首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Ectomycorrhizal fungal (EMF) communities vary among microhabitats, supporting a dominant role for deterministic processes in EMF community assemblage. EMF communities also differ between forest and clearcut environments, responding to this disturbance in a directional manner over time by returning to the species composition of the original forest. Accordingly, we examined EMF community composition on roots of spruce seedlings planted in three different microhabitats in forest and clearcut plots: decayed wood, mineral soil adjacent to downed wood, or control mineral soil, to determine the effect of retained downed wood on EMF communities over the medium and long term. If downed and decayed wood provide refuge habitat distinct from that of mineral soil, we would expect EMF communities on seedlings in woody habitats in clearcuts to be similar to those on seedlings planted in the adjacent forest. As expected, we found EMF species richness to be higher in forests than clearcuts (P ≤ 0.01), even though soil nutrient status did not differ greatly between the two plot types (P ≥ 0.05). Communities on forest seedlings were dominated by Tylospora spp., whereas those in clearcuts were dominated by Amphinema byssoides and Thelephora terrestris. Surprisingly, while substrate conditions varied among microsites (P ≤ 0.03), especially between decayed wood and mineral soil, EMF communities were not distinctly different among microhabitats. Our data suggest that niche partitioning by substrate does not occur among EMF species on very young seedlings in high elevation spruce-fir forests. Further, dispersal limitations shape EMF community assembly in clearcuts in these forests.  相似文献   

2.
Ectomycorrhizal (ECM) and ectendomycorrhizal fungal species associated with Pinus montezumae were recorded in 8 year-old trees established in microcosms and compared with those associated with 2 year-old trees, in order to determine their persistence over the long-term. Mycorrhizal root tips were morphologically and anatomically characterized and sequenced. The extension of extramatrical mycelium of ECM fungi with long exploration strategies was evaluated. In total, 11 mycorrhizal species were registered. Seven mycorrhizal species were detected on both 2 and 8 year-old pines: Atheliaceae sp., Rhizopogon aff. fallax, R. aff. occidentalis, Suillus pseudobrevipes, Tuber separans, Wilcoxina mikolae and Wilcoxina rehmii. One species, Thelephora terrestris, was exclusively associated with two year–old seedlings, while Cenococcum geophilum, Pezizaceae sp. and Pyrenomataceae sp. were exclusively found on 8 year-old trees. Atheliaceae sp. was the ECM fungal species that presented the most abundant mycelium. Finally, we report one new fungal species of Pezizaceae occurring as a symbiont of P. montezumae.  相似文献   

3.
We studied long-term effects of fertilization with wood ash on biomass, vitality and mycorrhizal colonization of fine roots in three conifer forest stands growing in Vacciniosa turf. mel. (V), Myrtillosa turf. mel. (M) and Myrtillosa turf. mel./Caricoso-phragmitosa (MC) forest types on peat soils. Fertilization trials amounting 5 kg/m2 of wood ash were established 12 years prior to this study. A total of 63 soil samples with roots were collected and analysed. Ectomycorrhizal (ECM) fungi in roots were identified by morphotyping and sequencing of the fungal internal transcribed spacer (ITS) region. In all forest types, fine root biomass was higher in fertilized plots than in control plots. In M forest type, proportion of living fine roots was greater in fertilized plots than in control plots, while in V and MC, the result was opposite. Fifty ECM species were identified, of which eight were common to both fertilized and control plots. Species richness and Shannon diversity index were generally higher in fertilized plots than in control plots. The most common species in fertilized plots were Amphinema byssoides (17.8 %) and Tuber cf. anniae (12.2 %), while in control plots, it was Tylospora asterophora (18.5 %) and Lactarius tabidus (20.3 %). Our results showed that forest fertilization with wood ash has long-lasting effect on diversity and composition of ECM fungal communities.  相似文献   

4.
Mycorrhizal symbiosis often displays low specificity, except for mycoheterotrophic plants that obtain carbon from their mycorrhizal fungi and often have higher specificity to certain fungal taxa. Partially mycoheterotrophic (or mixotrophic, MX) plant species tend to have a larger diversity of fungal partners, e.g., in the genus Pyrola (Monotropoideae, Ericaceae). Preliminary evidence however showed that the Japanese Pyrola japonica has preference for russulacean fungi based on direct sequencing of the fungal internal transcribed spacer (ITS) region from a single site. The present study challenges this conclusion using (1) sampling of P. japonica in different Japanese regions and forest types and (2) fungal identification by ITS cloning. Plants were sampled from eight sites in three regions, in one of which the fungal community on tree ectomycorrhizal (ECM) tips surrounding P. japonica was also analyzed. In all, 1512 clone sequences were obtained successfully from 35 P. japonica plants and 137 sequences from ECM communities. These sequences were collectively divided into 74 molecular operational taxonomic units (MOTUs) (51 and 33 MOTUs, respectively). MOTUs from P. japonica involved 36 ECM taxa (96 % of all clones), and 17 of these were Russula spp. (76.2 % of all clones), which colonized 33 of the 35 sampled plants. The MOTU composition significantly differed between P. japonica and ECM tips, although shared species represented 26.3 % of the ECM tips community in abundance. This suggests that P. japonica has a preference for russulacean fungi.  相似文献   

5.
Pinus heldreichii H. Christ. is a tertiary relict and endemic to the western Balkans and southern part of Apennine peninsula. It is an Oro-Mediterranean species occurring at altitudes between 1200 and 2000 m and primarily on calcareous soils. P. heldreichii forests are of key importance for nature conservation, protection against gravitational natural hazards, landscape conservation and recreation. However, these forests are currently highly fragmented and require the elaboration of guidelines for sustainable management and conservation that should be based on scientific knowledge. Ectomycorrhizal (ECM) fungi are important for successful regeneration, establishment and growth of P. heldreichii. The aim of this study was to investigate ECM and other fungal communities associated with fine roots of P. heldreichii at two different sites in Ku?i Mountains, south-eastern Montenegro. Roots and soil were sampled from 70 trees. Soil was subjected to chemical analyses, fine roots were morphotyped and selected root morphotypes were Sanger sequenced using ITS rDNA as a marker. Sequencing resulted in 431 high-quality sequences representing 147 different fungal species including a large number of ECM species. The most common species were ECM fungi Lactarius sanguifluus (5.1%), Wilcoxina rehmii (4.2%) and Amphinema sp. KK28 (3.2%). Climatic factors were similar between the sites, but site size, inclination, elevation, tree age (old growth versus young trees), and some soil characteristics differed. The results demonstrate relatively high fungal diversity and site-specific effects on abundance and composition of fungal communities in fine roots of P. heldreichii growing in high-altitude marginal habitats.  相似文献   

6.

Key message

Ectomycorrhizal composition and associated fungi affect the intra-specific ability of resistant black pines for physiological adaptation.

Abstract

Since Japanese black pine (Pinus thunbergii Parl.) forests have been widely devastated by pine wilt disease, several kinds of resistant black pines have been developed. Although all of the resistant black pines are the same species, these resistant trees show different physiological characteristics. We investigated the survival rates and growth rates, as well as ectomycorrhizal composition and associated fungi, on four kinds of Japanese black pine seedlings (three pine wilt-resistant and one non-resistant), and elucidated the factors affecting the various physiological characteristics. We found that the abundance of ectomycorrhizal types differed even though seedlings were grown sympatrically in the same areas for about 2 years. The seedlings that had plentiful white ectomycorrhizae showed the highest survival and growth rates regardless of the variety of black pine. Sequence similarities of the white ectomycorrhizae in the rDNA ITS region were best matched with members of Astraeus sp., Atheliaceae, Boletaceae and Thelephoraceae. Our findings indicate that intra-specific physiological adaptation might be affected by ectomycorrhizal composition or by the specific ectomycorrhizal species.
  相似文献   

7.
Few studies have focused on analyzing the effect of native inoculated ectomycorrhizal (ECM) fungal strains on seedlings under field conditions in temperate forests. However, it is crucial to verify that the positive effects of ECM under nursery conditions also occur in the field, favoring their performance. We evaluated the short-term effect of ECM on three-year-old seedlings of Pinus hartwegii and Abies religiosa in central Mexico by subjecting them to four treatments: inoculation with Inocybe splendens, inoculation with Suillus brevipes (both native strains), inoculation with forest soil, and non-inoculated plants. Percentage of ECM colonization, plant growth (shoot height and stem diameter), and physiological (osmotic potential, stomatal conductance, CO2 assimilation and water use efficiency) responses were evaluated. We found that these two ECM species were partial (P. hartwegii) or totally (A. religiosa) replaced after one and a half years in the field. P. hartwegii seedlings increased their water use efficiency during the dry season, but in A. religiosa seedlings, a clear strategy for avoiding water stress was not detected. This ECM replacement had a negative effect on the physiological performance Of A. religiosa. Our results emphasize the importance of selecting compatible fungal-host species combinations for nursery inoculation and of using sources of inoculum adapted to the environmental conditions of the transplant site, ensuring root colonization prior to field transplanting to minimize seedling mortality due to water stress.  相似文献   

8.
There is growing evidence demonstrating the diversity of foliar endophytic fungi and their ecological roles in the survival of tree seedlings. However, the factors that shape fungal communities in tree seedlings within natural forest ecosystems remain poorly understood. Here, we evaluated the composition of foliar endophytic fungi growing in current-year seedlings of Cornus controversa and Prunus grayana in a cool temperate deciduous forest through a seed-sowing experiment and fungal isolation. The composition of endophytic fungi was affected by canopy tree species, canopy openness, and time after germination. In total, 27 and 22 fungal taxa were isolated from C. controversa and P. grayana seedlings, respectively. The dominant fungal taxa in both seedling species were Colletotorichum spp., and their isolation frequencies were higher under C. controversa canopies than under P. grayana canopies; the frequencies also increased with time after germination. These results suggest that overstory tree species strongly influences the endophytic fungal communities of understory seedlings.  相似文献   

9.
We examined differences in fine root morphology, mycorrhizal colonisation and root-inhabiting fungal communities between Picea abies individuals infected by Heterobasidion root-rot compared with healthy individuals in four stands on peat soils in Latvia. We hypothesised that decreased tree vitality and alteration in supply of photosynthates belowground due to root-rot infection might lead to changes in fungal communities of tree roots. Plots were established in places where trees were infected and in places where they were healthy. Within each stand, five replicate soil cores with roots were taken to 20 cm depth in each root-rot infected and uninfected plot. Root morphological parameters, mycorrhizal colonisation and associated fungal communities, and soil chemical properties were analysed. In three stands root morphological parameters and in all stands root mycorrhizal colonisation were similar between root-rot infected and uninfected plots. In one stand, there were significant differences in root morphological parameters between root-rot infected versus uninfected plots, but these were likely due to significant differences in soil chemical properties between the plots. Sequencing of the internal transcribed spacer of fungal nuclear rDNA from ectomycorrhizal (ECM) root morphotypes of P. abies revealed the presence of 42 fungal species, among which ECM basidiomycetes Tylospora asterophora (24.6 % of fine roots examined), Amphinema byssoides (14.5 %) and Russula sapinea (9.7 %) were most common. Within each stand, the richness of fungal species and the composition of fungal communities in root-rot infected versus uninfected plots were similar. In conclusion, Heterobasidion root-rot had little or no effect on fine root morphology, mycorrhizal colonisation and composition of fungal communities in fine roots of P. abies growing on peat soils.  相似文献   

10.
In 2011 and 2013, a field experiment was conducted in a winter wheat field at Adenstedt (northern Germany) to investigate biocontrol and interaction effects of important members of the soil food web (Lumbricus terrestris, Annelida; Folsomia candida, Collembola and Aphelenchoides saprophilus, Nematoda) on the phytopathogenic fungus Fusarium culmorum in wheat straw. Therefore, soil fauna was introduced in mesocosms in defined numbers and combinations and exposed to either Fusarium-infected or non-infected wheat straw. L. terrestris was introduced in all faunal treatments and combined either with F. candida or A. saprophilus or both. Mesocosms filled with a Luvisol soil, a cover of different types of wheat straw and respective combinations of faunal species were established outdoors in the topsoil of a winter wheat field after harvest of the crop. After a time span of 4 and 8 weeks, the degree of wheat straw coverage of mesocosms was quantified to assess its attractiveness for the soil fauna. The content of Fusarium biomass in residual wheat straw and soil was determined using a double-antibody sandwich (DAS)-ELISA method. In both experimental years, the infected wheat straw was incorporated more efficiently into the soil than the non-infected control straw due to the presence of L. terrestris in all faunal treatments than the non-infected control straw. In addition, Fusarium biomass was reduced significantly in all treatments after 4 weeks (2011: 95–99%; 2013:15–54%), whereupon the decline of fungal biomass was higher in faunal treatments than in non-faunal treatments and differed significantly from them. In 2011, Fusarium biomass of the faunal treatments was below the quantification limit after 8 weeks. In 2013, a decline of Fusarium biomass was observed, but the highest content of Fusarium biomass was still found in the non-faunal treatments after 8 weeks. In the soil of all treatments, Fusarium biomass was below the quantification limit. The earthworm species L. terrestris revealed a considerable potential as an effective biocontrol agent contributing to a sustainable control of a Fusarium plant pathogen in wheat straw, thus reducing the infection risk for specific plant diseases in arable fields.  相似文献   

11.
Studies on the functional significance of bacteria associated with ectomycorrhizal (ECM) fungi are scarce, as well as information on the metabolism of the host plant when in symbiosis with ECM fungi. Here we intended to evaluate the phenolic profile of seedlings when associated with Bacillus subtilis (B1), Pisolithus tinctorius (Pis) and their combination (PisB1). The interaction between microorganisms was conducted in three stages: (i) in vitro evaluation of fungal/bacterial interaction, (ii) microcosms, (iii) plant transplantation to natural soil. The profile of phenolic compounds was determined at the end of stages (ii) and (iii) and further supplemented with biometric, nutritional and analysis of the ectomycorrhizal community by denaturing gradient gel electrophoresis. In the in vitro compatibility test, B1 inhibited fungal growth at all glucose concentrations tested. In the microcosm, the levels of chlorogenic and p-coumaric acid decreased over time, unlike the protocatechuic acid which tended to increase during 70 days. After transplantation to the soil, the levels of phenolic acids decreased in all treatments, while catechin increased. B. subtilis positively influenced the fungus-plant relationship as was evidenced by higher biomass of seedlings inoculated with the dual inoculum (PisB1), both in the microcosm and soil stages. The presence of the bacteria interfered in the composition of the ECM fungal community installed in Pinus pinea L. in the soil. This leads to infer that B. subtilis may have caused a greater effect on the metabolism of P. pinea, especially in synergy with mycorrhizal fungi, than the action of the isolated fungus.  相似文献   

12.
Many areas of tropical rainforest have been fragmented and the habitat quality of fragments is often poor. For example, on Borneo, many forest fragments are highly degraded by repeated logging of Dipterocarpaceae trees prior to fragmentation, and we examined the viability of enrichment planting as a potential management tool to enhance the conservation value of these forest fragments. We planted seedlings of three dipterocarp species with contrasting light demands and tolerances (Parashorea malaanonan (light demander), Dryobalanops lanceolata (intermediate), Hopea nervosa (shade tolerant)) in eight forest fragment sites (3–3529 ha), and compared seedling performance with four sites in continuous forest. Eighteen months after planting, survival rates of seedlings were equally high in fragment sites (mean survival = 63 %), and in continuous forest sites (mean survival = 68 %). By contrast, seedling growth and herbivory rates were considerably higher in fragments (by 60 % for growth and 45 % for herbivory) associated with higher light environments in degraded forest fragments compared with continuous forest sites. Among the three study species, H. nervosa seedlings had the highest survival rates overall, and P. malaanonan seedlings generally grew fastest and suffered highest herbivory rates. There were no interactions between species performance and the effects of fragment site area, forest structure or soil characteristics of sites suggesting that the three species responded similarly to fragmentation effects. High survival of planted seedlings implies that enrichment planting would be a successful forest management strategy to improve forest quality, and hence conservation value, of fragments.  相似文献   

13.
14.
15.
Large-scale marshland reclamation can cause substantial changes to the soil fungal community by disturbances associated with the growth of crop plants and by the addition of fertilizers and pesticides. In this study, high-throughput sequencing of the fungal-specific internal transcribed spacer (ITS) gene region was used to identify fungal taxa. We analyzed the variation in soil fungi diversity and community composition in marshland, paddy, and farmland corn soils, and investigated the relationship between soil fungal community composition and soil physicochemical characteristics to quantify the effect of large-scale reclamation on marshland soil environment in the Sanjiang Plain, northeast China. Marshland soil contained most of the 1997 operational taxonomic units (OTUs) found across all sites (1241), while paddy soil had only 614 OTUs and farmland corn soil 817 OTUs. All reclaimed lands presented a decline in richness and diversity of soil fungi at the OTU level, and soil fungal richness was significantly different between marshland and reclaimed sites (P < 0.05), although it did not differ significantly between marshland and farmland corn sites. Additionally, soil fungal community composition showed different trends and structure after the reclamation. One-way analysis of variance showed Basidiomycota, Zygomycota, Glomeromycota, and Chytridiomycota composition differed significantly between marshland and reclaimed sites (P < 0.05). Nine dominant genera (relative abundance >1.5% in at least one site) and many unclassified genera showed significant variation between marshland and reclaimed sites, including Blumeria, Tomentella, Peziza, Hypholoma, Zopfiella, Mrakia, and Fusarium. Soil fungal community composition and diversity were affected by soil moisture, pH, total carbon (C), available nitrogen (N), soil organic carbon, soil dissolved organic carbon, and C/N (the ratio of total carbon to total nitrogen). The present results contribute to understanding the fungal community in marshland ecosystems, and the role of environmental variability as a predictor of fungal community composition.  相似文献   

16.
Invasive plants have wide-ranging impacts on native systems including reducing native plant richness and altering soil chemistry, microbes, and nutrient cycling. Increasingly, these effects are found to linger long after removal of the invader. We examined how soil chemistry, bacterial communities, and litter decomposition varied with cover of Euonymus fortunei, an invasive evergreen liana, in two central Kentucky deciduous forests. In one forest, E. fortunei invaded in the late 1990s but invasion remained patchy and we paired invaded and uninvaded plots to examine the associations between E. fortunei cover and our response variables. In the second forest, E. fortunei had completely invaded the forest by 2005; areas where it had been selectively removed by 2010 were paired with an adjacent invaded plot. Where E. fortunei had patchily invaded, E. fortunei patches had up to 3.5× nitrogen, 2.7× carbon, and 1.9× more labile glomalin in soils than uninvaded plots, whereas there were no differences in soil characteristics between invaded and removal plots. In the patchily invaded forest, bacterial community composition varied among invaded and non-invaded plots, whereas bacterial communities did not vary among invaded and removal plots. Finally, E. fortunei leaf litter decomposed faster (k = 4.91 year?1) than the native liana (k = 3.77 year?1), Vitis vulpina; decomposition of both E. fortunei and V. vulpina was faster in invaded (k = 7.10 year?1) than removal plots (k = 4.77 year?1). Our findings suggest that E. fortunei invasion increases the rate of leaf litter decomposition via high-quality litter, alters the decomposition environment, and shifts in the soil biotic communities associated with a dense mat of wintercreeper. Land managers with limited resources should target the densest mats for the greatest restoration potential and remove wintercreeper patches before they establish dense mats.  相似文献   

17.
Petrosavia sakuraii (Petrosaviaceae) is a rare, mycoheterotrophic plant species that has a specific symbiotic interaction with a narrow clade of arbuscular mycorrhizal (AM) fungi. In the present study, we tested the hypothesis that the distribution and abundance of mycobionts in two P. sakuraii habitats, Nagiso and Sengenyama (central Honshu, Japan), determine the distribution pattern of this rare plant. Nagiso is a thriving habitat with hundreds of P. sakuraii individuals per 100 m2, whereas Sengenyama is a sparsely populated habitat with fewer than 10 individuals per 100 m2. AM fungal communities associated with tree roots were compared at 20-cm distances from P. sakuraii shoots between the two habitats by molecular identification of AM fungal partial sequences of the small subunit ribosomal RNA gene. The percentage of AM fungal sequences showing over 99 % identity with those of the dominant P. sakuraii mycobionts was high (54.9 %) in Nagiso, but low (13.2 %) in Sengenyama. Accordingly, the abundance of P. sakuraii seems to reflect the proportion of potential mycobionts. It is likely that P. sakuraii mycobionts are not rare in Japanese warm temperate forests since 11.2 % of AM fungal sequences previously obtained from a deciduous broad-leaved forest devoid of P. sakuraii in Mizuho, central Honshu, Japan, were >99 % identical to those of the dominant P. sakuraii mycobionts. Thus, results suggest that the abundant mycobionts may be required for sufficient propagation of P. sakuraii, and this quantitative trait of AM fungal communities required for P. sakuraii may explain the rarity of this plant.  相似文献   

18.
The taxonomic structure of yeast communities was studied in forest litter and soil, as well as in substrates transformed by the activity of Lumbricus terrestris earthworms (leaves in heaps, the gut contents, and coproliths). The activity of L. terrestris has a weak effect on the total yeast abundance but results in substantial changes in the community taxonomic composition. The share of ascomycetous yeasts is significantly higher in the substrates associated with the activity of earthworms. The teleomorphic ascomycetes Williopsis saturnus were isolated from the gut contents. The effect of earthworms on the composition of the yeast community in the process of forest litter destruction is more pronounced than seasonal changes.  相似文献   

19.
Maize colonization by the phytopathogenic fungi Fusarium verticillioides leads to economical and food quality losses and also implicates potential health risks. In order to control this fungal species different strategies are being considered. In the present work we investigated the in situ effects of the use of two in vitro proven bacterial biological control agents against Fusarium verticillioides, using maize seedlings grown in greenhouse conditions. The treatment of maize seeds with Fusarium verticillioides 107 spores ml?1 negatively affected the length of the stem and the weight of the root systems of resultant seedlings, and also reduced the numbers of non-rhizospheric organisms with ammonification and nitrification activities. The addition of Bacillus amyloliquefaciens or Microbacterium oleovorans, at a concentration of 109 colony forming units ml?1, to the seeds significantly reduced Fusarium verticillioides count at the root inner tissues of resultant seedlings. When testing the impact of bacterial treatments on soil populations, no alterations with respect to control numbers of organisms with nitrification, ammonification or cellulolytic potentials were observed. Culturable bacterial richness and diversity calculated at the rhizoplane and root inner tissues of maize seedlings neither changed in bacterized treatments when compared to control treatment. Our study showed that the Fusarium verticillioides in vitro proven antagonists, Bacillus amyloliquefaciens and Microbacterium oleovorans (at 109 colony forming units ml?1), were also effective at greenhouse conditions without causing major changes in culturable rhizospheric and endophytic microbial richness and diversity.  相似文献   

20.
Mycorrhizal symbiosis in orchids is unique in that fungal presence is considered a requirement for germination as well as for further development. Additionally, orchid fungal associations can exhibit high specificity in nature. Yet, an important ecological question remains unanswered: ‘With which orchid mycorrhizal fungi (OMF) do un-inoculated orchid seedlings form symbiosis when cultured ex situ?’ Simultaneously, it is asserted that orchid conservation efforts involving ex situ plant culture should exclusively utilize natural symbionts of the respective orchid taxa. We present a first comparison of OMF communities within the roots of asymbiotically cultured plants of the rare orchid Platanthera chapmanii grown ex situ (ES), and those occurring naturally in situ (IS). Nuclear ribosomal internal transcribed spacer (nrITS) barcoding region was used to identify peloton forming OMF from roots collected between 2012 and 2014 from both growing environments. Our 114 sequences clustered into 11 operational taxonomic units (OTUs) belonging to four closely related clades of the fungal family Tulasnellaceae. Shannon–Wiener (H) and Simpson diversity (D) indices were similar (p = 0.81 for both) for ES and IS OMF communities. Beta diversity comparisons also showed similarity between ES and IS treatments based on weighted (p = 0.10) and unweighted (p = 0.20) Bray–Curtis dissimilarity matrices. Bayesian and Maximum Likelihood (ML) phylograms clustered ES and IS derived fungal OTUs into the same clades. Our data suggest that P. chapmanii: (1) forms symbiosis with taxonomically similar fungi in ex situ culture and in its native soil, and (2) exhibits a narrow phylogenetic breadth of mycorrhizal fungal OTUs within the Tulasnellaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号