首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.

Key message

We report the development and characterization of Brassica oleracea - nigra monosomic alien addition lines (MAALs) to dissect the Brassica B genome.

Abstract

Brassica nigra (2n = 16, BB) represents the diploid Brassica B genome which carries many useful genes and traits for breeding but received limited studies. To dissect the B genome from B. nigra, the triploid F1 hybrid (2n = 26, CCB) obtained previously from the cross B. oleracea var. alboglabra (2n = 18, CC) × B. nigra was used as the maternal parent and backcrossed successively to parental B. oleracea. The progenies in BC1 to BC3 generations were analyzed by the methods of FISH and SSR markers to screen the monosomic alien addition lines (MAALs) with each of eight different B-genome chromosomes added to C genome (2n = 19, CC + 1B1?8), and seven different MAALs were established, except for the one with chromosome B2 which existed in one triple addition. Most of these MAALs were distinguishable morphologically from each other, as they expressed the characters from B. nigra differently and at variable extents. The alien chromosome remained unpaired as a univalent in 86.24% pollen mother cells at diakinesis or metaphase I, and formed a trivalent with two C-genome chromosomes in 13.76% cells. Transmission frequency of all the added chromosomes was far higher through the ovules (averagely 14.40%) than the pollen (2.64%). The B1, B4 and B5 chromosomes were transmitted by female at much higher rates (22.38–30.00%) than the other four (B3, B6, B7, B8) (5.04–8.42%). The MAALs should be valuable for exploiting the genome structure and evolution of B. nigra.
  相似文献   

2.

Key message

Present study recommends DBH as independent variable of the derived allometric models and Biomass = a + b DBH 2 has been selected for total above-ground biomass, nutrients and carbon stock.

Abstract

Kandelia candel (L.) Druce is a shrub to small tree of the Sundarbans mangrove forest of Bangladesh. The aim of the study was to derive the allometric models for estimating above-ground biomass, nutrient and carbon stock in K. candel. A total of eight linear models with 64 regression equations were tested to derive the allometric models for biomass of each part of plant; and nutrients and carbon stock in total above-ground biomass. The best fitted allometric models were selected by considering the values of R 2, CV, R mse, MSerror, S a, S b, F value, AICc and Furnival Index. The selected allometric models were Biomass = 0.014 DBH2 + 0.03; √Biomass = 0.29 DBH ? 0.21; √Biomass = 0.66 √DBH ? 0.57; √Biomass = 1.19 √DBH ? 1.02; Biomass = 0.21 DBH2 + 0.12 for leaves, branches, bark, stem without bark and total above-ground biomass, respectively. The selected allometric models for Nitrogen, Phosphorous, Potassium and Carbon stock in total above-ground biomass were N = 0.39 DBH2 + 0.49, P = 0.77 DBH2 + 0.14, K = 0.87 DBH2 + 0.07 and C = 0.09 DBH2 + 0.05, respectively. The derived allometric models have included DBH as a single independent variable, which may give quick and accurate estimation of the above-ground biomass, nutrient and carbon stock in this species. This information may also contribute to a broader study of nutrient cycling, nutrient budgeting and carbon sequestration of the studied forest.
  相似文献   

3.

Key message

Using DArT analysis, we demonstrated that all Solanum × michoacanum (+) S. tuberosum somatic hybrids contained all parental chromosomes. However, from 13.9 to 29.6 % of the markers from both parents were lost in the hybrids.

Abstract

Somatic hybrids are an interesting material for research of nucleus-cytoplasm interaction and sources of new nuclear and cytoplasmic combinations. Analyses of genomes of somatic hybrids are essential for studies on genome compatibility between species, its evolution and are important for their efficient exploitation. Diversity array technology (DArT) permits analysis of the composition of nuclear DNA of somatic hybrids. The nuclear genome compositions of 97 Solanum × michoacanum (+) S. tuberosum [mch (+) tbr] somatic hybrids from five fusion combinations and 11 autofused 4x mch were analyzed for the first time based on DArT markers. Out of 5358 DArT markers generated in a single assay, greater than 2000 markers were polymorphic between parents, of which more than 1500 have a known chromosomal location on potato genetic or physical map. DArT markers were distributed along the entire length of 12 chromosomes. We noticed elimination of markers of wild and tbr fusion components. The nuclear genome of individual somatic hybrids was diversified. Mch is a source of resistance to Phytophthora infestans. From 97 mch (+) tbr somatic hybrids, two hybrids and all 11 autofused 4x mch were resistant to P. infestans. The analysis of the structure of particular hybrids’ chromosomes indicated the presence of markers from both parental genomes as well as missing markers spread along the full length of the chromosome. Markers specific to chloroplast DNA and mitochondrial DNA were used for analysis of changes within the organellar genomes of somatic hybrids. Random and non-random segregations of organellar DNA were noted.
  相似文献   

4.
5.

Key message

Simultaneous RNAi silencing of the FAD2 and FAE1 genes in the wild species Lepidium campestre improved the oil quality with 80 % oleic acid content compared to 11 % in wildtype.

Abstract

Field cress (Lepidium campestre) is a wild biennial species within the Brassicaceae family with desirable agronomic traits, thus being a good candidate for domestication into a new oilseed and catch crop. However, it has agronomic traits that need to be improved before it can become an economically viable species. One of such traits is the seed oil composition, which is not desirable either for food use or for industrial applications. In this study, we have, through metabolic engineering, altered the seed oil composition in field cress into a premium oil for food processing, industrial, or chemical industrial applications. Through seed-specific RNAi silencing of the field cress fatty acid desaturase 2 (FAD2) and fatty acid elongase 1 (FAE1) genes, we have obtained transgenic lines with an oleic acid content increased from 11 % in the wildtype to over 80 %. Moreover, the oxidatively unstable linolenic acid was decreased from 40.4 to 2.6 %, and the unhealthy erucic acid was reduced from 20.3 to 0.1 %. The high oleic acid trait has been kept stable for three generations. This shows the possibility to use field cress as a platform for genetic engineering of oil compositions tailor-made for its end uses.
  相似文献   

6.

Key message

The cucumber male sterility gene ms - 3 was fine mapped in a 76 kb region harboring an MMD1 -like gene Csa3M006660 that may be responsible for the male sterile in cucumber.

Abstract

A cucumber (Cucumis sativus L.) male sterile mutant (ms-3) in an advanced-generation inbred line was identified, and genetic analysis revealed that the male sterility trait was controlled by a recessive nuclear gene, ms-3, which was stably inherited. Histological studies suggested that the main cause of the male sterility was defective microsporogenesis, resulting in no tetrad or microspores being formed. Bulked segregant analysis (BSA) and genotyping of an F2 population of 2553 individuals were employed used to fine map ms-3, which was delimited to a 76 Kb region. In this region, a single non-synonymous SNP was found in the Csa3M006660 gene locus, which was predicted to result in an amino acid change. Quantitative RT-PCR analysis of Csa3M006660 was consistent with the fact that it plays a role in the early development of cucumber pollen. The protein encoded by Csa3M006660 is predicted to be homeodomain (PHD) finger protein, and the high degree of sequence conservation with homologs from a range of plant species further suggested the importance of the ms-3 non-synonymous mutation. The data presented here provide support for Csa3M006660 as the most likely candidate gene for Ms-3.
  相似文献   

7.

Key message

We cloned TaSdr - A1 gene, and developed a gene-specific marker for TaSdr - A1 . A QTL for germination index at the TaSdr - A1 locus was identified in the Yangxiaomai/Zhongyou 9507 RIL population.

Abstract

Pre-harvest sprouting (PHS) affects yield and end-use quality in bread wheat (Triticum aestivum L.). In the present study we found an association between the TaSdr-A1 gene and PHS tolerance in bread wheat. TaSdr-A1 on chromosome 2A was cloned using a homologous cloning approach. Sequence analysis of TaSdr-A1 revealed an SNP at position 643, with the G allele being present in genotypes with lower germination index (GI) values and A in those with higher GI. These alleles were designated as TaSdr-A1a and TaSdr-A1b, respectively. A cleaved amplified polymorphism sequence (CAPS) marker Sdr2A based on the SNP was developed, and linkage mapping and QTL analysis were conducted to confirm the association between TaSdr-A1 and seed dormancy. Sdr2A was located in a 2.9 cM interval between SSR markers Xgwm95 and Xgwm372. A QTL for GI at the TaSdr-A1 locus explained 6.6, 7.3, and 8.2 % of the phenotypic variances in a Yangxiaomai/Zhongyou 9507 RIL population grown at Beijing, Shijiazhuang, and the averaged data from the two environments, respectively. Two sets of Chinese wheat cultivars used for validating the TaSdr-A1 polymorphism and the corresponding gene-specific marker Sdr2A showed that TaSdr-A1 was significantly associated with GI. Among 29 accessions with TaSdr-A1a, 24 (82.8 %) were landraces, indicating the importance of Chinese wheat landraces as sources of PHS tolerance. This study identified a novel PHS resistance allele TaSdr-A1a mainly presented in Chinese landraces and it is likely to be the causal gene for QPhs.ccsu-2A.3, providing new information for an understanding of seed dormancy.
  相似文献   

8.

Key message

We investigated a Frankia Alnus sieboldiana symbiosis, including the minimum inoculum dose for constant nodulation, the period of time to nodulation after inoculation, and the effects of N on nodulation.

Abstract

Frankia is a nitrogen-fixing actinomycete that forms root nodules in some dicotyledonous plants, which are called actinorhizal. We studied nodule formation in Alnus sieboldiana, an actinorhizal plant, after inoculation with a Frankia isolate to establish techniques for Frankia inoculation and the cultivation of inoculated plants. Root nodules formed on seedlings of A. sieboldiana by 2 weeks after inoculation, and N2 fixation measured by acetylene reduction activity started 3 weeks after inoculation. Nodulation was observed after inoculation with a Frankia isolate at 0.001 μL packed cell volume (pcv). The number of nodules formed on the seedlings inoculated with Frankia at more than 0.05 μL pcv was not significantly different. Nodule development and N2 fixation were reduced when inoculated seedlings were treated weekly with 15 mM NH4NO3-N. In contrast, treatment with 3.75 or 0.9375 mM NH4NO3-N did not inhibit nodule development or N2 fixation of inoculated seedlings by 15 weeks of N treatment.
  相似文献   

9.

Key message

Allocation of the chromosome 2D of Ae. tauschii in triticale background resulted in changes of its organization, what is related to varied expression of genes determining agronomically important traits.

Abstract

Monosomic alien addition lines (MAALs) are crucial for transfer of genes from wild relatives into cultivated varieties. This kind of genetic stocks is used for physical mapping of specific chromosomes and analyzing alien genes expression. The main aim of our study is to improve hexaploid triticale by transferring D-genome chromatin from Aegilops tauschii × Secale cereale (2n = 4x = 28, DDRR). In this paper, we demonstrate the molecular cytogenetics analysis and SSR markers screening combined with phenotype analysis and evaluation of powdery mildew infection of triticale monosomic addition lines carrying chromosome 2D of Ae. tauschii. We confirmed the inheritance of chromosome 2D from the BC2F4 to the BC2F6 generation of triticale hybrids. Moreover, we unveiled a high variable region on the short arm of chromosome 2D, where chromosome rearrangements were mapped. These events had direct influence on plant height of hybrids what might be connected with changes at Rht8 loci. We obtained 20 semi-dwarf plants of BC2F6 generation carrying 2D chromosome with the powdery mildew resistance, without changes in spike morphology, which can be used in the triticale breeding programs.
  相似文献   

10.

Key message

Although tree-ring chronologies of Cedrela fissilis and Cedrela angustifolia showed a common climatic signal, local conditions influence growth, suggesting that forest guidelines should be appropriate to the species and context.

Abstract

Cedrela species are highly valued because of the quality of their timber. Understanding the behaviour of each different Cedrela species and their ecology is of importance to ensuring that forest harvesting and management do not endanger the survival of natural populations. These species grow in a wide range of environmental gradients and different types of forests in Bolivia. This study used dendrochronological methods to analyse growth–precipitation relationships of two Cedrela species coming from three locations with different environmental conditions: dry Chiquitano (Concepción), Chiquitano transitional Amazonian (Guarayos), and Bolivian-Tucuman montane forests (Postrervalle). The rainy season in all locations runs from October to April and the dry season runs from May to September. Twelve Cedrela fissilis specimens were sampled from dry Chiquitano, 11 Cedrela fissilis specimens from Chiquitano transitional Amazonian, and 30 Cedrela angustifolia specimens from Bolivian-Tucuman montane forests. The samples were crossdated and exhibited a common signal between trees from three sites, despite tree rings from the Chiquitano transitional Amazonian forest being narrower and displaying blurred bands of parenchyma in the boundaries. Significant inter-series correlation was found for the C. fissilis species series from dry Chiquitano with r = 0.261 (p < 0.01) and Chiquitano transitional Amazonian forests with r = 0.284 (p < 0.01), and for Cedrela angustifolia from Bolivian-Tucuman montane forests with r = 0.374 (p < 0.01). Mean annual growth was 2.07, 1.92, and 2.82 mm year?1 at the three sites, respectively. Cedrela species from dry Chiquitano and Bolivian-Tucuman montane forests were sensitive to precipitation from October to April of the current growth year (wettest season) and to low temperatures from May to July of the current growth year (driest season). Samples from Chiquitano transitional Amazonian were more sensitive to precipitation during late rainy season (March, April, and May of the current growth year) and high temperatures during the rainy months (November–December). Growth differences between sites and species in response to climate variations and local conditions should be taken into account and handled with different forest management guidelines.
  相似文献   

11.
Rhynchospora glomerata and its closest relatives comprise a group of beakesedges widespread and frequent in much of North America. The classification of the R. glomerata complex remains unresolved and controversial. The goals of this study are to determine the number of taxa in the complex and their ranks, and identify their best diagnostic characters. Measurements of eight characters from each of 101 specimens from throughout the geographic range of the complex furnished data for morphometric analyses. These analyses reveal the R. glomerata complex contains three species and no infraspecific taxa: R. capitellata, R. glomerata, and R. leptocarpa. We detected 10 validly published basionyms in the complex, five of which required lectotypification. Accordingly, we designated lectotypes for R. glomerata var. discutiens, R. glomerata var. minor, R. glomerata var. paniculata, and R. glomerata var. robustior, and the second-step lectotype for R. capitellata var. controversa.  相似文献   

12.
13.

Main conclusion

We present a comprehensive overview on flavonoid-related phenotypes of A. thaliana tt and tds mutants, provide tools for their characterisation, increase the number of available alleles and demonstrate that tds3 is allelic to tt12 and tds5 to aha10.Flavonoid biosynthesis is one of the best-studied secondary metabolite pathways in plants. In the model system Arabidopsis thaliana it leads to the synthesis of three phenolic compound classes: flavonol glycosides, anthocyanins and proanthocyanidins (PAs). PAs appear brown in their oxidised polymeric forms, and most A. thaliana mutants impaired in flavonoid accumulation were identified through screens for lack of this seed coat pigmentation. These mutants are referred to as transparent testa (tt) or tannin-deficient seed (tds). More than 20 mutants of these types have been published, probably representing most of the genes relevant for PA accumulation in A. thaliana. However, data about the genes involved in PA deposition or oxidation are still rather scarce. Also, for some of the known mutants it is unclear if they represent additional loci or if they are allelic to known genes. For the present study, we have performed a systematic phenotypic characterisation of almost all available tt and tds mutants and built a collection of mutants in the genetic background of the accession Columbia to minimise effects arising from ecotype variation. We have identified a novel tt6 allele from a forward genetic screen and demonstrated that tds3 is allelic to tt12 and tds5 to aha10.
  相似文献   

14.
15.

Key message

Fine mapping of Yr47 and Lr52 in chromosome arm 5BS of wheat identified close linkage of the marker sun180 to both genes and its robustness for marker-assisted selection was demonstrated.

Abstract

The widely effective and genetically linked rust resistance genes Yr47 and Lr52 have previously been mapped in the short arm of chromosome 5B in two F3 populations (Aus28183/Aus27229 and Aus28187/Aus27229). The Aus28183/Aus27229 F3 population was advanced to generate an F6 recombinant inbred line (RIL) population to identify markers closely linked with Yr47 and Lr52. Diverse genomic resources including flow-sorted chromosome survey sequence contigs representing the orthologous region in Brachypodium distachyon, the physical map of chromosome arm 5BS, expressed sequence tags (ESTs) located in the 5BS6-0.81-1.00 deletion bin and resistance gene analog contigs of chromosome arm 5BS were used to develop markers to saturate the target region. Selective genotyping was also performed using the iSelect 90 K Infinium wheat SNP assay. A set of SSR, STS, gene-based and SNP markers were developed and genotyped on the Aus28183/Aus27229 RIL population. Yr47 and Lr52 are genetically distinct genes that mapped 0.4 cM apart in the RIL population. The SSR marker sun180 co-segregated with Lr52 and mapped 0.4 cM distal to Yr47. In a high resolution mapping population of 600 F2 genotypes Yr47 and Lr52 mapped 0.2 cM apart and marker sun180 was placed 0.4 cM distal to Lr52. The amplification of a different sun180 amplicon (195 bp) than that linked with Yr47 and Lr52 (200 bp) in 204 diverse wheat genotypes demonstrated its robustness for marker-assisted selection of these genes.
  相似文献   

16.

Main conclusion

A novel broad-spectrum powdery mildew resistance gene PmPB74 was identified in wheat- Agropyron cristatum introgression line Pubing 74. Development of wheat cultivars with broad-spectrum, durable resistance to powdery mildew has been restricted by lack of superior genetic resources. In this study, a wheat-A. cristatum introgression line Pubing 74, originally selected from a wide cross between the common wheat cultivar Fukuhokomugi (Fukuho) and Agropyron cristatum (L.) Gaertn (2n = 4x = 28; genome PPPP), displayed resistance to powdery mildew at both the seedling and adult stages. The putative alien chromosomal fragment in Pubing 74 was below the detection limit of genomic in situ hybridization (GISH), but evidence for other non-GISH-detectable introgressions was provided by the presence of three STS markers specific to A. cristatum. Genetic analysis indicated that Pubing 74 carried a single dominant gene for powdery mildew resistance, temporarily designated PmPB74. Molecular mapping showed that PmPB74 was located on wheat chromosome arm 5DS, and flanked by markers Xcfd81 and HRM02 at genetic distances of 2.5 and 1.7 cM, respectively. Compared with other lines with powdery mildew resistance gene(s) on wheat chromosome arm 5DS, Pubing 74 was resistant to all 28 Blumeria graminis f. sp tritici (Bgt) isolates from different wheat-producing regions of northern China. Allelism tests indicated that PmPB74 was not allelic to PmPB3558 or Pm2. Our work showed that PmPB74 is a novel gene with broad resistance to powdery mildew, and hence will be helpful in broadening the genetic basis of powdery mildew resistance in wheat.
  相似文献   

17.
Four new platinum(II) complexes: PtII L1·H2O (C1, H2 L1 = C20H16N2O2), PtII L2Cl2 (C2, L2 = C22H16N2O2), PtII L3Cl2·H2O (C3, L3 = C20H16N2), PtII L4Cl2·0.4H2O (C4, L4 = C18H14N4) have been synthesized and characterized by using various physico-chemical techniques. The binding interaction of the four platinum(II) complexes C1C4 with calf thymus (CT)-DNA has been investigated by UV–Vis and fluorescence emission spectrometry. The apparent binding constant (K app) values follow the order: C3 > C1 > C2 > C4. In addition, fluorescence spectrometry of bovine serum albumin (BSA) with the four platinum(II) complexes C1C4 showed that the quenching mechanism might be a static quenching procedure. For C1C4, the number of binding sites was about one for BSA and the binding constants follow the order: C3 (7.08 × 105M?1) > C1 (2.82 × 105M?1) > C2 (0.85 × 105M?1) > C4 (0.15 × 105M?1). With the single condition change such as absence of an external agent, the DNA cleavage abilities of C3 exhibit remarkable changes. In addition, the cytotoxicity of C3 in vitro on tumor cells lines (MCF-7, HepG2 and HT29) were examined by MTT and showed better antitumor effects on the tested cells.  相似文献   

18.

Key message

CHX had remarkable inhibition on P. edulis photosynthesis, and the reflectance indexes and F 685 / F 735 had the potential value for quantifying the effects of antibiotics on trees.

Abstract

To reveal the effects of antibiotics on photosynthesis and provide help for remote sensing the influence of antibiotics on trees, we investigated the effects of cycloheximide (CHX) on Phyllostachys edulis. In CHX treatment, the photosynthetic pigment content in P. edulis was decreased markedly, which led to the increase in the reflectance spectra in visible region. CHX reduced the donor side and acceptor side of photosystem II (PSII), density of reaction centers, quantum production and electron transport in PSII, and raised the dissipation of absorbed light energy. Besides the dissipation, the absorbed light energy can be emitted as fluorescence with two main peaks in the red (685 nm) and far-red (735 nm) region, respectively. In 0.50 mM CHX treatment, a significant decline in the height and area of the peak at 685 nm might result from Chl loss reducing the light absorption and lower photochemical reaction in PSII. When fourth derivative analysis of fluorescence emission spectra was performed, the changes of the peaks at 718, 735 and 750 nm might result from the decline of absorbed solar radiation caused by the reduced pigment content and/or the damages to the PSI. In CHX treatment, a remarkable increase in intercellular CO2 concentrations and light compensation point and decrease in light saturation point demonstrated that the CO2 assimilation ability was decreased. Those results suggested that the photosynthesis in trees can be reduced after they were watered with wastewater containing CHX. The reflectance indexes and F 685/F 735 (H 685/H 735 and A 685/A 735) were markedly affected by CHX, demonstrating that they had the potential value for quantifying the effects of antibiotics on trees.
  相似文献   

19.

Key message

A rapid and efficient Agrobacterium -mediated transformation system in sorghum has been developed employing standard binary vectors and bar gene as a selectable marker.

Abstract

Sorghum (Sorghum bicolor) is an important food and biofuel crop worldwide, for which improvements in genetic transformation are needed to study its biology and facilitate agronomic and commercial improvement. Here, we report optimization of regeneration and transformation of public sorghum genotype P898012 using standard binary vectors and bar gene as a selectable marker. The tissue culture regeneration time frame has been reduced to 7–12 weeks with a yield of over 18 plants per callus, and the optimized transformation system employing Agrobacterium tumefaciens strain AGL1 and the bar with a MAS promoter achieved an average frequency over 14 %. Of randomly analyzed independent transgenic events, 40–50 % carry single copy of integrated T-DNA. Some independent transgenic events were derived from the same embryogenic callus lines, but a 3:1 Mendelian segregation ratio was found in all transgenic events with single copy as estimated by Southern blots. The system described here should facilitate studies of sorghum biology and agronomic improvement.
  相似文献   

20.

Key message

This article provides significant data in the debate on whether siltation might have a negative impact on the hydraulic functioning of two widespread mangrove tree species Avicennia marina and Rhizophora mucronata.

Abstract

Elevated sediment addition, or siltation, within mangrove ecosystems is considered as being negative for trees and saplings, resulting in stress and higher mortality rates. However, little is known about how siltation influences the hydraulic functioning of mangrove trees. Comparing two mangrove tree species (Avicennia marina Vierh. Forsk. and Rhizophora mucronata Lam.) from low and high-siltation plots led to the detection of anatomical and morphological differences and tendencies. Adaptations to high siltation were found to be either mutual among both species, e.g., significant smaller single leaf area (p A.marina  = 0.058, F1.38 = 3.8; p R.mucronata  = 0.005, F1.38 = 8.7; n = 20 × 20) and a tendency towards smaller stomatal areas (p A.marina  = 0.131, F1.8 = 2.8; p R.mucronata  = 0.185, F1.8 = 2.1, n = 5 × 60), or species-specific trends for A. marina, such as higher phloem band/growth layer ratios (p = 0.101, F1.8 = 3.4, n = 5 × 3) and stomatal density (p = 0.052, F1.8 = 5.2, n = 5 × 4). All adaptations seemingly contributed to a comparable hydraulic conductivity independent of the degree of siltation. These findings indicate that silted trees level off fluctuations in their hydraulic performance as a survival mechanism to cope with this less favourable environment. Most of the trees’ structural adaptations to cope with siltation are similar to known drought stress-imposed adaptations.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号