首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Reports indicate that Annona emarginata is tolerant to drought and is also used as an alternative rootstock for atemoya under drought conditions. The photosynthetic process can be adjusted after rehydration, resulting on total or partial recovery. The aim of this study was to determine if A. emarginata shows adjusts in gas exchange and the chlorophyll a fluorescence pattern after rehydration. During water deficits, the gas exchange and water content in the leaf decreased. However, after 5 days of rehydration, the water content in the leaf recovered and rehydrated plants presented the water use efficiency better than irrigated plants. Further remaining gas exchange parameters were lower in relation to irrigated plants. In chlorophyll a fluorescence, the rehydrated plants showed higher dissipation of light energy as heat, maintaining high activity of photoprotection. After rehydration, A. emarginata shows a positive correlation between transpiration and CO2 assimilation rate, which optimize the water use efficiency. Thus, A. emarginata presents adjustments in gas exchange and photochemical process, resulting on a possible long-term photosynthetic acclimation to water deficiency.  相似文献   

2.
Metabolite changes and senescence behaviour after mechanical phloem girdling were studied in leaf tissue of Quercus pubescens. Sugar accumulation is not only considered to be an important part of several developmental signalling pathways, but is also seen as one of the basic triggers for senescence induction, or at least an obligatory accessory phenomenon. Our survey showed that an accumulation of the soluble sugars, glucose and fructose, was not on its own obligatorily connected with the induction of leaf senescence, since no indication or even an onset of senescence could be observed during the course of the experiment. Instead, we observed an inhibition of leaf development with a decrease of photosynthesis and a slow-down of development in nearly all chlorophyll a fluorescence analysis parameters using the JIP-test. We detected a change of metabolites linked to oxidative stress, possibly due to an overexcitation of the developmentally inhibited photosynthetic apparatus.  相似文献   

3.

Key message

Stomatal regulation involves beneficial effects of pruning mulch and irrigation on leaf photosynthesis in Prunus yedoensis and Ginkgo biloba under moderate drought. G. biloba showed conservative water use under drought.

Abstract

Leaf photosynthesis is highly sensitive to soil water stress via stomatal and/or biochemical responses, which markedly suppress the growth of landscape trees. Effective irrigation management to maintain leaf photosynthesis and information on species-specific photosynthetic responses to soil water stress are essential for the sustainable management of landscape trees in Japan, in which summer drought often occurs. In order to investigate effective irrigation management, we used plants with moderate soil water stress as controls, and examined the effects of daily irrigation and pruning mulch on leaf photosynthesis in container-grown Ginkgo biloba and Prunus yedoensis, which are the first and second main tall roadside trees in Japan. Stomatal conductance was significantly increased by pruning mulch and daily irrigation, with similar increases in leaf photosynthesis being observed in P. yedoensis and G. biloba. In order to obtain information on species-specific photosynthetic responses to soil water stress, we compared the responses of leaf photosynthesis and leaf water status to reductions in soil water content (SWC) between the two species. G. biloba maintained a constant leaf water potential, leaf water content, maximum carboxylation rate, and electron transport rate with reductions in SWC, whereas reductions were observed in P. yedoensis. We concluded that pruning mulch and irrigation effectively offset the negative impact of moderate water stress on leaf photosynthesis in summer in P. yedoensis and G. biloba via stomatal regulation, and also that G. biloba maintained its photosynthetic biochemistry and leaf water status better than P. yedoensis under severe water stress.
  相似文献   

4.
Leaf senescence can be induced by numerous factors. In order to explore the relationship between root respiration and leaf senescence, we utilized different types of phloem girdling to control the root respiration of Alhagi sparsifolia and its physiological response. Our results showed that both girdling and inhibition of root respiration led to a decline of stomatal conductance, photosynthesis, transpiration rate, chlorophyll (Chl) a, Chl b, carotenoid (Car) content, Chl a/b, Chl/Car, water potential, and Chl a fluorescence, as well as to an increase of abscisic acid (ABA), proline, and malondialdehyde content in leaves and to upregulation of senescence-associated gene expression. Our present work implied that both inhibition of root respiration and girdling can induce leaf senescence. In comparison with phloem girdling, the leaf senescence caused by inhibition of root respiration was less significant. The reason for girdling-induced senescence was ABA and carbohydrate accumulation. Senescence induced by inhibition of root respiration occurred due to leaf water stress resulting from inhibition of water absorption.  相似文献   

5.
6.
Abscisic acid (ABA) is an important signaling molecule for plants under drought tolerance. However, ABA itself has many limitations to be used in agriculture practically. Recently, AM1 (ABA-mimicking ligand) has been found to replace ABA. In this study, we have investigated AM1’s potential role for drought tolerance by growing two contrasting rapeseed (Brassica napus L.) genotypes: Qinyou 8 (drought sensitive) and Q2 (drought resistant) with exogenous ABA or AM1 application under well-watered and drought-stressed conditions. Results demonstrate that drought stress has hampered plant growth (relative height growth rate, plant biomass, leaf area), plant water status (leaf relative water content, root moisture content, leaf water potential), photosynthetic gas exchange attributes like net photosynthesis rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (E); chlorophyll fluorescence parameters like photosynthetic efficiency (Fv/Fm), effective quantum yield of PSII (Φ PSII ), photochemical quenching coefficient (qL), electron transport rate (ETR) and chlorophyll content, especially for Qinyou 8 significantly compared to well-watered plants. Whereas increased root/shoot ratio (R/S), water use efficiency (WUE) and non-photochemical quenching (NPQ) was recorded in both genotypes under drought stress. On the other hand, exogenous ABA or AM1 treatment has regulated all the above parameters in a rational way to avoid drought stress. Chloroplast transmission electron microscope images, especially for Qinyou8, have revealed that oxidative stress induced by drought has blurred the grana thylakoids, increased the size or number of plastoglobules due to lipid peroxidation, and the presence of starch granules depict weak capacity to convert them into simple sugars for osmotic adjustment. However, intact grana thylakoid, few plastoglobules with no or very few starch granules were observed in the chloroplast from ABA- or AM1-treated plants under drought. More importantly, AM1-treated plants under drought stress have responded in an extremely similar way like ABA-treated ones. Finally, it is suggested that AM1 is a potential ABA substitute for plant drought tolerance.  相似文献   

7.

Key message

The growth vigor of Populus triploid groups explained by higher photosynthetic rate in the vertical canopy gradient, higher relative chlorophyll content, and larger leaf area, compared to diploid group.

Abstract

Polyploids show vegetative growth superiority compared to diploids, however, the reason remains unclear. Here, we explored this observation based on variations in 12 phenotypic traits including vegetative growth, leaf area, and photosynthesis using 120 genotypes with three allotriploid groups of different heterozygosities (obtained using three types of 2n gametes) and one diploid group obtained from the same parents in Populus. Wide ranges in phenotypic variation (2.70–38.34 %) were detected in all traits within the progeny population. In addition, the vegetative growth traits, net photosynthetic rate (Pn), relative chlorophyll content index (CCI), leaf area (LA), and photosynthetic efficiency of whole leaves (PEw) in the polyploid group were significantly higher than those in the diploid group, indicating that certain polyploid groups had greater advantages in these respects. However, there were also significant differences in vegetative growth, Pn, LA, and PEw among the three allopolyploid groups, which probably resulted from the 2n gametes with different origins transferring different heterozygosities. Furthermore, a higher Pn of vertical canopy gradient photosynthesis was observed in triploid groups compared to the diploid group. In general, the greater vegetative growth advantages in relation to photosynthesis in the triploid groups were explained by three reasons including a higher Pn which probably resulted from a higher CCI, a higher PEw mainly caused by a larger LA, and a lower aging rate of mature leaves.
  相似文献   

8.
The study investigated the effects of different CaCl2 concentrations (2, 5, and 10 mM) on photosynthetic enzymatic activities, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Plants were sprayed with either CaCl2 or distilled water until run-off. Irrigation was then withheld to induce drought stress. The strength of drought stress was evaluated by relative leaf water content and soil water content, which was 27.3 and 9.5% on day 0 and day 12, respectively. Drought stress decreased activities of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase, chlorophyll (a+b) content, net photosynthetic rate, stomatal conductance, transpiration rate, electron transport rate, the maximal quantum yield of PSII photochemistry, and effective quantum yield of PSII in tung tree seedlings. The CaCl2 pretreatments alleviated the negative effect of drought stress to some degree on all the parameters mentioned above.  相似文献   

9.
Optical characteristics, contents of photosynthetic pigments, total soluble sugars, and starch, rates of gas exchange, chlorophyll (Chl) a fluorescence, and leaf water relations were analysed in three Vitis vinifera L. cultivars, Tinto Cão (TC), Touriga Nacional (TN), and Tinta Roriz (TR), grown in Mediterranean climate. Chl content was significantly lower in TC than in TN and TR leaves, while the Chl a/b ratio was higher. TR had the lowest net photosynthetic rate, stomatal conductance, and contents of soluble sugars and starch than TN and TC. In spite of low Chl content, TC showed the lowest photon absorbance and the highest photochemical efficiency of photosystem 2. TC had the lowest predawn and midday leaf water potential. The capability for osmotic adjustment was similar among cultivars and the calculated modulus of elasticity was higher in TC leaves. The typical lighter green leaves of TC seemed to be an adaptive strategy to high irradiance and air temperature associated to water stress.  相似文献   

10.

Main Conclusion

We studied the response of Eugenia myrtifolia L. plants, an ornamental shrub native to tropical and subtropical areas, to salt stress in order to facilitate the use of these plants in Mediterranean areas for landscaping. E. myrtifolia plants implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. Furthermore, the post-recovery period seems to be detected by Eugenia plants as a new stress situation. Different physiological and biochemical changes in Eugenia myrtifolia L. plants after being subjected to NaCl stress for up to 30 days (Phase I) and after recovery from salinity (Phase II) were studied. Eugenia plants proved to be tolerant to NaCl concentrations between 44 and 88 mM, displaying a series of adaptative mechanisms to cope with salt-stress, including the accumulation of toxic ions in roots. Plants increased their root/shoot ratio and decreased their leaf area, leaf water potential and stomatal conductance in order to limit water loss. In addition, they displayed different strategies to protect the photosynthetic machinery, including the limited accumulation of toxic ions in leaves, increase in chlorophyll content, changes in chlorophyll fluorescence parameters, leaf anatomy and antioxidant defence mechanisms. Anatomical modifications in leaves, including an increase in palisade parenchyma and intercellular spaces and decrease in spongy parenchyma, served to facilitate CO2 diffusion in a situation of reduced stomatal aperture. Salinity produced oxidative stress in Eugenia plants as evidenced by oxidative stress parameters values and a reduction in APX and ASC levels. Nevertheless, SOD and GSH contents increased. The post-recovery period is detected as a new stress situation, as observed through effects on plant growth and alterations in chlorophyll fluorescence and oxidative stress parameters.
  相似文献   

11.

Key message

Autumnal senescence of apple in a warm climate corresponds to accumulated degree-days beneath 22 °C. Summer drought delays senescence and enables replenishment of carbohydrate reserves. Recovery of the root system plays a key role.

Abstract

Autumnal senescence of apple (Malus domestica Borkh.), a deciduous, temperate climate species, is triggered by a rather abrupt temperature drop, down to the lower teens. Under the warmer, east Mediterranean climate of northern Israel, the temperature drop is gradual and much more moderate. Another characteristic of this climate is the complete lack of precipitation during summer. The aim of the present study was to elucidate the effects of summer drought on seasonal leaf senescence in a warm autumn. We hypothesized that summer drought delays senescence due to an increased demand for carbohydrates during autumn. The advent of autumnal senescence was followed for 3 years (2009–2011) on trees exposed to various levels of drought. Total canopy green area (effective leaf area, ELA) and hue angle were estimated periodically by means of image analysis, as a measure of leaf drop and autumnal color change. Photosynthesis, midday stem water potential, and roots’ non-structural carbohydrate contents were measured on several occasions. The time course of leaf drop followed the decline in air and soil temperatures. The rate of decline in ELA closely corresponded to accumulated degree-days beneath 22 °C in the soil, a much higher temperature threshold than previously reported for apple. Drought stress during the summer delayed leaf senescence even further, when compared with well-irrigated trees. Leaves maintained their photosynthetic functionality throughout autumn, until late December. The delayed senescence enabled replenishment of root carbohydrate reserves, which is critical for next year’s growth and fruiting. The eco-physiological significance of the findings is discussed.  相似文献   

12.
13.
Brachypodium distachyon (Brachypodium) is not only a monocot grass species, but also a promising model organism of crop research. In this study, the drought resistance of four Brachypodium varieties was identified including drought stress-tolerant Bd1-1 and Bd21, drought stress-susceptible Bd3-1 and Bd18-1. Physiological assay showed that drought-tolerant varieties (Bd1-1 and Bd21) were more effective in maintenance of leaf water content, activation of catalase and peroxidase activities and accumulation of reduced glutathione, resulting in alleviated cell damage and lower reactive oxygen species level than drought-susceptible varieties (Bd3-1 and Bd18-1) in response to drought stress. In addition, 54 primary metabolites were differentially regulated among Brachypodium varieties and after drought stress treatment, indicating the complexity of Brachypodium response to drought stress. We also identified several commonly regulated metabolites especially some compatible solutes including proline and soluble sugars, which exhibited higher concentrations in the drought-tolerant varieties. Taken together, this study suggested that natural variation of Brachypodium varieties in response to drought stress might be connected with higher leaf water, enhanced accumulation of osmolyte and more effective antioxidant system, as well as the modulation of metabolic profiles under drought stress conditions.  相似文献   

14.

Key message

Different groundwater conditions affect leaf hydraulic conductance and leaf pressure–volume parameters in Populus euphratica at the extremely arid zone in the northwest of China.

Abstract

Efficient water transport inside leaves constitutes a major determinant of plant function, especially in drought-stressed plants. The previous researches have reported the correlation between leaf hydraulic properties and water availability. In this study, we tested the hypothesis that water relation parameters of Populus euphratica in an extremely arid zone of China are sensitive and acclimated to groundwater depth. We measured leaf hydraulic conductance (K leaf) using rehydration kinetics methods (RKM), pressure–volume (P–V) curves, and leaf vulnerability curves of P. euphratica growing at four groundwater depth gradients. We also assessed the hydraulic safety margins across groundwater depth gradients. We found that K leaf–max shows an increasing trend as the groundwater depth increases, while osmotic potential at full turgor (πft) and turgor loss point (Ψtlp) exhibits a decreasing trend, suggesting that increased tolerance to drought is formed as the groundwater depth increases. Furthermore, safety margins showed positive and negative variations under different groundwater depths, indicating that P. euphratica has formed special drought survival strategies, which can be summarized as a “conservative” strategy in favorable water conditions or a “risk” strategy in severe drought stress.
  相似文献   

15.

Background

Verticillium longisporum is one of the most important pathogens of Brassicaceae that remains strictly in the xylem during most stages of its development. It has been suggested that disease symptoms are associated with clogging of xylem vessels. The aim of our study was to investigate extracellular defence reactions induced by V. longisporum in the xylem sap and leaf apoplast of Brassica napus var. napus in relation to the development of disease symptoms, photosynthesis and nutrient status.

Results

V. longisporum (strain VL43) did not overcome the hypocotyl barrier until 3 weeks after infection although the plants showed massive stunting of the stem and mild leaf chlorosis. During this initial infection phase photosynthetic carbon assimilation, transpiration rate and nutrient elements in leaves were not affected in VL43-infected compared to non-infected plants. Proteome analysis of the leaf apoplast revealed 170 spots after 2-D-protein separation, of which 12 were significantly enhanced in response to VL43-infection. LS-MS/MS analysis and data base searches revealed matches of VL43-responsive proteins to an endochitinase, a peroxidase, a PR-4 protein and a β-1,3-glucanase. In xylem sap three up-regulated proteins were found of which two were identified as PR-4 and β-1,3-glucanase. Xylem sap of infected plants inhibited the growth of V. longisporum.

Conclusion

V. longisporum infection did not result in drought stress or nutrient limitations. Stunting and mild chlorosis were, therefore, not consequences of insufficient water and nutrient supply due to VL43-caused xylem obstruction. A distinct array of extracellular PR-proteins was activated that might have limited Verticillium spreading above the hypocotyl. In silico analysis suggested that ethylene was involved in up-regulating VL43-responsive proteins.
  相似文献   

16.
17.

Background

Plant phospholipase D (PLD), which can hydrolyze membrane phospholipids to produce phosphatidic acid (PA), a secondary signaling molecule, has been proposed to function in diverse plant stress responses. Both PLD and PA play key roles in plant growth, development, and cellular processes. PLD was suggested to mediate the regulation of stomatal movements by abscisic acid (ABA) as a response to water deficit. In this research, we characterized the roles of the cucumber phospholipase D alpha gene (CsPLDα, GenBank accession number EF363796) in the growth and tolerance of transgenic tobacco (Nicotiana tabacum) to drought stress.

Results

The CsPLDα overexpression in tobacco lines correlated with the ABA synthesis and metabolism, regulated the rapid stomatal closure in drought stress, and reduced the water loss. The NtNCED1 expression levels in the transgenic lines and wild type (WT) were sharply up-regulated after 16?days of drought stress compared with those before treatment, and the expression level in the transgenic lines was significantly higher than that in the WT. The NtAOG expression level evidently improved after 8 and 16?days compared with that at 0?day of treatment and was significantly lower in the transgenic lines than in the WT. The ABA content in the transgenic lines was significantly higher than that in the WT. The CsPLDα overexpression could increase the osmolyte content and reduce the ion leakage. The proline, soluble sugar, and soluble protein contents significantly increased. By contrast, the electrolytic leakage and malondialdehyde accumulation in leaves significantly decreased. The shoot and root fresh and dry weights of the overexpression lines significantly increased. These results indicated that a significant correlation between CsPLDα overexpression and improved resistance to water deficit.

Conclusions

The plants with overexpressed CsPLDα exhibited lower water loss, higher leaf relative water content, and heavier fresh and dry matter accumulation than the WT. We proposed that CsPLDα was involved in the ABA-dependent pathway in mediating the stomatal closure and preventing the elevation of intracellular solute potential.
  相似文献   

18.

Key message

The Acacia phyllode leaf form is hypothesised to be an adaptation to drought. However, in this experiment, the timing of phyllode development was not related to a low water treatment.

Abstract

Acacia species have markedly different leaf forms known as compound leaves, transitional leaves, and phyllodes, also known as heteroblastic development. The different leaf types are thought to confer an advantage under varying moisture regimes, with phyllodes favoured in drier conditions. The hypothesis that phyllodes develop earlier under low water treatment was tested in this experiment. Three watering level treatments (100, 50, and 25 %) were imposed on seedlings of A. implexa to assess developmental traits (leaf emergence, initial onset of transitional leaves, and phyllodes), biomass allocation patterns (root, stem, compound leaf area/mass, transitional leaf area/mass, and phyllode area/mass), and leaf anatomy traits (epidermis, palisade and spongy mesophyll, and stomatal density). Across watering treatments, there was no difference in the developmental onset of transitional leaves or phyllodes (produced at the 6th and 9th nodes, respectively). Under low watering treatment, there was a decrease in stem height per unit stem diameter, shorter internodes, and greater allocation of biomass to roots. There was no significant difference in leaf anatomy traits. Under the low watering treatment, there was less compound leaf area and mass due to leaf shedding. In this experiment, the low watering treatment did not favour phyllode development at the expense of compound leaf development. Rather, it was found that A. implexa responds to a low water treatment similarly to many other plant species: increased allocation to roots, increased stem area per unit stem height, decrease in leaf area through senescence of older leaves, and lower relative growth rates.
  相似文献   

19.

Key message

Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice.

Abstract

Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecular mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal segment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed reduced leaf size. Allelic variation analyses also validated Ghd7.1 as a functional candidate gene for leaf size, photosynthetic capacity and other yield-related traits. These results provide useful genetic information for the improvement of leaf size and yield in rice breeding programs.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号