首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.

Key message

Both water availability and temperature modulate the growth of Hymenaea courbaril on karst in Central Brazil. There is evidence of teleconnections between South Atlantic SST and tree growth.

Abstract

Tropical dry forests have low annual precipitation and long dry seasons. Water availability, the main restrictive growth factor, becomes more pronounced in the shallow and highly porous soil of karst regions. Understanding how climate regulates tree growth in stressful environments is essential for predicting climate change impacts on trees. The aim of this study was to build a tree-ring chronology of Hymenaea courbaril growing in a karst dry forest and evaluate how local climate and teleconnections modulate its growth. To accomplish this, increment cores of 19 individuals were sampled in Terra Ronca State Park located in Goiás State, Central Brazil. After surface polishing, tree rings were identified, measured, dated, and a tree-ring chronology was built with 17 individuals. The chronology was correlated with local and regional climate data (temperature, precipitation, air humidity). We also tested teleconnections with sea surface temperature (SST) of the Equatorial Pacific and South Atlantic. Results show that air humidity, precipitation amount, and its distribution during the transition period between dry and wet seasons positively regulate this species growth. On the other hand, growth is negatively correlated with temperature during the middle of the previous year’s dry season. Additionally, growth is negatively correlated with SST of the Southern Atlantic, but not with Equatorial Pacific. These relationships between climate and growth indicate that predicted increases in regional temperature and decreases in water availability may limit the growth of H. courbaril in karst dry forests.
  相似文献   

2.

Key message

Growth response to climate differs between species and elevation. Fir is the most drought-tolerant species. The mountain forests are robust to the climatic changes until now.

Abstract

Alpine mountain forests provide a wide range of ecological and socio-economic services. Climate change is predicted to challenge these forests, but there are still considerable uncertainties how these ecosystems will be affected. Here, we present a multispecies tree-ring network of 500 trees from the Berchtesgaden Alps (Northern Limestone Alps, Southeast Germany) in order to assess the performance of native mountain forest species under climate change conditions. The dataset comprises 180 spruce, 90 fir, 110 larch and 120 beech trees from different elevations and slope exposures. We analyse the species with respect to: (1) the general growth/climate response; (2) the growth reaction (GR) during the hot summer in 2003 and (3) the growth change (GC) resulting from increasing temperatures since the 1990s. Spruce is identified as the most drought-sensitive species at the lower elevations. Fir shows a high drought tolerance and is well suited with regard to climate change. Larch shows no clear pattern, and beech remains unaffected at lower elevations. The unprecedented temperature increase of the last decades did not induce any distinct GC. The mountain forests of the Berchtesgaden Alps appear to be robust within the climatic changes until now.  相似文献   

3.

Key message

For long-term environmental investigations, tree-ring δ 15 N values are inappropriate proxies for foliar δ 15 N for both Fagus sylvatica and Picea abies under moderate N loads.

Abstract

Currently it is unclear whether stable nitrogen isotope signals of tree-rings are related to those in foliage, and whether they can be used to infer tree responses to environmental changes. We studied foliar and tree-ring nitrogen (δ15N) and carbon (δ13C) isotope ratios in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies L.) from six long-term forest monitoring sites in Switzerland together with data on N deposition and soil N availability, as well as a drought response index over the last two decades. For both species, tree-ring δ15N and δ13C values were less negative compared to foliar δ15N and δ13C values, most likely due to recycling and reallocation of N within the tree and fractionation processes associated with the transport of sucrose and the formation of tree-rings, respectively. Temporal trends recorded in foliar δ15N were not reflected in tree-ring δ15N, with much higher variations in tree-rings compared to foliage. Soil N availability and N deposition were partially able to explain changes in foliar δ13C, while there were no significant correlations between environmental variables and either tree-ring or foliar δ15N. Our results suggest an uncoupling between the N isotopic composition of tree-rings and foliage. Consequently, tree-ring δ15N values are inappropriate proxies of foliar δ15N values under low-to-moderate N deposition loads. Furthermore, at such low levels of deposition, tree-ring δ15N values are not recommended as archives of tree responses to soil C/N or bulk N deposition.
  相似文献   

4.

Key message

Extreme temperatures are causing forest dieback in a Mediterranean-type forest. Topography and cold-air pooling explain the geographic distribution of frost dieback in susceptible tree species.

Abstract

Alterations to the frequency and intensity of extreme temperatures, predicted with climate change, pose a threat to the health of many forests. Some Mediterranean climate regions are experiencing higher temperature variability, including more extreme low and high temperature events. Following one such low-temperature event in autumn 2012, we conducted landscape- and site-level studies to examine the impact of frost on trees and the interaction between topography, temperature, and dieback in a forest ecosystem in the Mediterranean climate region of southwest Australia. Canopy damage was widespread across the survey area and occurred in distinct patches, with sizes ranging between 4.1 and 2,518.0 ha. In affected forest, Eucalyptus marginata and Corymbia calophylla experienced nearly complete crown dieback, while E. patens and E. wandoo were undamaged. Canopy damage was found more frequently in valleys and lower to mid-slope positions, and site-level studies confirmed that crown dieback generally increased with decreasing elevation. Low temperatures were strongly correlated with elevation along damaged forest transects and cold-air pooling explained the pattern of forest damage. By regressing temperatures from damaged sites against those collected from the nearest meteorological station, projected minimum air temperatures ranged from ?0.1 to ?2.7 °C at valley bottom when the dieback occurred. Insufficient tissue hardening is suspected to have predisposed trees to this autumn frost. The interaction between shifting temperature regimes with climate change and frost damage is discussed. With continued increases in temperature variability, we can expect to see more temperature-driven disturbance events and associated reductions in forest health.
  相似文献   

5.
6.
Forests around the world are undergoing rapid changes due to changing climate and increasing physiological stress, but forest response to climate at the ecosystem scale can be highly variable due to the mixed responses of different trees across heterogeneous landscapes. To determine the response of ecosystems in the Rocky Mountains to climate stress, we investigated the response of subalpine fir (Abies lasiocarpa) and Engelmann spruce (Picea engelmannii), two widely distributed subalpine forest species of Rocky Mountains, to climate warming across a region characterized by gradients of elevation, aspect and soil type. We investigated the growth trend of individual trees through time, determined the climate variables most important for driving growth and quantified the interactions between climate and topography that influence long-term growth trends and potential ecological changes across the study region. Growth trends of these two species are similar through the first part of the century, but diverge during the last several decades. Since 1975, subalpine fir growth decreased through time, while Engelmann spruce growth increased. We find that aspect and warm summer temperatures are the most important factors determining growth in subalpine fir, and subalpine fir growth declines are greatest on east- and south-facing aspects. In contrast, Engelmann spruce growth is uniformly unresponsive to climate. In addition to highlighting the importance of species-level differences in growth response to climate, our results also identify interactions between climate and local physiography as controls on long-term growth trends and suggest that the local landscape physiography can mediate climate-related stress in forested ecosystems. This work advances our understanding of how forest stress is mitigated by landscape factors at the ecosystem scale, and how interactions of species, landscape and climate will control future ecosystem composition and forest growth dynamics.  相似文献   

7.

Key message

This study demonstrates that Millettia stuhlmannii produces annual growth rings responsive to seasonal climate and should be useful for dendrochronology.

Abstract

Millettia stuhlmannii is a highly valuable and potentially overexploited timber species indigenous to southeastern Africa. It is of particular economic importance in Mozambique though relatively little is known about its growth rate or response to climate. This study investigates whether M. stuhlmannii is potentially useful for dendrochronology—that is whether this species forms annual growth rings that are responsive to external forcing such as climate. Five methods were used to determine whether M. stuhlmannii growth rings are indeed annual in nature, including analysis of ring anatomy, dating trees of known age, cambial wounding, classical cross-dating, and comparison of annual growth to climate variables. Growth rings of Millettia stuhlmannii are distinct and well formed, young trees from plantations of known age formed an appropriate number of distinct annual rings, trees showed distinct wood reaction to cambial wounding, adding exactly one complete ring in one calendar year, cross-dating within and between trees was somewhat successful, and annual growth is significantly correlated with wet season precipitation. Results of this study indicate that M. stuhlmannii is a potentially useful species for dendrochronology. These findings should allow a better understanding of this species’ growth dynamics and ecology, as well as its response to climate variability in the past and potentially to future climate change.
  相似文献   

8.

Keymessage

The temporal gradations of the investigated phenolics in Norway spruce bark after bark beetle (Ips typographus) attack followed the general eco-physiological concept. Treatment with salicylic acid inhibits bark beetle colonisation, alleviates the phenolic responses and activates the synthesis of condensed tannins on later sampling dates.

Abstract

Conifer bark is the target of numerous organisms due to its assimilated transport and nutrient storage functions. In the presented study, 100 mM salicylic acid (SA) was applied onto Norway spruce stems prior to being infested with bark beetles (Ips typographus L.), to study the temporal gradation of changes in condensed tannins (CT) and total phenolics (tPH) and their significance for mediating stress-tolerance. A significant accumulation of CT was monitored in untreated trees in response to progressive bark beetle infestation occurring from May onwards. In SA-treated infested trees, the CT values remained at control levels until May, but after the re-treatment of infested trees in June, the concentrations of CT rose significantly in comparison to the controls. The tPH values dropped 16 days after SA-treatment, independent of infestation, and later on remained at control level until July. In contrast, tPH contents accumulated in untreated infested trees in May, eased in June and increased again in July, when the trees were affected by the second generation of bark beetles. To sum up, in May and July when the highest beetle-flight activity was monitored the metabolic shift of phenolics within untreated infested trees differed significantly from the response of SA-treated trees. In addition, on SA-treated trees less entrance holes were monitored over the whole period of sampling when compared to untreated infested trees. These results provide evidence that SA-treatment alleviates the phenolic responses, activates the synthesis of condensed tannins and inhibits bark beetle colonisation.
  相似文献   

9.

Key message

In mature black spruce, bud burst process is anticipated by soil warming, while delayed by foliar applications of nitrogen; however, the effects depend on growth conditions at the site.

Abstract

The observation of phenological events can be used as biological indicator of environmental changes, especially from the perspective of climate change. In boreal forests, the onset of the bud burst is a key factor in the length of the growing season. With current climate change, the major factors limiting the growth of boreal trees (i.e., temperature and nitrogen availability) are changing and studies on mature trees are limited. The aim of this study was to investigate the effects of soil warming and increased nitrogen (N) deposition on bud burst of mature black spruce [Picea mariana (Mill.) BSP]. From 2008 onwards, an experimental manipulation of these environmental growth conditions was conducted in two stands (BER and SIM) at different altitudes in the boreal forest of Quebec, Canada. An increase in soil temperature (H treatment) and a canopy application of artificial rain enriched with nitrogen (N treatment) were performed. Observations of bud phenology were made during May–July 2012 and 2013. In BER, H treatment caused an anticipation (estimated as 1–3 days); while N treatment, a delay (estimated as 1–2 days but only in 2012) in bud burst. No treatments effect was significant in SIM. It has been demonstrated that soil temperature and N availability can play an important role in affecting bud burst in black spruce but the effects of these environmental factors on growth are closely linked with site conditions.
  相似文献   

10.
In this study, we provide a detailed analysis of tree growth and water status in relation to climate of three major species of forest trees in lower regions of Bavaria, Southern Germany: Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and common oak (Quercus robur). Tree-ring chronologies and latewood δ13C were used to derive measures for drought reaction across trees of different dimensions: growth reduction associated with drought years, long-term growth/climate relations and stomatal control on photosynthesis. For Scots pine, growth/climate relations indicated a stronger limitation of radial growth by high summer temperatures and low summer precipitation in smaller trees in contrast to larger trees. This is corroborated by a stronger stomatal control on photosynthesis for smaller pine trees under average conditions. In dry years, however, larger pine trees exhibited stronger growth reductions. For Norway spruce, a significantly stronger correlation of tree-ring width with summer temperatures and summer precipitation was found for larger trees. Additionally, for Norway spruce there is evidence for a change in competition mode from size-asymmetric competition under conditions with sufficient soil water supply to a more size-symmetric competition under dry conditions. Smaller oak trees showed a weaker stomatal control on photosynthesis under both dry and average conditions, which is also reflected by a significantly faster recovery of tree-ring growth after extreme drought events in smaller oak trees. The observed patterns are discussed in the context of the limitation-caused matter partitioning hypothesis and possible species-specific ontogenetic modifications.  相似文献   

11.

Key message

The process-based Vaganov–Shashkin model simulations accurately represent the nonlinear process of Qilian Juniper growth–climate relationship over different regions of the Qilian Mountains.

Abstract

The Qilian Mountains (QM), northeastern edge of the Tibetan Plateau (TP), is one of the most studied areas in China for tree-ring research; considerable dendroclimatic reconstructions have been carried out and a series of important achievements made over this region. However, most reconstructions were primarily based on empirical relationships between tree growth and climate factors identified through statistical analysis. Reliable information on the physiological processes of tree responses to climate change in different regions is still scarce. Here, the process-based Vaganov–Shashkin (VS) model was used to simulate regional patterns of climate–tree growth relationships using observed temperature and precipitation over the different regions of the QM. Results showed that the sequences of simulated growth curves were broadly consistent with the actual tree-ring chronologies in all three regions of the QM. VS model simulations accurately represented the effect of climatic controls on the growth of Qilian Juniper (Sabina przewalskii). VS model outputs closely corresponded to statistical relationships between tree-ring width and climate factors as well as observational physiological behavior; i.e., available water in May and June had the largest contribution to ring formation in Qilian Juniper over the QM. The simulated and actual data analyses revealed that the radial growth of trees in the western QM was more sensitive to moisture conditions in May and June, compared with growth in the central and eastern QM. Tree growth in this region is representative of large areas in northwestern China with drought conditions.
  相似文献   

12.

Key message

Striking hydro-climatic differences of 2 years (wet; dry) dramatically control the increment pattern of L. huasango in varying extent, even causing a “growth collapse” during the La Niña drought 2010/2011.

Abstract

We present the first multi-year long time series of local climate data in the seasonally dry tropical forest in Southern Ecuador and related growth dynamics of Loxopterygium huasango, a deciduous tree species. Local climate was investigated by installing an automatically weather station in 2007 and the daily tree growth variability was measured with high-resolution point dendrometers. The climatic impact on growth behaviour was evaluated. Hydro-climatic variables, like precipitation and relative humidity, were the most important factors for controlling tree growth. Changes in rainwater input affected radial increment rates and daily amplitudes of stem diameter variations within the study period from 2009 to 2013. El Niño Southern Oscillation (ENSO) related variations of tropical Pacific Ocean sea surface temperatures influenced the trees’ increment rates. Average radial increments showed high inter-annual (up to 7.89 mm) and inter-individual (up to 3.88 mm) variations. Daily amplitudes of stem diameter variations differed strongly between the two extreme years 2009 (wet) and 2011 (dry). Contrary to 2009, the La Niña drought in 2011 caused a rapid reduction of the daily amplitudes, indicating a total cessation (‘growth collapse’) of stem increment under ENSO-related drought conditions and demonstrating the high impact of climatic extreme events on carbon sequestration of the dry tropical forest ecosystem.
  相似文献   

13.

Key message

An experimental drought treatment, exacerbated by a natural drought event, compromised growth in Norway spruce, but more cavitation-resistant xylem was produced and no long-term growth reductions were observed.

Abstract

An experimental drought treatment in a mature Norway spruce forest that coincided with a rare drought event in southern Sweden in 1992, allowed us to study how such forests may respond to similar extreme events in the future. Immediately after the onset of the drought treatment, height and diameter growth decreased compared to control treatments. New xylem cells had smaller lumen und thicker walls, resulting in a more safety-orientated water transport system. The maximum growth and hydraulic system response of the 1990–1996 drought treatment coincided with the 1992 summer drought event. After the drought treatment ended, all measured traits recovered to control and irrigation treatment values after 3 years. While height and diameter growth recovered with delay, wood structure and hydraulic properties showed fast recovery. We conclude that a highly plastic response of the hydraulic system indicates a notable degree of resilience to droughts that are expected to become more common under climate change. Our results do not imply, however, that survival and productivity of Norway spruce plantations would not be compromised under drier conditions in the future, and they apply to site conditions equivalent to the studied system.  相似文献   

14.

Key message

Relevance of spring temperatures for tree-ring growth steadily increased since 1950s. Closely linked tree-ring growth and net CO 2 exchange driven by spring temperatures.

Abstract

We investigated long-term (over 100 years) tree-ring width (TRW) variabilities as well as short-term (10 years) variations in net ecosystem productivity (NEP) in response to climate to assess the driving factors for stem growth of Norway spruce in a subalpine forest at Davos in Switzerland. A tree-ring width index (TRWi) chronology for the period from 1750 to 2006 was constructed and linked with climate data from 1876 to 2006, and with NEP available for the period from 1997 to 2006. Based on TRWi, we found that only two out of the 257 years exhibited extreme negative TRWi, compared to 29 years with extreme positive anomalies, observed mainly in recent decades. Annual temperature, annual precipitation, as well as autumn and winter temperature signals were well preserved in the TRWi chronology over the last 130 years. Spring temperatures became increasingly relevant for TRWi, explaining less than 1 % of the variation in TRWi for the period from 1876 to 2006, but 8 % for the period from 1950 to 2006 (p = 0.032), and even 47 % for 1997–2006 (p = 0.028). We also observed a strong positive relationship between annual TRWi and annual NEP (r = 0.661; p = 0.037), both strongly related to spring temperatures (r = 0.687 and r = 0.678 for TRWi and NEP, respectively; p = 0.028; p = 0.032). Moreover, we found strong links between monthly NEP of March and annual TRWi (r = 0.912; p = 0.0001), both related to March temperatures (r = 0.767, p = 0.010 and r = 0.724, p = 0.018, respectively). Thus, under future climate warming, we expect stem growth of these subalpine trees and also ecosystem carbon (C) sequestration to increase, as long as water does not become a limiting factor.  相似文献   

15.

Key message

Intensity and magnitude of the growth-climate relationship depends on juniper species and sites. Juniperus seravschanica at low elevations shows highest potential for April–September drought reconstruction in the Turkestan range (Pamir-Alay), Uzbekistan.

Abstract

We present a detailed dendroclimatological study of three juniper species, Juniperus seravschanica Kom., Juniperus semiglobosa Regel and Juniperus turkistanica Kom., sampled at six sites of different elevation (2100–2700 m a.s.l.), exposition (west and south) and steepness (10°–30°) in the Zaamin National Park, Turkestan range, Pamir-Alay mountain system in eastern Uzbekistan. Simple correlation statistics and redundancy analyses were applied to detect species- and site-specific climate responses during the twentieth century, which were additionally investigated in the high-frequency domain by identifying extreme growth years. Our results show that tree-ring formation of J. seravschanica at our low-elevation site is strongly limited by April to September drought conditions, while J. semiglobosa inherits a weak and variable climate response with respect to elevation. J. turkistanica growth at high altitudes is positively associated with warm spring and summer temperatures. Species-specific growth extremes are triggered by incoming air masses from the Atlantic and Arctic, highlighting the connection of synoptic climate regimes across Eurasia. From a dendroclimatic perspective, J. seravschanica exhibits a high potential for reconstructing past drought and pluvials, but under sustained temperature rise also J. semiglobosa will likely increase its sensitivity to drought. Moreover, J. turkistanica at its distribution limit at the tree line is a suitable proxy of summer temperature. Our findings clearly demonstrate that a careful selection of the site, overall topography and elevation as well as the different juniper species are important for successfully reconstructing past climate in Uzbekistan.
  相似文献   

16.

Key message

Compared with annual tree-ring cellulose δ 18 O, intra-annual cellulose δ 18 O has potential to reconstruct precipitation with higher resolution and stronger signal intensity.

Abstract

Annual tree-ring cellulose oxygen isotope values (δ18O) of Fokienia hodginsii provide a promising proxy of monsoon-season precipitation in Southeast China. Measuring intra-annual cellulose δ18O values may reveal the seasonal variability of precipitation and the associated climate influences. Here, we examine intra-annual variation of cellulose δ18O values in Fokienia hodginsii and Cryptomeria fortune from Fujian Province, Southeast China. Both species exhibited considerable intra-annual variations in cellulose δ18O (range ~6 ‰) with a consistent pattern of enriched values near the annual ring boundary and depleted values in the central portion of the ring. Seasonal patterns in the tree-ring δ18O values generally followed changes in precipitation δ18O values. Compared with annual tree-ring cellulose δ18O, intra-annual cellulose δ18O has potential to reconstruct precipitation with higher resolution and stronger signal intensity. July tree-ring cellulose δ18O is significantly correlated (r = ?0.58, p < 0.05) with July precipitation, and June–August tree-ring cellulose δ18O and annual tree-ring cellulose δ18O, respectively, explain 52 and 41 % of the actual variance of April–August precipitation. In addition, May–October cellulose δ18O values during El Niño years are higher than in La Niña years, and April to October rainfall is lower in El Niño years than in La Niña years. Combining the significant correlations between inter-annual cellulose δ18O values and sea surface temperatures in the central tropical Pacific, our results support the hypothesis that El Niño–Southern Oscillation affects tree-ring cellulose δ18O in Southeast China by modulating seasonal precipitation.
  相似文献   

17.
18.

Key message

Although tree-ring chronologies of Cedrela fissilis and Cedrela angustifolia showed a common climatic signal, local conditions influence growth, suggesting that forest guidelines should be appropriate to the species and context.

Abstract

Cedrela species are highly valued because of the quality of their timber. Understanding the behaviour of each different Cedrela species and their ecology is of importance to ensuring that forest harvesting and management do not endanger the survival of natural populations. These species grow in a wide range of environmental gradients and different types of forests in Bolivia. This study used dendrochronological methods to analyse growth–precipitation relationships of two Cedrela species coming from three locations with different environmental conditions: dry Chiquitano (Concepción), Chiquitano transitional Amazonian (Guarayos), and Bolivian-Tucuman montane forests (Postrervalle). The rainy season in all locations runs from October to April and the dry season runs from May to September. Twelve Cedrela fissilis specimens were sampled from dry Chiquitano, 11 Cedrela fissilis specimens from Chiquitano transitional Amazonian, and 30 Cedrela angustifolia specimens from Bolivian-Tucuman montane forests. The samples were crossdated and exhibited a common signal between trees from three sites, despite tree rings from the Chiquitano transitional Amazonian forest being narrower and displaying blurred bands of parenchyma in the boundaries. Significant inter-series correlation was found for the C. fissilis species series from dry Chiquitano with r = 0.261 (p < 0.01) and Chiquitano transitional Amazonian forests with r = 0.284 (p < 0.01), and for Cedrela angustifolia from Bolivian-Tucuman montane forests with r = 0.374 (p < 0.01). Mean annual growth was 2.07, 1.92, and 2.82 mm year?1 at the three sites, respectively. Cedrela species from dry Chiquitano and Bolivian-Tucuman montane forests were sensitive to precipitation from October to April of the current growth year (wettest season) and to low temperatures from May to July of the current growth year (driest season). Samples from Chiquitano transitional Amazonian were more sensitive to precipitation during late rainy season (March, April, and May of the current growth year) and high temperatures during the rainy months (November–December). Growth differences between sites and species in response to climate variations and local conditions should be taken into account and handled with different forest management guidelines.
  相似文献   

19.
Environment and genetics combine to influence tree growth and should therefore be jointly considered when evaluating forest responses in a warming climate. Here, we combine dendroclimatology and population genetic approaches with the aim of attributing climatic influences on growth of European larch (Larix decidua) and Norway spruce (Picea abies). Increment cores and genomic DNA samples were collected from populations along a ~900-m elevational transect where the air temperature gradient encompasses a ~4 °C temperature difference. We found that low genetic differentiation among populations indicates gene flow is high, suggesting that migration rate is high enough to counteract the selective pressures of local environmental variation. We observed lower growth rates towards higher elevations and a transition from negative to positive correlations with growing season temperature upward along the elevational transect. With increasing elevation there was also a clear increase in the explained variance of growth due to summer temperatures. Comparisons between climate sensitivity patterns observed along this elevational transect with those from Larix and Picea sites distributed across the Alps reveal good agreement, and suggest that tree-ring width (TRW) variations are more climate-driven than genetics-driven at regional and larger scales. We conclude that elevational transects are an extremely valuable platform for understanding climatic-driven changes over time and can be especially powerful when working within an assessed genetic framework.  相似文献   

20.

Key message

The purposed spatially explicit and spatially non-explicit height to diameter ratio models can be useful to evaluate the stability of trees and stands for Norway spruce and European beech forests.

Abstract

Height to diameter ratio (HDR) is an individual tree index, also known as slenderness coefficient, and commonly used to evaluate stability of trees and stands. We developed both spatially explicit and spatially non-explicit HDR models for Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) using a large dataset collected from fully stem-mapped permanent research plots in various parts of the Czech Republic. Various tree and stand characteristics were evaluated for their potential contributions to the the HDR models. In addition to diameter at breast height (DBH), other highly significant predictor variables identified are dominant height (HDOM) (site quality measure), dominant diameter (DDOM) and quadratic mean diameter (QMD) (spatially non-explicit competition measures), and Hegyi’s index (spatially explicit competition index, CI). A simple exponential decay function was chosen as a base function to include these predictor variables. Both spatially explicit and spatially non-explicit models described large parts of the HDR variations [R adj 2  = 0.66 (Norway spruce), 0.72 (European beech)] without any systematic deviation of the residuals across the observed data range. Unlike for European beech, spatially explicit model for Norway spruce better described HDR variations than its spatially non-explicit counterpart. After DBH, HDOM provided the largest contribution to each model type, followed by DDOM and QMD or CI for both species. The HDR increased with increasing HDOM and CI, but it decreased with increasing DDOM and QMD, suggesting there were significantly large effects of site quality and stand density on HDR. Because of a little difference between the fit statistics and graphical displays of the two model types, spatially non-explicit model is recommended for prediction of HDR for both species as this model does not require spatially explicit CI, which is computationally much more complex than spatially non-explicit competition measures. The proposed HDR models may be applicable to assess stability of trees and stands, and to regulate stand densities.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号