首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

We examined differences in the responses of deciduous and evergreen broadleaved trees to fluvial disturbance and light environment near a river-facing forest edge in order to identify the factors limiting the distribution of deciduous trees, which are important components of warm-temperate mountainous riparian forests. Deciduous trees tended to be distributed on lower terraces of less than 2-m relative elevation from the water level, which corresponded with sites suffering from strong bank erosion due to high flood frequency. On the other hand, evergreen trees showed an opposite trend of distribution, indicating that high flood frequency associated with strong erosion-dominated soil disturbances might be a constraint for their establishment and/or survival. Furthermore, crowns of deciduous trees tended to be in the canopy layer at the forest edge, with fewer individuals observed beneath the canopy of evergreen trees, even at the forest edge. In contrast, evergreen trees were concentrated in the understory of the forest interior. These observations suggested that the light environment is the predominant factor affecting the establishment and survival of deciduous trees in warm-temperate mountainous riparian forests; however, the river-facing forest edge beneath the evergreen canopy is not a suitable habitat for deciduous trees. We concluded that erosion-dominated soil disturbance on lower terraces provides suitable habitats for deciduous trees by facilitating their reaching the canopy layer by limiting the establishment and/or survival of evergreen trees.

  相似文献   

2.
There is growing evidence demonstrating the diversity of foliar endophytic fungi and their ecological roles in the survival of tree seedlings. However, the factors that shape fungal communities in tree seedlings within natural forest ecosystems remain poorly understood. Here, we evaluated the composition of foliar endophytic fungi growing in current-year seedlings of Cornus controversa and Prunus grayana in a cool temperate deciduous forest through a seed-sowing experiment and fungal isolation. The composition of endophytic fungi was affected by canopy tree species, canopy openness, and time after germination. In total, 27 and 22 fungal taxa were isolated from C. controversa and P. grayana seedlings, respectively. The dominant fungal taxa in both seedling species were Colletotorichum spp., and their isolation frequencies were higher under C. controversa canopies than under P. grayana canopies; the frequencies also increased with time after germination. These results suggest that overstory tree species strongly influences the endophytic fungal communities of understory seedlings.  相似文献   

3.
The effects of vegetation types and environmental factors on carabid beetle (Coleoptera: Carabidae) communities were studied. Carabid beetles were collected using pitfall traps (total 2844 trapping days) and seven microenvironmental factors were measured in four vegetation types: grassland, natural evergreen coniferous forest (Pinus densiflora), deciduous broad-leaved natural forest (Quercus crispula, Betula platyphylla, Alnus japonica, or Fagus crenata), and deciduous coniferous plantation (Larix kaempferi) in cool temperate Japan. These four vegetation types provided a novel comparison between natural forests and plantations because the vast majority of related studies have investigated only deciduous broad-leaved natural forests and evergreen coniferous plantations. PERMANOVA indicated that vegetation types affected carabid community composition. Ordination plots showed that community composition differed greatly between grassland and forest vegetation types, but that community composition in the plantation forest overlapped with that of natural forest types. Characteristics differentiating the grassland included a high proportion of winged species and a low mean carabid body weight. Among the examined environmental factors, litter depth, soil water content, and depth of the soil A-horizon had large effects on carabid communities. These results suggest that the effect of afforestation on carabid communities in cool temperate Japan might be insignificant compared with the effects of cover types (deciduous vs. evergreen) and microenvironmental factors.  相似文献   

4.
Species interactions and their indirect effects on the availability and distribution of resources have been considered strong determinants of community structure in many different ecological systems. In deciduous forests, the presence of overstory trees and shrubs creates a shifting mosaic of resources for understory plants, with implications for their distribution and abundance. Determination of the ultimate resource constraints on understory vegetation may aid management of these systems that have become increasingly susceptible to invasions by non-native plants. Microstegium vimineum (Japanese grass) is an invasive annual grass that has spread rapidly throughout the understory of forests across the eastern United States since it was first observed in Tennessee in 1919. M. vimineum occurs as extensive, dense patches in the understory of eastern deciduous forests, yet these patches often exhibit sharp boundaries and distinct gaps in cover. One example of this distributional pattern was observed relative to the native midstory tree Asimina triloba (pawpaw), whereby dense M. vimineum cover stopped abruptly at the drip line of the A. triloba patch and was absent beneath the A. triloba canopy. We conducted field and greenhouse experiments to test several hypotheses regarding the causes of this observed pattern of M. vimineum distribution, including allelopathy, seed dispersal, light limitations, and soil moisture, texture, and nutrient content. We concluded that light reduction by the A. triloba canopy was the environmental constraint that prevented establishment of M. vimineum beneath this tree. Whereas overstory tree canopy apparently facilitates the establishment of this shade-tolerant grass, the interaction of overstory canopy with midstory canopy interferes with M. vimineum by reducing the availability of sunflecks at the ground layer. It is likely that other midstory species influence the distribution and abundance of other herb-layer species, with implications for management of understory invasive plant species.  相似文献   

5.
亚热带常绿阔叶林和暖温带落叶阔叶林叶片热值比较研究   总被引:3,自引:0,他引:3  
田苗  宋广艳  赵宁  何念鹏  侯继华 《生态学报》2015,35(23):7709-7717
植物干重热值(GCV)是衡量植物生命活动及组成成分的重要指标之一,反映了植物光合作用中固定太阳辐射的能力。利用氧弹量热仪测定了亚热带和暖温带两个典型森林生态系统常见的276种常见植物叶片的干重热值,探讨了亚热带和暖温带植物热值分布特征,以及不同生活型、乔木类型间植物热值的变化规律。实验结果发现:亚热带常绿阔叶林和暖温带落叶阔叶林叶片热值的平均值分别为17.83 k J/g(n=191)和17.21k J/g(n=85),整体表现为亚热带植物暖温带植物。不同地带性植被的植物叶片热值在不同生活型间表现出相似的规律,其中亚热带常绿阔叶林表现为:乔木(19.09 k J/g)灌木(17.87 k J/g)草本(16.65 k J/g);暖温带落叶阔叶林表现为:乔木(18.41 k J/g)灌木(17.94 k J/g)草本(16.53 k J/g);不同乔木类型间均呈现常绿乔木落叶乔木、针叶乔木阔叶乔木的趋势。落叶阔叶乔木表现为亚热带暖温带,而常绿针叶乔木则呈现亚热带暖温带的趋势。此外,我们对于两个分布区域内的4种针叶树种叶片热值进行了比较,发现华北落叶松(19.32 k J/g,暖温带)杉木(19.40 k J/g,亚热带)马尾松(19.82 k J/g,亚热带)油松(20.95 k J/g,暖温带)。亚热带常绿阔叶林和暖温带落叶阔叶林植物热值的特征及其变化规律,为森林生态系统的能量流动提供了理论基础。  相似文献   

6.
Demography, spatial pattern, and diversity of canopy and subcanopy trees, shrubs, and lianas were compared in two cool and two warm temperate North American forests, paired at 30° and 40° north latitudes. All woody stems 1 cm dbh in 16 randomly located, non-contiguous plots totalling 1 ha at each of the four sites were measured, mapped, and identified. Basal area and overall density did not differ between latitudes. Demographic and spatial analyses revealed remarkable similarity in spatial dispersion, irrespective of density or species composition. At all sites, dispersion of canopy trees was random but all understory stems were uniformly distributed relative to all canopy trees. Species diversity and vertical structure differed between the warm and cool temperate sites, especially in species composition of individual strata. Associations of understory species relative to canopy species were more random at 30° than at 40° north, where a higher degree of association between canopy and understory species' patterns, coupled with their size class distributions, suggested more lengthy regeneration cycles and an alternation of species assemblages. The forests at 30°, those subject to periodic canopy disturbance by hurricanes, had more vertical mixing of species (i.e., canopy species represented in all size classes), more tree saplings, and significantly more shrub and liana species.  相似文献   

7.
《植物生态学报》2016,40(2):116
Aims Hydraulic architecture is a morphological strategy in plants to transport water in coping with environmental conditions. Change of hydraulic architecture for plants occupying different canopy layers within community and for the same plant at different successional stages reflect existence and adaptation in plant's water transportation strategies. The objective of this study was to examine how hydraulic architecture varies with canopy layers within a community and with forest succession.Methods The study site is located in Tiantong National Forest Park, Zhejiang Province, China. Hydraulic architectural traits studied include sapwood-specific hydraulic conductivity, leaf-specific hydraulic conductivity, Huber value, sapwood channel area of twigs, total leaf area per terminal twig, and water potential of twigs. We measured those traits for species that occur in multiple successional stages (we called it "overlapping species") and for species that occur only in one successional stage (we called it "turnover species") along a successional series of evergreen broadleaved forests. For a given species, we sampled both overstory and understory trees. Hydraulic architectural traits between overstory and understory trees in the same community and at successional stages were compared. Pearson correlation was used to exam the relationship between hydraulic architectural traits and the twig/leaf traits.Important findings Sapwood-specific hydraulic conductivities and leaf-specific hydraulic conductivities were significantly higher in overstory trees than those in understory trees, but did not significantly differ from successional stages. Huber value decreased significantly for understory trees, but did not change for overstory trees through forest successional stages. For overstory trees, a trend of decreasing sapwood-specific hydraulic conductivity was observed for overlapping species but not for turnover species with successional stages. In contrast, for understory trees, a trend of decreasing Huber values was observed for turner species but not for overlapping species with successional stages. Across tree species, sapwood-specific hydraulic conductivity was positively correlated with sapwood channel area and total leaf area per terminal twig size. Huber value was negatively correlated to water potential of twigs and total leaf area per terminal twig size. These results suggest that water transportation capacity and efficiency are higher in overstory trees than in understory trees across successional stages in evergreen broadleaved forests in Tiantong region. The contrasting trends of sapwood-specific hydraulic conductivity between overlapping species and turnover species indicate that shift of microenvironment conditions might lead to changes of hydraulic architecture in overstory trees, whereas species replacement might result in changes of hydraulic architecture in understory trees.  相似文献   

8.
水力结构是植物应对环境形成的与水分运输相关的形态策略.探索不同演替阶段和群落不同高度层植物的水力结构特征, 有助于理解植物的水分运输和利用策略.该研究以浙江天童常绿阔叶林演替前中后期群落的上层木(占据林冠层的树种)和下层木(灌木层物种)为对象, 测定了演替共有种(至少存在于两个演替阶段的物种)和更替种(仅存在于某一演替阶段的物种)的枝边材比导率,叶比导率和胡伯尔值, 以及边材疏导面积,末端枝总叶面积和枝条水势, 分析植物水力结构在群落上层木和下层木间以及在演替阶段间的差异, 及其与枝叶性状的相关关系.结果显示: (1)上层木植物边材比导率和叶比导率显著高于下层木植物(p < 0.05); (2)上层木和下层木的边材比导率与叶比导率在演替阶段间均无显著差异(p > 0.05); 上层木的胡伯尔值在演替阶段间无显著差异, 下层木的胡伯尔值随演替显著下降(p < 0.05); (3)上层木共有种仅边材比导率随演替进行显著降低(p < 0.05), 更替种的3个水力结构参数在演替阶段间无显著差异; 下层木共有种水力结构参数在演替阶段间无明显差异, 更替种仅胡伯尔值随演替减小(p < 0.05); (4)植物边材比导率与枝疏导面积和末端枝所支撑的总叶面积显著正相关(p < 0.01), 胡伯尔值与枝条水势及末端枝总叶面积显著负相关(p < 0.01).以上结果表明: 天童常绿阔叶林演替各阶段上层木比下层木具有更大的输水能力和效率; 随着演替进行, 上层木与下层木的共有种和更替种边材比导率的相反变化表明上层木水力结构的变化可能由微生境变化引起, 而下层木水力结构特征的变化可能由物种更替造成.  相似文献   

9.
Many songbird species have evolved multiple vocalizations, or repertoires, that function to communicate various biological signals. More diverse repertoires may have evolved in response to the effects of seasonal variation in habitat structure on signal transmission. Such changes in habitat necessarily occur for migrating species, but they also occur for resident species that occupy deciduous forests. The black-capped chickadee (Poecile atricapillus) possesses a chick-a-dee call and a fee-bee song, but the closely related boreal chickadee (P. borealis) lacks a song. Consistent with the habitat variability hypothesis, the black-capped chickadee possesses a larger repertoire and primarily occupies deciduous forests, whereas the songless boreal chickadee occurs more often in coniferous forests. We explored the ecological basis of this hypothesis by recording audio playbacks of two species in two habitat types during two seasons. Specifically, we played both songs and calls of the black-capped chickadee and calls of the boreal chickadee in deciduous and coniferous habitats, prior to and after leaf-out. We measured attenuation and degradation in re-recorded vocalizations. For black-capped chickadees, the song was less degraded than the call in post-leaf, deciduous forests. The boreal chickadee call attenuated more quickly in all treatments, but maintained its acoustic structure better than both black-capped chickadee vocalizations in coniferous forests. Our results support the hypothesis that variable habitats provided a seasonal transmission benefit for both song and call in the black-capped chickadee, but that the transmission benefit of song is lost in the less variant coniferous forests, which may underlie the absence of a song in the boreal chickadee.  相似文献   

10.

Background

Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand.

Methods

Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover.

Results

Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights.

Conclusion

These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations.  相似文献   

11.
In a deciduous broad-leaved forest, we investigated the seasonality and heterogeneity of understory light conditions in relation to the leaf phenology of overstory trees. Fisheye photographs were taken from spring to autumn to estimate direct and indirect light conditions above the understory. Spatial variation in daily direct photosynthetic photon flux density (PPFD) was highest in late May, when the early and the intermediate-flushing trees had finished flushing and the late-flushing trees had just started flushing. After whole canopy closure, spatial variation in direct PPFD became low. Thus, asynchronous overstory leaf flushing in spring resulted in spatial heterogeneity in understory light conditions. These results suggest that the leaf phenological patterns of overstory trees are an important factor in the formation of the understory community.  相似文献   

12.
The canopy of forests has been considered “the last biotic frontier,” and study of its elements is very important in explaining the global functionality in ecosystems. Epiphytic plants and arthropods are essential elements in canopy habitats, and their relationships have been studied in order to understand the high diversity in tropical forests. Nevertheless, there are few studies on this development in temperate forests. The arthropod community was studied during the rainy and dry seasons at two altitudes, and a total of 240 T. violacea plants of three sizes were collected from Abies religiosa and Quercus spp. host trees. A total of 163,043 arthropods were collected and about 200 morphospecies identified. The highest abundance was obtained during the dry season, while high diversity was found during the rainy season. There was a significant effect of plant size, host trees and collecting season on abundance and diversity, and there were seasonal variations in community composition. The community hosted on A. religiosa epiphytes showed higher abundance and density than that of Quercus.  相似文献   

13.
Invasions by introduced pests can interact with other disturbances to alter forests and their functions, particularly when a dominant tree species declines. To identify changes after invasion by the insect hemlock woolly adelgid (Adelges tsugae; HWA), coinciding with severe droughts and hurricanes, this study compared tree species composition of eastern hemlock (Tsuga canadensis) forests on 11 plots before (2001) and 15 years after (2016) invasion in the southern Appalachian Mountains, USA. Losses of hemlock trees after HWA invasion were among the highest reported, with a 90% decline in density, 86% decline in basal area, and 100% mortality for individuals ≥ 60 cm in diameter. In contrast to predictions of theoretical models, deciduous tree density declined after HWA invasion, while basal area changed little, at least during the initial 15 years after invasion. Overall, forest density declined by 58%, basal area by 25%, and tree species richness by 8%. Factors additional to HWA likely exacerbating forest decline included: droughts before (1999–2001) and after HWA invasion (2006–2008); tree uprooting from hurricane-stimulated winds in 2004; pest-related declines of deciduous tree species otherwise likely benefitting from hemlock’s demise; death of deciduous trees when large hemlocks fell; and competition from aggressive understory plants including doghobble (Leucothoe fontanesiana), rosebay rhododendron (Rhododendron maximum), and Rubus spp. Models of forest change and ecosystem function should not assume that deciduous trees always increase during the first decades after HWA invasion.  相似文献   

14.
植物叶片的非结构性碳水化合物(non-structural carbohydrates,NSC)不仅为植物的代谢过程提供重要能量,还能一定程度上反映植物对外界环境的适应策略。以温带针阔混交林(长白山)、温带阔叶林(东灵山)、亚热带常绿阔叶林(神农架)和热带雨林(尖峰岭)4种森林类型的树种为研究对象,利用蒽酮比色法测定了163种常见乔木叶片可溶性糖、淀粉和NSC(可溶性糖+淀粉)含量,探讨了不同森林类型植物叶片NSC的差异及其地带性变化规律。结果显示:(1)从森林类型上看,植物叶片NSC含量从北到南递减,即温带针阔混交林(170.79 mg/g)>温带阔叶林(100.27 mg/g)>亚热带常绿阔叶林(91.24 mg/g)>热带雨林(80.13 mg/g)。(2)从生活型上看,无论是落叶树还是阔叶树,其叶片可溶性糖、淀粉和NSC含量均表现为:温带针阔混交林>温带阔叶林>亚热带常绿阔叶林>热带雨林;北方森林叶片可溶性糖、淀粉和NSC含量均表现为落叶树种>常绿树种,或阔叶树种>针叶树种。(3)森林植物叶片NSC含量、可溶性糖与淀粉含量比值与年均温和年均降水量均呈显著负相关。研究表明,森林植物叶片可溶性糖、淀粉和NSC含量以及可溶性糖与淀粉含量比值均具有明显的从北到南递减的地带性规律;其NSC含量以及可溶性糖与淀粉含量比值与温度和水分均呈显著负相关的变化规律可能是植物对外界环境适应的重要机制之一。该研究结果不仅为阐明中国主要森林树种碳代谢和生长适应对策提供了数据基础,而且为理解区域尺度森林植被对未来气候变化的响应机理提供新的视角。  相似文献   

15.
Forest floor of larch species often provides growth habitat for many kinds of understory species because of relatively sparse structure in a larch canopy. A rich flora of forest understory species may play an essential role in maintaining fertility of a larch stand. An attempt was made to evaluate photosynthetic nitrogen use efficiency (PNUE) of many understory and overstory species according to their Raunkiaer lifeform. By studying 72 perennial deciduous species in a larch plantation in northeast China, marked photosynthetic differences between phanerophytes (Ph) and other three lifeforms of chamaephytes (Ch), hemicryptophytes (He), and cryptophytes (Cr) were found, with marginal differences found among Ch, He, and Cr. Ph species had much lower PNUE, and much lower values of rate of nitrogen allocation to chlorophyll (Chl./N) and nitrogen allocation to carboxylation processes (V cmax/N) were concurrently observed in Ph compared with the other three lifeforms. Ph had much lower leaf nitrogen per unit of projection area (N area) and specific leaf area (SLA, cm2 g–1). At lower SLA, for Ph species the change of PNUE with SLA was small, but these changes became very large at higher SLA for Ch, He, and Cr species. Our findings indicate that leaf morphological change is important for clarifying photosynthesis differences among species with different lifeform.  相似文献   

16.

Key message

Temperature generally explained variation in branch and leaf biomasses, whereas stem and root biomasses–temperature relationships restricted certain age stages may not hold at broader age ranges.

Abstract

In this study, biomass data for alpine temperate Larix forest, alpine Picea-Abies forest, temperate typical deciduous broadleaved forest, temperate Pinus tabulaeformis forest, temperate mixed coniferous-broadleaved forest, montane Populus-Betula deciduous forest, subtropical evergreen broadleaved forest, subtropical montane Cupressus and Sabina forest, subtropical Pinus massoniana forest and subtropical Cunninghamia lanceolata forest were used to examine the effect of temperature on biomass allocations between organs. The data of the ten forests were classified as ≤30, 31–60 and >60 years, to test whether biomass allocations of these age group forests vary systematically in their responses to temperature. With increasing mean annual temperature, branch and leaf biomasses significantly increased in ≤30, 31–60 and >60 years and all age groups; stem biomass significantly increased in ≤30-, 31–60- and >60-year groups, but no significant trend in all age groups; Root biomass significantly increased in 31–60, >60 years and all age groups, but had no response to mean annual temperature in the 30-year group, which suggest that root biomass allocation in response to temperature is dependent upon forest age. We conclude that temperature generally explained variation in branch and leaf biomasses, whereas stem and root biomasses–temperature relationships restricted certain age stages may not hold at broader age ranges.
  相似文献   

17.
We examined effects of seasonality of climate and dominant life form (evergreen/deciduous, broad-leaf/coniferous) together with energy condition on species diversity, forest structure, forest dynamics, and productivity of forest ecosystems by comparing the patterns of changes in these ecosystem attributes along altitudinal gradients in tropical regions without seasonality and along a latitudinal gradient from tropical to temperate regions in humid East Asia. We used warmth index (temperature sum during growing season, WI) as an index of energy condition common to both altitudinal and latitudinal gradients. There were apparent differences in patterns of changes in the ecosystem attributes in relation to WI among four forest formations that were classified according to dominant life form and climatic zone (tropical/temperate). Many of the ecosystem attributes—Fishers alpha of species-diversity indices, maximum tree height and stem density, productivity [increment rate of aboveground biomass (AGB)], and population and biomass turnover rates—changed sharply with WI in tropical and temperate evergreen broad-leaved forests, but did not change linearly or changed only loosely with WI in temperate deciduous broad-leaved and evergreen coniferous forests. Values of these ecosystem attributes in temperate deciduous broad-leaved and evergreen coniferous forests were higher (stem density was lower) than those in tropical and temperate evergreen broad-leaved forests under colder conditions (WI below 100°C). Present results indicate that seasonality of climate and resultant change in dominant life form work to buffer the effects of energy reduction on ecosystem attributes along latitudinal gradients.  相似文献   

18.
Knowledge about vegetation and fire history of the mountains of Northern Sicily is scanty. We analysed five sites to fill this gap and used terrestrial plant macrofossils to establish robust radiocarbon chronologies. Palynological records from Gorgo Tondo, Gorgo Lungo, Marcato Cixé, Urgo Pietra Giordano and Gorgo Pollicino show that under natural or near natural conditions, deciduous forests (Quercus pubescens, Q. cerris, Fraxinus ornus, Ulmus), that included a substantial portion of evergreen broadleaved species (Q. suber, Q. ilex, Hedera helix), prevailed in the upper meso-mediterranean belt. Mesophilous deciduous and evergreen broadleaved trees (Fagus sylvatica, Ilex aquifolium) dominated in the natural or quasi-natural forests of the oro-mediterranean belt. Forests were repeatedly opened for agricultural purposes. Fire activity was closely associated with farming, providing evidence that burning was a primary land use tool since Neolithic times. Land use and fire activity intensified during the Early Neolithic at 5000 bc, at the onset of the Bronze Age at 2500 bc and at the onset of the Iron Age at 800 bc. Our data and previous studies suggest that the large majority of open land communities in Sicily, from the coastal lowlands to the mountain areas below the thorny-cushion Astragalus belt (ca. 1,800 m a.s.l.), would rapidly develop into forests if land use ceased. Mesophilous Fagus-Ilex forests developed under warm mid Holocene conditions and were resilient to the combined impacts of humans and climate. The past ecology suggests a resilience of these summer-drought adapted communities to climate warming of about 2 °C. Hence, they may be particularly suited to provide heat and drought-adapted Fagus sylvatica ecotypes for maintaining drought-sensitive Central European beech forests under global warming conditions.  相似文献   

19.

Background and Aims

The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems.

Methods

A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure–volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations.

Key Results

It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (Dh) and higher mass-based photosynthetic rate (Am); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π0) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, Am, and dry season π0. Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, Dh, as well as dry season π0. Both wood density and leaf density were closely correlated with leaf water-stress tolerance and Am.

Conclusions

The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves.Key words: Tropical dry forest, karst, leaf habit, hydraulic conductivity, cavitation resistance, leaf water-stress tolerance, wood density, leaf density, phylogenetic independent contrasts  相似文献   

20.
In the area of Jumla region in Western Nepal, measurements of saturated leaf net photosynthetic rate (Psat), nitrogen content, leaf fluorescence, carbon isotopic composition, and water status were performed on woody coniferous (Pinus wallichiana, Picea smithiana, Abies spectabilis, Juniperus wallichiana, Taxus baccata), evergreen (Quercus semecarpifolia, Rhododendron campanulatum), and deciduous broadleaved species (Betula utilis, Populus ciliata, Sorbus cuspidata) spreading from 2 400 m up to the treeline at 4 200 m a.s.l. With the exception of J. wallichiana, Psat values were lower in coniferous than broadleaved species. Q. semecarpifolia, that in this area grows above the coniferous belt between 3 000 and 4 000 m, showed the highest Psat at saturating irradiance and the highest leaf N content. This N content was higher and Psat lower than those of evergreen oak species of tempe forests at middle and low altitudes. For all species, Psat and N content were linearly correlated, but instantaneous nitrogen use efficiency was lower than values measured in lowland and temperate plant communities. The values of carbon isotopic composition, estimated by δ13C, showed the same range reported for temperate tree species. The ranking of δ13C values for the different tree types was conifers < evergreen broadleaved<deciduous, suggesting tighter stomatal closure and higher water use efficiency for the evergreen types, confirming trends found elsewhere. No relevant differences of δ13C were found along the altitudinal gradient. Quantum yield of photochemistry at saturating irradiance, measured by leaf fluorescence (δF/Fm’), was highest in J. wallichiana and lowest in T. baccata. Overall, photochemical efficiency was more strongly related to species than to altitude. Interestingly, changes of .δF/Fm’ along the altitudinal gradient correlated well with the reported altitudinal distribution of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号