首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The immunosuppressants cyclosporin A (CsA) and FK506 inhibit the protein phosphatase calcineurin and block T-cell activation and transplant rejection. Calcineurin is conserved in microorganisms and plays a general role in stress survival. CsA and FK506 are toxic to several fungi, but the common human fungal pathogen Candida albicans is resistant. However, combination of either CsA or FK506 with the antifungal drug fluconazole that perturbs synthesis of the membrane lipid ergosterol results in potent, synergistic fungicidal activity. Here we show that the C.albicans FK506 binding protein FKBP12 homolog is required for FK506 synergistic action with fluconazole. A mutation in the calcineurin B regulatory subunit that confers dominant FK506 resistance (CNB1-1/CNB1) abolished FK506-fluconazole synergism. Candida albicans mutants lacking calcineurin B (cnb1/cnb1) were found to be viable and markedly hypersensitive to fluconazole or membrane perturbation with SDS. FK506 was synergistic with fluconazole against azole-resistant C.albicans mutants, against other Candida species, or when combined with different azoles. We propose that calcineurin is part of a membrane stress survival pathway that could be targeted for therapy.  相似文献   

2.
目的:了解对氟康唑耐药的白假丝酵母菌主动外排系统及主动外排基因CDR1的表达水平。方法:检测氟康唑敏感性和耐药性白假丝酵母菌对罗丹明6G主动外排情况,筛选出主动外排系统功能增强的菌株;采用Northern blot技术检测主动外排系统功能增强的菌株的CDR1基因的表达。结果:在由葡萄糖提供能量的体系中,5株耐药菌株外排罗丹明6G较敏感菌株明显增加,Northern blot发现其中4株CDR1基因表达水平升高。结论:耐氟康唑白假丝酵母菌主动外排基因CDR1表达升高。  相似文献   

3.
4.
In this study, we describe the membrane lipid composition of eight clinical isolates (azole resistant and sensitive strains) of Candida albicans isolated from AIDS/ HIV patients. Interestingly, fluorescence polarization measurements of the clinical isolates displayed enhanced membrane fluidity in fluconazole resistant strains as compared to the sensitive ones. The increase in fluidity was reflected in the change of membrane order, which was considerably decreased (decrease in fluorescence polarization "p" value denotes higher membrane fluidity) in the resistant strains. The ergosterol content in azole susceptible isolates was greater, almost twice as compared to the resistant isolates. However, no significant alteration was observed in phospholipid and fatty acid composition of these isolates. Labeling experiments with fluorescamine dye revealed that the percentage of phosphatidylethanolamine exposed to the membrane's outer leaflet was higher in the resistant strains as compared to the sensitive strains, indicating increased floppase activity of the two major ABC drug efflux pumps, CDR1 and CDR2 possibly due to their overexpression in resistant strains. The results of the present study suggest that changes in the status of membrane lipid phase especially the ergosterol content and increased activity of drug efflux pumps by overexpression ofABC transporters, CDR1 and CDR2 might contribute to fluconazole resistance in C. albicans isolated from AIDS/HIV patients.  相似文献   

5.
6.
The genetic basis of fluconazole resistance development in Candida albicans   总被引:13,自引:0,他引:13  
Infections by the opportunistic fungal pathogen Candida albicans are widely treated with the antifungal agent fluconazole that inhibits the biosynthesis of ergosterol, the major sterol in the fungal plasma membrane. The emergence of fluconazole-resistant C. albicans strains is a significant problem after long-term treatment of recurrent oropharyngeal candidiasis (OPC) in acquired immunodeficiency syndrome (AIDS) patients. Resistance can be caused by alterations in sterol biosynthesis, by mutations in the drug target enzyme, sterol 14alpha-demethylase (14DM), which lower its affinity for fluconazole, by increased expression of the ERG11 gene encoding 14DM, or by overexpression of genes coding for membrane transport proteins of the ABC transporter (CDR1/CDR2) or the major facilitator (MDR1) superfamilies. Different mechanisms are frequently combined to result in a stepwise development of fluconazole resistance over time. The MDR1 gene is not or barely transcribed during growth in vitro in fluconazole-susceptible C. albicans strains, but overexpressed in many fluconazole-resistant clinical isolates, resulting in reduced intracellular fluconazole accumulation. The activation of the gene in resistant isolates is caused by mutations in as yet unknown trans-regulatory factors, and the resulting constitutive high level of MDR1 expression causes resistance to other toxic compounds in addition to fluconazole. Disruption of both alleles of the MDR1 gene in resistant C. albicans isolates abolishes their resistance to these drugs, providing genetic evidence that MDR1 mediates multidrug resistance in C. albicans.  相似文献   

7.
Resistance to azole antifungal drugs in clinical isolates of the human fungal pathogen Candida albicans is often caused by constitutive overexpression of the CDR1 gene, which encodes a multidrug efflux pump of the ABC transporter superfamily. To understand the relevance of a recently identified negative regulatory element (NRE) in the CDR1 promoter for the control of CDR1 expression in the clinical scenario, we investigated the effect of mutation or deletion of the NRE on CDR1 expression in two matched pairs of azole-sensitive and resistant clinical isolates of C. albicans. Expression of GFP or lacZ reporter genes from the wild type CDR1 promoter was much higher in the azole-resistant C. albicans isolates than in the azole-susceptible isolates, reflecting the known differences in CDR1 expression in these strains. Deletion or mutation of the NRE resulted in enhanced reporter gene expression in azole-sensitive strains, but did not further increase the already high CDR1 promoter activity in the azole-resistant strains. In agreement with these findings, electrophoretic mobility shift assays showed a reduced binding to the NRE of nuclear extracts from the resistant C. albicans isolates as compared with extracts from the sensitive isolates. These results demonstrate that the NRE is involved in maintaining CDR1 expression at basal levels and that this repression is overcome in azole-resistant clinical C. albicans isolates, resulting in constitutive CDR1 overexpression and concomitant drug resistance.  相似文献   

8.
9.
10.
11.
The many drugs that are available at present to treat fungal infections can be divided into four broad groups on the basis of their mechanism of action. These antifungal agents either inhibit macromolecule synthesis (flucytosine), impair membrane barrier function (polyenes), inhibit ergosterol synthesis (allylamines, thiocarbamates, azole derivatives, morpholines), or interact with microtubules (griseofulvin). Drug resistance has been identified as the major cause of treatment failure among patients treated with flucytosine. A lesion in the UMP-pyrophosphorylase is the most frequent clinical determinant of resistance to 5FC in Candida albicans. Despite extensive use of polyene antibiotics for more than 30 years, emergence of acquired resistance seems not be a significant clinical problem. Polyene-resistant Candida isolates have a marked decrease in their ergosterol content. Acquired resistance to allylamines has not been reported from human pathogens, but, resistant phenotypes have been reported for variants of Saccharomyces cerevisiae and of Ustilago maydis. Tolerance to morpholines is seldom found. Intrinsic resistance to griseofulvin is due to the absence of a prolonged energy-dependent transport system for this antibiotic. Resistance to azole antifungal agents is known to be exceptional, although it does now appear to be increasing in importance in some groups of patients infected with e.g. Candida spp., Histoplasma capsulatum or Cryptococcus neoformans. For example, resistance to fluconazole is emerging in C. albicans, the major agent of oro-pharyngeal candidosis in AIDS patients, after long-term suppressive therapy. In the majority of cases, primary and secondary resistance to fluconazole and cross-resistance to other azole antifungal agents seems to originate from decreased intracellular accumulation of the azoles, which may result from reduced uptake or increased efflux of the molecules. In most C. albicans isolates the decreased intracellular levels can be correlated with enhanced azole efflux, a phenomenon linked to an increase in the amounts of mRNA of a C. albicans ABC transporter gene CDR1 and of a gene (BEN(r) or CaMDR) coding for a transporter belonging to the class of major facilitator multidrug efflux transporters. Not only fluconazole, ketoconazole and itraconazole are substrates for CDR1, terbinafine and amorolfine have also been established as substrates, BEN(r) overexpression only accounts for fluconazole resistance. Other sources of resistance: changes in membrane sterols and phospholipids, altered or overproduced target enzyme(s) and compensatory mutations in the Delta5,6-desaturase.  相似文献   

12.
Candida parapsilosis is a common isolate from clinical fungal infectious episodes. Resistance of C. parapsilosis to azoles has been increasingly reported. To analyse the development of resistance in C. parapsilosis , four azole-susceptible clinical strains and one American Type Culture Collection type strain were cultured in the presence of fluconazole, voriconazole and posaconazole at different concentrations. The isolates developed variable degrees of azole resistance according to the antifungal used. Fluconazole was the fastest inducer while posaconazole was the slowest. Fluconazole and voriconazole induced resistance to themselves and each other, but not to posaconazole. Posaconazole induced resistance to all azoles. Developed resistance was stable; it could be confirmed after 30 days of subculture in drug-free medium. Azole-resistant isolates revealed a homogeneous population structure; the role of azole transporter efflux pumps was minor after evaluation by microdilution and cytometric assays with efflux pump blockers (verapamil, ibuprofen and carbonyl cyanide 3-chloro-phenylhydrazone). We conclude that the rapid development of azole resistance occurs by a mechanism that might involve mutation of genes responsible for ergosterol biosynthesis pathway, stressed by exposure to antifungals.  相似文献   

13.
Adaptation to inhibitory concentrations of the antifungal agent fluconazole was monitored in replicated experimental populations founded from a single, drug-sensitive cell of the yeast Candida albicans and reared over 330 generations. The concentration of fluconazole was maintained at twice the MIC in six populations; no fluconazole was added to another six populations. All six replicate populations grown with fluconazole adapted to the presence of drug as indicated by an increase in MIC; none of the six populations grown without fluconazole showed any change in MIC. In all populations evolved with drug, increased fluconazole resistance was accompanied by increased resistance to ketoconazole and itraconazole; these populations contained ergosterol in their cell membranes and were amphotericin sensitive. The increase in fluconazole MIC in the six populations evolved with drug followed different trajectories, and these populations achieved different levels of resistance, with distinct overexpression patterns of four genes involved in azole resistance: the ATP-binding cassette transporter genes, CDR1 and CDR2; the gene encoding the target enzyme of the azoles in the ergosterol biosynthetic pathway, ERG11; and the major facilitator gene, MDR1. Selective sweeps in these populations were accompanied by additional genomic changes with no known relationship to drug resistance: loss of heterozygosity in two of the five marker genes assayed and alterations in DNA fingerprints and electrophoretic karyotypes. These results show that chance, in the form of mutations that confer an adaptive advantage, is a determinant in the evolution of azole drug resistance in experimental populations of C. albicans.  相似文献   

14.
15.
以牛源近平滑念珠菌(Candida parapsilosis)为试验菌株,采用微量稀释法进行药物敏感性试验,PCR扩增测序检测ERG11基因突变,Realtime PCR检测ERG11、CDR1、MDR1、MRR1基因的mRNA表达量,探讨耐药相关基因在牛源近平滑念珠菌耐唑类药物中的作用,为牛源近平滑念珠菌的耐药研究提供参考。结果表明,近平滑念珠菌对5-氟胞嘧啶、两性霉素B的敏感率均高于75%,对唑类药物的耐药率均高于50%,其中对氟康唑的耐药率最高,达58.3%;所有菌株的ERG11基因中均检测出错义突变A395T,耐氟康唑和剂量依赖菌株的ERG11基因中检测出同义突变T591C;氟康唑耐药组ERG11、CDR1、 MDR1、MRR1基因表达水平均显著高于敏感组(P<0.05)。牛源近平滑念珠菌对唑类抗真菌药物的耐药率较高且具有多重耐药性。牛源近平滑念珠菌ERG11基因中的T591C突变以及ERG11、CDR1、MDR1、MRR1基因的高表达都可能在其对氟康唑耐药性的产生中起到一定的作用。  相似文献   

16.
17.
Candida albicans is an important opportunistic pathogen that can cause serious fungal diseases in immunocompromised patients including cancer patients, transplant patients, and patients receiving immunosuppressive therapy in general, those with human immunodeficiency virus infections and undergoing major surgery. Its emergence spectrum varies from mucosal to systemic infections and the first line treatment is still based on fluconazole, a triazole derivate with a potent antifungal activity against most of C. albicans strains. Nevertheless the emergence of fluconazole-resistant C. albicans strains can lead to treatment failures and thus become a clinical problem in the management of such infections. For that reason we consider it important to study mechanisms inducing azole resistance and the possibilities to influence this process. In this work we give a short report on a real-time PCR (TaqMan) assay, which can be used for quantitative analyses of gene expression levels of MDR1, CDR1 and ERG11, genes supposed to contribute to development of the resistance mechanisms. We show some results achieved with that assay in fluconazole susceptible and resistant strains that confirm results seen earlier in experiments using Northern blot hybridisation and prove that the comparative DeltaCt method is valid for our system.  相似文献   

18.
19.
Many Candida albicans azole-resistant (AR) clinical isolates overexpress the CDR1 and CDR2 genes encoding homologous multidrug transporters of the ATP-binding cassette family. We show here that these strains also overexpress the PDR16 gene, the orthologue of Saccharomyces cerevisiae PDR16 encoding a phosphatidylinositol transfer protein of the Sec14p family. It has been reported that S. cerevisiae pdr16Delta mutants are hypersusceptible to azoles, suggesting that C. albicans PDR16 may contribute to azole resistance in these isolates. To address this question, we deleted both alleles of PDR16 in an AR clinical strain overexpressing the three genes, using the mycophenolic acid resistance flipper strategy. Our results show that the homozygous pdr16Delta/pdr16Delta mutant is approximately twofold less resistant to azoles than the parental strain whereas reintroducing a copy of PDR16 in the mutant restored azole resistance, demonstrating that this gene contributes to the AR phenotype of the cells. In addition, overexpression of PDR16 in azole-susceptible (AS) C. albicans and S. cerevisiae strains increased azole resistance by about twofold, indicating that an increased dosage of Pdr16p can confer low levels of azole resistance in the absence of additional molecular alterations. Taken together, these results demonstrate that PDR16 plays a role in C. albicans azole resistance.  相似文献   

20.
Resistance of the pathogenic yeast Candida albicans to the antifungal agent fluconazole is often caused by active drug efflux out of the cells. In clinical C. albicans strains, fluconazole resistance frequently correlates with constitutive activation of the MDR1 gene, encoding a membrane transport protein of the major facilitator superfamily that is not expressed detectably in fluconazole-susceptible isolates. However, the molecular changes causing MDR1 activation have not yet been elucidated, and direct proof for MDR1 expression being the cause of drug resistance in clinical C. albicans strains is lacking as a result of difficulties in the genetic manipulation of C. albicans wild-type strains. We have developed a new strategy for sequential gene disruption in C. albicans wild-type strains that is based on the repeated use of a dominant selection marker conferring resistance against mycophenolic acid upon transformants and its subsequent excision from the genome by FLP-mediated, site-specific recombination (MPAR-flipping). This mutagenesis strategy was used to generate homozygous mdr1/mdr1 mutants from two fluconazole-resistant clinical C. albicans isolates in which drug resistance correlated with stable, constitutive MDR1 activation. In both cases, disruption of the MDR1 gene resulted in enhanced susceptibility of the mutants against fluconazole, providing the first direct genetic proof that MDR1 mediates fluconazole resistance in clinical C. albicans strains. The new gene disruption strategy allows the generation of specific knock-out mutations in any C. albicans wild-type strain and therefore opens completely novel approaches for studying this most important human pathogenic fungus at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号