首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Novel, water‐soluble CdTe quantum dots (QDs) capped with β‐cyclodextrin (β‐CD) and ~ 4.0 nm in diameter were synthesized in aqueous solution, and characterized using transmission electron microscopy (TEM). A fluorescence‐sensing system based on the photoinduced electron transfer (PET) of (mono‐6‐thio‐β‐CD)–CdTe QDs was then designed to measure the interaction of phenothiazine dyes [methylene blue (MB) and methylene green (MG)] with herring sperm DNA (hsDNA). This fluorescence‐sensing system was based on a fluorescence “OFF–ON” mode. First, MB/MG adsorbed on the surface of (mono‐6‐thio‐β‐CD)–CdTe QDs effectively quenches the fluorescence of (mono‐6‐thio‐β‐CD)–CdTe QDs through PET. Then, addition of hsDNA restores the fluorescence intensity of (mono‐6‐thio‐β‐CD)–CdTe QDs, because hsDNA can bind with MB/MG and remove it from the as‐prepared (mono‐6‐thio‐β‐CD)–CdTe QDs. In addition, detailed reaction mechanisms of the (mono‐6‐thio‐β‐CD)–CdTe QDs–MB/MG–hsDNA solution system were studied using optical methods, by comparison with the TGA–CdTe QDs–MB/MG–hsDNA solution system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Water‐soluble thioglycolic acid (TGA)‐capped core/shell CdTe/CdS quantum dots (QDs) were synthesized. The interactions of rhein and emodin with TGA‐CdTe/CdS QDs were evaluated by fluorescence and ultraviolet‐visible absorption spectroscopy. Experimental results showed that the high fluorescence intensity of TGA‐CdTe/CdS QDs could be effectively quenched in the presence of rhein (or emodin) at 570 nm, which may have resulted from an electron transfer process from excited TGA‐CdTe/CdS QDs to rhein (or emodin). The quenching intensity was in proportion to the concentration of both rhein and emodin in a certain range. Under optimized conditions, the linear ranges of TGA‐CdTe/CdS QDs fluorescence intensity versus the concentration of rhein and emodin were 0.09650–60 µg/mL and 0.1175–70 µg/mL with a correlation coefficient of 0.9984 and 0.9965, respectively. The corresponding detection limits (3σ/S) of rhein and emodin were 28.9 and 35.2 ng/mL, respectively. This proposed method was applied to determine rhein and emodin in human urine samples successfully with remarkable advantages such as high sensitivity, short analysis time, low cost and easy operation. Based on this, a simple, rapid and highly sensitive method to determine rhein (or emodin) was proposed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Functionalized CdTe–CdS core–shell quantum dots (QDs) were synthesized in aqueous solution via water‐bathing combined hydrothermal method using L‐cysteine (L‐Cys) as a stabilizer. This method possesses both the advantages of water‐bathing and hydrothermal methods for preparing high‐quality QDs with markedly reduced synthesis time, and better stability than a lone hydrothermal method. The QDs were characterized by transmission electronic microscopy and powder X‐ray diffraction and X‐ray photoelectron spectroscopy. The CdTe–CdS QDs with core–shell structure showed both enhanced fluorescence and better photo stability than nude CdTe QDs. After conjugating with antibody rabbit anti‐CEACAM8 (CD67), the as‐prepared l ‐Cys capped CdTe–CdS QDs were successfully used as fluorescent probes for the direct immuno‐labeling and imaging of HeLa cells. It was indicated that this kind of QD would have application potential in bio‐labeling and cell imaging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
l ‐glutathione capped highly fluorescent CdTe quantum dots (QDs) were prepared by an aqueous approach and used as fluorescent labels to link albumin bovine serum (BSA) and rat anti‐mouse CD4, which was expressed on mouse T‐lymphocyte and mouse spleen tissue. The sharp and narrow emission peaks showed that the as‐prepared QDs have desirable dispersibility, uniformity and good fluorescence properties. Both CdTe–BSA and CdTe–CD4 conjugates showed an enhancement of fluorescence intensity over that of bare CdTe QDs. The experimental result of gel electrophoresis confirmed the successful conjugation of CdTe–BSA and CdTe–CD4. The fluorescent microscopic images of CdTe–CD4 labeled mouse T‐lymphocyte cells and mouse spleen tissue were compared with that obtained from fluorescein isothiocyanate labeling. It was demonstrated that the CdTe QDs‐based probe exhibited much better photostability and fluorescence intensity than fluorescein isothiocyanate, showing a good application potential in the immuno‐labeling of cells and tissues. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Water‐soluble glutathione (GSH)‐capped core/shell CdTe/CdS quantum dots (QDs) were synthesized. In pH 5.4 sodium phosphate buffer medium, the interaction between GSH‐CdTe/CdS QDs and sanguinarine (SA) was investigated by spectroscopic methods, including fluorescence spectroscopy and ultraviolet‐visible absorption spectroscopy. Addition of SA to GSH‐CdTe/CdS QDs results in fluorescence quenching of GSH‐CdTe/CdS QDs. Quenching intensity was in proportion to the concentration of SA in a certain range. Investigation of the quenching mechanism, proved that the fluorescence quenching of GSH‐CdTe/CdS QDs by SA is a result of electron transfer. Based on the quenching of the fluorescence of GSH‐CdTe/CdS QDs by SA, a novel, simple, rapid and specific method for SA determination was proposed. The detection limit for SA was 3.4 ng/mL and the quantitative determination range was 0.2–40.0 µg/mL with a correlation coefficient of 0.9988. The method has been applied to the determination of SA in synthetic samples and fresh urine samples of healthy human with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The effect of N‐acetyl‐l ‐cysteine‐capped CdTe quantum dots (NAC‐CdTe QDs) with different sizes on lysozyme was investigated by isothermal titration calorimetry (ITC), enzyme activity assays, and multi‐spectroscopic methods. ITC results proved that NAC‐CdTe QDs can spontaneously bind with lysozyme and hydrophobic force plays a major role in stabilizing QDs–lysozyme complex. Multi‐spectroscopic measurements revealed that NAC‐CdTe QDs caused strong quenching of the lysozyme's fluorescence in a size‐dependent quenching manner. Moreover, the changes of secondary structure and microenvironment in lysozyme caused by the NAC‐CdTe QDs were higher with a bigger size. The results of enzyme activity assays showed that the interaction between lysozyme and NAC‐CdTe QDs inhibited the activity of lysozyme and the inhibiting effect was in a size‐dependent manner. Based on these results, we conclude that NAC‐CdTe QDs with larger particle size had a larger impact on the structure and function of lysozyme.  相似文献   

7.
A novel fluorescence assay system for glucose was developed with thioglycollic acid (TGA)‐capped CdTe quantum dots (QDs) as probes. The luminescence quantum yield of the TGA‐capped CdTe QDs was highly sensitive to H2O2 and pH. In the presence of glucose oxidase, glucose is oxidized to yield, gluconic acid and H2O2. H2O2 and H+ (dissociated from gluconic acid) intensively quenched the fluorescence of QDs. The experimental results showed that the quenched fluorescence was proportional to the glucose concentration within the range of 0.01–5.0 mm under optimized experimental conditions. Compared with most of the existing methods, this newly developed system possesses many advantages, including simplicity, low cost, high flexibility, and good sensitivity. Furthermore, no complicated chemical modification of QDs and enzyme immobilization was needed in this system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A rapid, simple and sensitive label‐free fluorescence method was developed for the determination of trace amounts of an important drug, heparin. This new method was based on water‐soluble glutathione‐capped CdTe quantum dots (CdTe QDs) as the luminescent probe. CdTe QDs were prepared according to the published protocol and the sizes of these nanoparticles were verified through transmission electron microscopy (TEM), X‐ray diffraction (XRD) and dynamic light scattering (DLS) with an average particle size of about 7 nm. The fluorescence intensity of glutathione‐capped CdTe QDs increased with increasing heparin concentration. These changes were followed as the analytical signal. Effective variables such as pH, QD concentration and incubation time were optimized. At the optimum conditions, with this optical method, heparin could be measured within the range 10.0–200.0 ng mL?1 with a low limit of detection, 2.0 ng mL?1. The constructed fluorescence sensor was also applied successfully for the determination of heparin in human serum. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The interactions of N‐acetyl‐L‐cysteine‐capped CdTe quantum dots (QDs) with bovine serum albumin (BSA) and bovine hemoglobin (BHb) were investigated by isothermal titration calorimetry (ITC), fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet–visible absorption, and circular dichroism techniques. Fluorescence data of BSA–QDs and BHb–QDs revealed that the quenching was static in every system. While CdTe QDs changed the microenvironment of tryptophan in BHb, the microenvironment of BSA kept unchanged. Adding CdTe QDs affected the skeleton and secondary structure of the protein (BSA and BHb). The ITC results indicated that the interaction between the protein (BSA and BHb) and QDs‐612 was spontaneous and the predominant force was hydrophobic interaction. In addition, the binding constants were determined to be 1.19 × 105 L mol?1 (BSA–QDs) and 2.19 × 105 L mol?1 (BHb–QDs) at 298 K. From these results, we conclude that CdTe QDs have a larger impact on the structure of BHb than BSA.  相似文献   

10.
CdTe quantum dots (QDs) capped with different stabilizers, i.e. thioglycolic acid (TGA), 3‐mercaptopropionic acid (MPA) and glutathione (GSH) were investigated as fluorescent probes for the determination of Cu2+. The stabilizer was shown to play an important role in both the sensitivity and selectivity for the determination of Cu2+. TGA‐capped CdTe QDs showed the highest sensitivity, followed by the MPA and GSH‐capped CdTe QDs, respectively. The TGA‐ and MPA‐capped CdTe QDs were not selective for Cu2+ that was affected by Ag+. The GSH‐capped CdTe QDs were insensitive to Ag+ and were used to determine Cu2+ in water samples. Under optimal conditions, quenching of the fluorescence intensity (F0/F) increased linearly with the concentration of Cu2+ over a range of 0.10–4.0 µg/mL and the detection limit was 0.06 µg/mL. The developed method was successfully applied to the determination of Cu2+ in water samples. Good recoveries of 93–104%, with a relative standard deviation of < 6% demonstrated that the developed simple method was accurate and reliable. The quenching mechanisms were also described. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we systematically investigated the influence of graft reagents having an amino or a carboxyl terminus with different chain lengths on the fluorescence properties of water‐soluble thioglycolic acid‐stabilized CdTe nanocrystals (TGA–CdTe). Strong enhancement effects of the grafting on the fluorescence intensity of TGA–CdTe were observed. The experiment results demonstrated that short‐chain‐length grafting can increase the fluorescence intensity of CdTe nanocrystals (NCs) better than long‐chain‐length grafting, and the grafting did not influence the emission wavelength of the CdTe NCs. The fluorescence intensity of the carboxyl‐grafted TGA–CdTe was more stable than that of the amino‐grafted TGA–CdTe at wide pH ranges (pH 5.1–10.0). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The chemiluminescence (CL) behaviour of the luminol–potassium periodate system enhanced by CdTe quantum dots capped with thioglycolic acid (TGA–CdTe QDs) was studied using kinetic experiments, CL spectra, UV–vis absorption spectra and fluorescence spectra. The production of oxygen‐containing reactant intermediates (O2?? and OH?) in the present CL system was verified by CL. The possible CL mechanism was discussed in detail. Furthermore, theophylline (THP) was determined based on its enhancement of the CL intensity of the CdTe QDs–luminol–potassium periodate system coupled with a flow‐injection technique. Under these optimized conditions, the linear range was found to be from 1.0 × 10?8 to 1.0 × 10?5 g/mL with a detection limit of 2.8 × 10?9 g/mL (3σ). The recoveries for the determination of THP in tablets were from 98.2 to 99.6%.  相似文献   

13.
In this paper, we described a strategy for synthesis of thiol‐coated CdTe/CdS/ZnS (core–shell–shell) quantum dots (QDs) via aqueous synthesis approach. The synthesis conditions were systematically optimized, which included the size of CdTe core, the refluxing time and the number of monolayers and the ligands, and then the chemical and optical properties of the as‐prepared products were investigated. We found that the mercaptopropionic acid (MPA)‐coated CdTe/CdS/ZnS QDs presented highly photoluminescent quantum yields (PL QYs), good photostability and chemical stability, good salt tolerance and pH tolerance and favorable biocompatibility. The characterization of high‐resolution transmission electron microscopy (HRTEM), X‐ray powder diffraction (XRD) and fluorescence correlation spectroscopy (FCS) showed that the CdTe/CdS/ZnS QDs had good monodispersity and crystal structure. The fluorescence life time spectra demonstrated that CdTe/CdS/ZnS QDs had a longer lifetime in contrast to fluorescent dyes and CdTe QDs. Furthermore, the MPA‐stabilized CdTe/CdS/ZnS QDs were applied for the imaging of cells. Compared with current synthesis methods, our synthesis approach was reproducible and simple, and the reaction conditions were mild. More importantly, our method was cost‐effective, and was very suitable for large‐scale synthesis of CdTe/CdS/ZnS QDs for future applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Mn2+‐doped CdTe quantum dots (QDs) were synthesized directly via a facile surface doping strategy in aqueous solution. The best optical property emerged when the added amount of Mn2+ was 5% compared to Cd2+ in the CdTe nanoparticles and the reaction temperature was 60 °C. The fluorescence and magnetic properties of the QDs were studied. The as‐prepared Mn2+‐doped CdTe QDs have high quantum yield (48.13%) and a narrow distribution with an average diameter of 3.7 nm. The utility of biological imaging was also studied. Depending on the high quantum yield, cells in culture were illuminated and made more distinct from each other compared to results obtained with normal QDs. They also have a prominent longitudinal relaxivity value (r1 = 4.2 mM?1s?1), which could indicate that the Mn2+‐doped CdTe QDs can be used as a potential multimodal agent for fluorescence and magnetic resonance imaging. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Tremendous research efforts have been dedicated to fabricating high‐quality Zn‐doped CdTe quantum dots (QDs) for any potential biomedical applications. In particular, the correlation of issues regarding how QDs interact with DNA is of greatest importance. Herein, a pH‐responsive study of the interactions between CdTe:Zn2+ quantum dots with 4 different sizes and calf thymus DNA (ctDNA) was conducted using multispectroscopic techniques and electrochemical investigation. Fluorescence studies revealed that this interaction process is predominantly a static process and groove binding was the main binding mode for CdTe:Zn2+ QDs to ctDNA. The calculated negative values of enthalpy (?45.06 kJ mol?1) and entropy (?133.62 J mol?1 K?1) with temperature changes indicated that the hydrogen bonds and van der Waals interactions played major roles in the reaction. Furthermore, circular dichroism spectroscopy and Fourier transform infrared spectrometry analyses indicate that the normal conformation of ctDNA is discombobulated by CdTe:Zn2+ QDs. In addition, the electrochemical behavior of the affinity of CdTe:Zn2+ QDs for ctDNA agreed well with the results obtained from fluorescence experiments. This study might be meaningful for understanding the molecular binding mechanism of QDs for DNA and provides a basis for QD‐labeled systems.  相似文献   

16.
d ‐penicillamine‐capped cadmium telluride quantum dots (DPA‐capped CdTe QDs) were synthesized as the new fluorescent semiconductor nanocrystal in aqueous solution. Fourier transmission infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet‐visible and photoluminescence spectroscopy were used for characterization of the QDs. Based on the quenching effect of Cu2+ ions on the fluorescence intensity of DPA‐capped CdTe QDs, a new fluorometric sensor for copper(II) detection was developed that showed good linearity over the concentration range 5 × 10–9–3 × 10–6 m with the detection limit 0.4 × 10–9 m . Owing to the strong affinity of the DPA to copper(II), the sensor showed appropriate selectivity for copper(II) compared with conventional QDs. The DPA‐capped CdTe QDs was successfully applied for determination of Cu2+ concentration in river, well and tap waters with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Cysteamine (CA)‐capped CdTe quantum dots (QDs) (CA–CdTe QDs) were prepared by the reflux method and utilized as an efficient nano‐sized fluorescent sensor to detect mercury (II) ions (Hg2+). Under optimum conditions, the fluorescence quenching effect of CA–CdTe QDs was linear at Hg2+ concentrations in the range of 6.0–450 nmol/L. The detection limit was calculated to be 4.0 nmol/L according to the 3σ IUPAC criteria. The influence of 10‐fold Pb2+, Cu2+ and Ag+ on the determination of Hg2+ was < 7% (superior to other reports based on crude QDs). Furthermore, the detection sensitivity and selectivity were much improved relative to a sensor based on the CA–CdTe QDs probe, which was prepared using a one‐pot synthetic method. This CA–CdTe QDs sensor system represents a new feasibility to improve the detection performance of a QDs sensor by changing the synthesis method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
ABSTRACT: In this study, a one‐step approach for aqueous synthesis of highly luminescent semiconductors, CdTe quantum dots (QDs), using long‐chain thiols‐mercaptoundecanoic acid (MUA) as surface ligand, was developed in a microwave irradiation system. The synthetic conditions were systematically investigated. The as‐prepared MUA‐coated QDs were characterized by various spectroscopy techniques, transmission electron microscopy (TEM) and X‐ray powder diffraction (XRD). The experimental results document that MUA‐coated CdTe QDs have small diameter, good stability, high luminescence and long lifetime. Particularly, it was confirmed, using fluorescence correlation spectroscopy (FCS) that, compared with other ligand, MUA formed a thicker ligand layer on the QD surfaces, which will help their stability and conjugation with biomolecules. Furthermore, MUA‐coated QDs were successfully used for HeLa cell imaging. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
3‐Mercaptopropionic Acid‐modified CdTe quantum dots (QDs) were synthesized and characterized by infrared, fluorescence, and ultraviolet–visible absorption spectra and Nano‐ZetaSizer measurements. Then the interaction between QDs and hemoglobin was studied to investigate the effects of QDs on the structure and function of hemoglobin by using a variety of spectroscopy methods and isothermal titration calorimetry. The results showed van der Waals forces and hydrogen bonding predominantly played major roles in the binding. The intrinsic fluorescence of hemoglobin was quenched with changes to the microenvironment of tyrosine and tryptophan residues and complex conformational changes of hemoglobin were induced with the loosening and unfolding skeleton. However, the heme in hemoglobin was still stable, indicating that the main physiological function of hemoglobin might not be significantly inhibited. This study will provide a new strategy to study the biological toxicity of QDs at the molecular level.  相似文献   

20.
This paper aimed to study the possible involvement of adenosine triphosphate‐binding cassette (ABC) transporters in the detoxification of quantum dots (QDs) in human breast carcinoma (SK‐BR‐3) cells. The effects of QD sizes on such interactions were also evaluated. For this purpose, we used monodispersed MPA‐COOH‐CdTe QDs with different diameters (emission length at 560 and 625 nm, named as QD‐560 and QD‐625). Such QDs tended to accumulate in cells and cause significant toxicity. Using specific inhibitors of ABC transporters, the cellular accumulation and toxicity of QDs in SK‐BR‐3 cells were significantly affected. Moreover, treatment of QDs caused concentration‐ and time‐dependent induction of ABC transporters. Furthermore, the induction effects of smaller QDs were found to be greater than larger ones at equivalent concentrations, suggesting a size‐dependent recognition of substrates by ABC transporters. Overall, these results provided important support for the modulation of QDs toxicity by ABC transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号