fertilizing ability, lipid peroxidation (LPO) and antioxidant activities comprising reduced glutathione (GSH), glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD) after the cryopreservation/thawing of bull semen. Nine ejaculates for each bull were included in the study. Three groups, namely taurine (2 mM), cysteine (2 mM), and control, were designed to analyze the antioxidants in Bioxcell®. Insemination doses were processed so that each 0.25-ml straw contained 15 × 106 sperm.The addition of cysteine led to higher motility, compared to the other groups (P < 0.001). Cysteine showed a greater protective effect on the percentages of acrosome damage and total abnormalities in comparison to the other groups (P < 0.001). No significant differences were observed in hypo-osmotic swelling test (HOST), following supplementation with antioxidants during the freeze-thawing process. No significant difference was observed in non-return rates among groups. In biochemical assays, the additives did not show effectiveness on the elimination of malondialdehyde (MDA) formation and maintenance of GSH and GSH-Px activities, when compared to controls. CAT activity (35.1 ± 8.1 kU/g) was demonstrated to be significantly higher upon the addition of 2 mM taurine (P < 0.001), while the level of MDA increased, indicating oxidative stress in this group. SOD activity (21.4 ± 2.9 U/g protein) was significantly elevated in the group with cysteine, compared to the other groups (P < 0.001).  相似文献   

20.
The role of mannitol as an osmoprotectant, a radical scavenger, a stabilizer of protein and membrane structure, and protector of photosynthesis under abiotic stress has already been well described. In this article we show that mannitol applied exogenously to salt-stressed wheat, which normally cannot synthesize mannitol, improved their salt tolerance by enhancing activities of antioxidant enzymes. Wheat seedlings (3 days old) grown in 100 mM mannitol (corresponding to −0.224 MPa) for 24 h were subjected to 100 mM NaCl treatment for 5 days. The effect of exogenously applied mannitol on the salt tolerance of plants in view of growth, lipid peroxidation levels, and activities of antioxidant enzymes in the roots of salt-sensitive wheat (Triticum aestivum L. cv. Kızıltan-91) plants with or without mannitol was studied. Although root growth decreased under salt stress, this effect could be alleviated by mannitol pretreatment. Peroxidase (POX) and ascorbate peroxidase (APX) activities increased, whereas superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) activities decreased in Kızıltan-91 under salt stress. However, activities of antioxidant enzymes such as SOD, POX, CAT, APX, and GR increased with mannitol pretreatment under salt stress. Although root tissue extracts of salt-stressed wheat plants exhibited only nine different SOD isozyme bands of which two were identified as Cu/Zn-SOD and Mn-SOD, mannitol treatment caused the appearance of 11 different SOD activity bands. On the other hand, five different POX isozyme bands were determined in all treatments. Enhanced peroxidation of lipid membranes under salt stress conditions was reduced by pretreatment with mannitol. We suggest that exogenous application of mannitol could alleviate salt-induced oxidative damage by enhancing antioxidant enzyme activities in the roots of salt-sensitive Kızıltan-91.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号