首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
An important application of liquid cell Atomic Force Microscopy (AFM) is the study of enzyme structure and behaviour in organized molecular media that mimic in-vivo systems. In this study we demonstrate the use of AFM as a tool to study the kinetics of lipolytic enzyme reactions occurring at the surface of a supported lipid bilayer. In particular, the time course of the degradation of lipid bilayers by Phospholipase A(2) (PLA(2)) and Humicola Lanuginosa Lipase (HLL) has been investigated. Contact mode imaging allows visualization of enzyme activity on the substrate with high lateral resolution. Lipid bilayers were prepared by the Langmuir-Blodgett technique and transferred to an AFM liquid cell. Following injection of the enzyme into the liquid cell, a sequence of images was acquired at regular time intervals to allow the identification of substrate structure, preferred sites of enzyme activation, and enzyme reaction rates.  相似文献   

2.
An important application of liquid cell Atomic Force Microscopy (AFM) is the study of enzyme structure and behaviour in organized molecular media that mimic in-vivo systems. In this study we demonstrate the use of AFM as a tool to study the kinetics of lipolytic enzyme reactions occurring at the surface of a supported lipid bilayer. In particular, the time course of the degradation of lipid bilayers by Phospholipase A2 (PLA2) and Humicola Lanuginosa Lipase (HLL) has been investigated. Contact mode imaging allows visualization of enzyme activity on the substrate with high lateral resolution. Lipid bilayers were prepared by the Langmuir-Blodgett technique and transferred to an AFM liquid cell. Following injection of the enzyme into the liquid cell, a sequence of images was acquired at regular time intervals to allow the identification of substrate structure, preferred sites of enzyme activation, and enzyme reaction rates.  相似文献   

3.
Reaction characteristics of a membrane-bound lipoprotein lipase acting on a hydrophobic substrate were investigated in aggregated structures—lipid bilayers of liposomes and mixed micelles of Triton X-100. The enzyme activity was enhanced with increases in Triton X-100 and phospholipid concentrations in micellar and liposomal structures. This higher activity was found to be due to both the solubilization state of the hydrophobic substrate and the hydrophobic interactions of the enzyme with either phospholipid or Triton X-100 molecules as a result of its incorporation into the aggregated systems. The enzyme reconstituted into lipid bilayers of liposomes prepared from 15 mM DMPC in the presence of 0.05% Triton X-100 showed a further 1.5-fold higher activity in comparison with the activity without reconstitution in micelles of 1.0% Triton X-100. These results indicate the necessity of the bilayer structure to retain the membrane-bound enzyme in an active conformation.  相似文献   

4.
Acrylodan-labeled rat-intestinal fatty acid binding protein, ADIFAB, binds both of lysophosphatidylcholines (LPC) and FA. Binding displaces Acrylodan and its fluorescence peak shifts from 432 to 505 nm. A fluorescence assay that relies on this shift is presented for quantitating LPC, FA, and phospholipase A(2) (PLA(2)) activity in phospholipid bilayers in absolute units of μM/min/mg of enzyme. This is a development over an earlier assay that took into account only FA binding. Activities of bee venom PLA(2) on dipalmitoylphosphatidylcholine (DPPC) and dioleylphosphatidylcholine (DOPC) bilayers were measured. Standard pH-Stat assays validated the present assay. Products increase linearly with time for about one minute in DOPC and five minutes in DPPC corresponding to completion of 5 to 8% hydrolysis in DOPC and 20% in DPPC. Membrane polarity and microviscosity measured using electron spin resonance (ESR) exhibited discontinuities at compositions that mimicked similar percentages of hydrolysis products in the respective bilayers. The observed hydrolysis rate decrease following the initial linear period thus correlates to changes in membrane polarity. The ability of the assay to yield actual product concentrations, reveal structure in the reaction progress curves, and interpretation in light of the ESR data bring insight into the shape of the reaction curve.  相似文献   

5.
The Escherichia coli outer-membrane phospholipase A (OM PLA) is a membrane-bound acyl hydrolase with a broad substrate specificity. In order to obtain more insight into the mechanism of action of this enzyme, we designed an active-site-directed inhibitor for OM PLA on the basis of the known substrate specificity as a first step in the elucidation of the catalytic mechanism of this enzyme. The inhibitor, hexadecanesulfonyl fluoride, consists of a long hydrocarbon chain for high-affinity binding by the enzyme and a sulfonyl fluoride moiety as a reactive group. The kinetics of the inactivation of OM PLA by hexadecanesulfonyl fluoride were studied in Triton X-100 micelles. Inactivation is very fast, specific and shows the same characteristics with respect to acyl specificity, pH profile and metal ion requirement as the activity of OM PLA on substrates. Incubation of OM PLA with a stoichiometric amount of hexadecanesulfonyl fluoride leads to a total and irreversible loss of enzyme activity, resulting from the sulfonylation of Ser144. This Ser144, which we suggest to be the active-site serine of OM PLA, is part of the sequence HDSNG, whereas in the water-soluble serine proteases and lipases the structural motif GXSXG is normally encountered. On the basis of the kinetics of inactivation of OM PLA by hexadecanesulfonyl fluoride, we discuss a possible catalytic mechanism of the enzyme.  相似文献   

6.
Phospholipase A2 (PLA2) hydrolyzes phospholipids to free fatty acids and lysolipids and thus initiates the biosynthesis of eicosanoids and platelet-activating factor, potent mediators of inflammation, allergy, apoptosis, and tumorigenesis. The relative contributions of the physical properties of membranes and the structural changes in PLA2 to the interfacial activation of PLA2, that is, a strong increase in the lipolytic activity upon binding to the surface of phospholipid membranes or micelles, are not well understood. The present results demonstrate that both binding of PLA2 to phospholipid bilayers and its activity are facilitated by membrane surface electrostatics. Higher PLA2 activity toward negatively charged membranes is shown to result from stronger membrane-enzyme electrostatic interactions rather than selective hydrolysis of the acidic lipid. Phospholipid hydrolysis by PLA2 is followed by preferential removal of the liberated lysolipid and accumulation of the fatty acid in the membrane that may predominantly modulate PLA2 activity by affecting membrane electrostatics and/or morphology. The previously described induction of a flexible helical structure in PLA2 during interfacial activation was more pronounced at higher negative charge densities of membranes. These findings identify a reciprocal relationship between the membrane surface properties, strength of membrane binding of PLA2, membrane-induced structural changes in PLA2, and the enzyme activation.  相似文献   

7.
Endothelial lipase (EL) is a phospholipase A1 (PLA1) enzyme that hydrolyzes phospholipids at the sn-1 position to produce lysophospholipids and free fatty acids. Measurement of the PLA1 activity of EL is usually accomplished by the use of substrates that are also hydrolyzed by lipases in other subfamilies such as PLA2 enzymes. In order to distinguish PLA1 activity of EL from PLA2 enzymatic activity in cell-based assays, cell supernatants, and other nonhomogeneous systems, a novel fluorogenic substrate with selectivity toward PLA1 hydrolysis was conceived and characterized. This substrate was preferred by PLA1 enzymes, such as EL and hepatic lipase, and was cleaved with much lower efficiency by lipases that exhibit primarily triglyceride lipase activity, such as LPL or a lipase with PLA2 activity. The phospholipase activity detected by the PLA1 substrate could be inhibited with the small molecule esterase inhibitor ebelactone B. Furthermore, the PLA1 substrate was able to detect EL activity in human umbilical vein endothelial cells in a cell-based assay. This substrate is a useful reagent for identifying modulators of PLA1 enzymes, such as EL, and aiding in characterizing their mechanisms of action.  相似文献   

8.
Phospholipase A(2) (PLA(2)) is an interfacially active enzyme whose hydrolytic activity is known to be enhanced in one-component phospholipid bilayer substrates exhibiting dynamic micro-heterogeneity. In this study the activity of PLA(2) towards large unilamellar vesicles composed of DPPC:SMPC and DMPC:DSPC:SMPC is investigated using fluorescence and HPLC techniques. Phase diagrams of the mixtures are established by differential scanning calorimetry and the PLA(2) activity, monitored by the lag time, is correlated with the phase behavior of the mixtures. In addition, the degree of lipid hydrolysis in the DMPC:DSPC:SMPC lipid mixtures is detected by HPLC. The PLA(2) activity is found to be significantly increased in the temperature range of the coexistence region where the lipid mixtures exhibit lateral gel-fluid phase separation. Furthermore, in the entire temperature range it is demonstrated that PLA(2) preferentially hydrolyzes the short chain DMPC lipid. This discriminative effect becomes less pronounced when the asymmetric lipid SMPC is present in the lipid substrate. Inclusion of SMPC into either DPPC or DMPC:DSPC vesicles prolongs the lag time. The results clearly show that the PLA(2) activity is significantly enhanced by lipid bilayer micro-heterogeneity in both one-component and multi-component lipid bilayer substrates. The PLA(2) activity measurements are discussed in terms of dynamic gel-fluid lipid domain formation due to density fluctuations and static lipid domain formation due to gel-fluid phase separation.  相似文献   

9.
Bovine heart mitochondrial complex III (ubiquinol-cytochrome-c reductase) has been reconstituted into phosphatidylcholine bilayers and the effect of varying lipid/protein ratios on the structure and function of the protein has been examined. Electron microscopy, differential scanning calorimetry and Arrhenius plots of enzyme activity provide evidence that the protein is incorporated in an active conformation into pure phosphatidylcholine bilayers. At low lipid/protein ratios (e.g. 80:1 molar ratio) the protein exists in the form of aggregates. As the lipid proportion is increased, electron microscopy reveals the gradual formation of lipid bilayers; structures with the appearance of closed vesicles are seen at or above 300:1 phospholipid/protein molar ratios. Changes in enzyme activity as a function of lipid contents reveal a progressive increase in activity as more lipid is added, with a tendency to reach a saturation point. From the experimental data, a kinetic model is proposed, according to which the protein has an indefinite number of unspecific, independent and identical binding sites for phospholipids, the latter acting as essential enzyme activators. Varying lipid/protein ratios induce structural changes in complex III; visible spectra indicate changes in the polarity of the heme group environment, while Fourier-transform infrared spectroscopy suggests a change in the secondary structure of the protein as the lipid proportion is increased.  相似文献   

10.
The goal of the present study is to elucidate the mechanism of quercetin on modulating Naja naja atra phospholipase A2 (PLA2) activities. Sphingomyelin inhibited PLA2 enzymatic activity and membrane-damaging activity against egg yolk phosphatidylcholine (EYPC), while cholesterol and quercetin abrogated the sphingomeyelin inhibitory effect. Quercetin incorporation led to a reduction in PLA2 enzymatic activity and membrane-damaging activity toward EYPC/sphingomyelin/cholesterol vesicles. Both cholesterol and quercetin increased detergent resistance and reduced membrane fluidity of EYPC/sphingomyelin vesicles. Quercetin reduced detergent insolubility but increased ordered lipid packing of EYPC/sphingomyelin/cholesterol vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that quercetin altered the membrane-bound mode of PLA2 differently upon absorption onto the membrane bilayers of different lipid compositions. However, 8-anilinonaphthalene sulphonate-binding assay revealed that quercetin marginally affected the interaction between active site of PLA2 with phospholipid vesicles. Collectively, our data indicate that membrane-inserted quercetin modulates PLA2 interfacial activity and membrane-damaging activity via its effects on membrane structure and membrane-bound mode of PLA2.  相似文献   

11.
Secretory human phospholipase A2 type IIA (PLA2-IIA) catalyzes the hydrolysis of the sn-2 ester bond in glycerolipids to produce fatty acids and lysolipids. The enzyme is coupled to the inflammatory response, and its specificity toward anionic membrane interfaces suggests a role as a bactericidal agent. PLA2-IIA may also target perturbed native cell membranes that expose anionic lipids to the extracellular face. However, anionic lipid contents in native cells appear lower than the threshold levels necessary for activation. By using phosphatidylcholine/phosphatidylglycerol model systems, we show that local enrichment of anionic lipids into fluid domains triggers PLA2-IIA activity. In addition, the compositional range of enzyme activity is shown to be related to the underlying lipid phase diagram. A comparison is done between PLA2-IIA and snake venom PLA2, which in contrast to PLA2-IIA hydrolyzes both anionic and zwitterionic membranes. In general, this work shows that PLA2-IIA activation can be accomplished through local enrichment of anionic lipids into domains, indicating a mechanism for PLA2-IIA to target perturbed native membranes with low global anionic lipid contents. The results also show that the underlying lipid phase diagram, which determines the lipid composition at a local level, can be used to predict PLA2-IIA activity.  相似文献   

12.
A new and unnatural type of lipid analogs with the phosphocholine and phosphoglycerol head groups linked to the C-2 position of the glycerol moiety have been synthesized and the thermodynamic lipid membrane behavior has been investigated using differential scanning calorimetry. From the heat capacity measurements, it was observed that the pre-transition was abolished most likely due to the central position of the head groups providing better packing properties in the low temperature ordered gel phase. Activity measurements of secretory phospholipase A2 (PLA2) on unilamellar liposomal membranes revealed that the unnatural phospholipids are excellent substrates for PLA2 catalyzed hydrolysis. This was manifested as a minimum in the PLA2 lag time in the main phase transition temperature regime and a high degree of lipid hydrolysis over a broad temperature range. The obtained results provide new information about the interplay between the molecular structure of phospholipids and the lipid membrane packing constrains that govern the pre-transition. In addition, the PLA2 activity measurements are useful for obtaining deeper insight into the molecular details of the catalytic site of PLA2. The combined results also suggest new approaches to rationally design liposomal drug carries that can undergo a triggered activation in diseased tissue by overexpressed PLA2.  相似文献   

13.
Several experimental approaches have demonstrated that transglutaminase 2 (TG2) increased activity is involved in monocyte activation and inflammatory response. Preliminary results also demonstrate a TG-mediated post-translational modification of phospholipase A2 (PLA2), which catalyzes the release of arachidonic acid from its lipid storage sites. The control of PLA2-mediated production of eicosanoids has been found to be of great benefit for inflammatory disease treatment. However, the identification of the mechanisms of PLA2 activation is a very complex issue, because of the presence of multiple PLA2 forms. The aim of this study was to characterize the interactions between TG2 and sPLA2 in LPS-stimulated THP-1 cells, which were treated with TPA to induce early differentiated macrophage-type model. We demonstrated that increases in TG2 enzyme activity and protein expression may be considered an early event in monocyte/macrophage activation by LPS. Under these conditions, TG2 protein was co-immunoprecipitated with PLA2 by monoclonal antibody directed against the secretory form of the enzyme (sPLA2-V). Concomitantly, the PLA2 enzyme activity increased in TPA-treated cells exposed to LPS; these high levels of enzyme activity were significant reduced by R283, a site-specific inhibitor of TG2. Moreover, confocal laser scanning microscopy analysis of double-immunostained cytochemical specimens confirmed a co-localization of BAPA-labeled proteins and sPLA2-V in LPS-treated cells. These findings give evidence of a complex TG2/sPLA2-V, suggesting the possibility that sPLA2-V is a substrate for TG2. These results demonstrated that TG2 increases produced a sustained activation of PLA2 activity, suggesting a functional interaction between these enzymes in the regulation of inflammatory response.  相似文献   

14.
A new and unnatural type of lipid analogs with the phosphocholine and phosphoglycerol head groups linked to the C-2 position of the glycerol moiety have been synthesized and the thermodynamic lipid membrane behavior has been investigated using differential scanning calorimetry. From the heat capacity measurements, it was observed that the pre-transition was abolished most likely due to the central position of the head groups providing better packing properties in the low temperature ordered gel phase. Activity measurements of secretory phospholipase A2 (PLA2) on unilamellar liposomal membranes revealed that the unnatural phospholipids are excellent substrates for PLA2 catalyzed hydrolysis. This was manifested as a minimum in the PLA2 lag time in the main phase transition temperature regime and a high degree of lipid hydrolysis over a broad temperature range. The obtained results provide new information about the interplay between the molecular structure of phospholipids and the lipid membrane packing constrains that govern the pre-transition. In addition, the PLA2 activity measurements are useful for obtaining deeper insight into the molecular details of the catalytic site of PLA2. The combined results also suggest new approaches to rationally design liposomal drug carries that can undergo a triggered activation in diseased tissue by overexpressed PLA2.  相似文献   

15.
The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.  相似文献   

16.
Ahn KW  Sampson NS 《Biochemistry》2004,43(3):827-836
We investigated the dependence of cholesterol oxidase catalytic activity and membrane affinity on lipid structure in model membrane bilayers. The binding affinities of cholesterol oxidase to 100-nm unilamellar vesicles composed of mixtures of DOPC or DPPC and cholesterol are not sensitive to cholesterol mole fraction if the phase of the membrane is in a fluid state. When the membrane is in a solid-ordered state, the binding affinity of cholesterol oxidase increases approximately 10-fold. The second-order rate constants (kcat*/Km*) for different lipid mixtures show a 2-fold substrate specificity for cholesterol in the l(d) phase of high cholesterol chemical activity over cholesterol in the l(o) phase. Moreover, the enzyme is 2-fold more specific for cholesterol in the l(o) phase than in the s(o) phase. Likewise, there is 2-fold substrate specificity for the high cholesterol chemical activity l(d) phase over the low chemical activity l(d) phase. The specificities for the l(d) phase of low cholesterol chemical activity and the l(o) phase are the same. These data indicate that the more ordered the lipid cholesterol structure in the bilayer, the lower the catalytic rate. However, under all of the conditions investigated, the enzyme is never saturated with substrate. The enzymatic activity directly reflects the facility with which cholesterol can move out of the membrane, whether changes in cholesterol transfer facility are due to phase changes or more localized changes in packing. We conclude that the activity of cholesterol oxidase is directly and sensitively dependent on the physical properties of the membrane in which its substrate is bound.  相似文献   

17.
Phosphoethanolaminetransferase of high specific activity was solubilized from rat liver microsomes with the non-ionic detergent octyl glucoside. The solubilization method is fast and simple, allowing for processing of large amounts of material. The solubilized enzyme is stable. It contains virtually no phosphocholinetransferase activity. A preliminary characterization of the enzyme, with both diacyl- and alkylacyl-glycerol as substrate, is given. For the reaction, the lipid substrates were incorporated into artificial phospholipid bilayers (liposomes).  相似文献   

18.
The peptide-lipid interaction of a β-hairpin antimicrobial peptide tachyplesin-1 (TP-1) and its linear derivatives are investigated to gain insight into the mechanism of antimicrobial activity. 31P and 2H NMR spectra of uniaxially aligned lipid bilayers of varying compositions and peptide concentrations are measured to determine the peptide-induced orientational disorder and the selectivity of membrane disruption by tachyplesin. The disulfide-linked TP-1 does not cause any disorder to the neutral POPC and POPC/cholesterol membranes but induces both micellization and random orientation distribution to the anionic POPE/POPG membranes above a peptide concentration of 2%. In comparison, the anionic POPC/POPG bilayer is completely unaffected by TP-1 binding, suggesting that TP-1 induces negative curvature strain to the membrane as a mechanism of its action. Removal of the disulfide bonds by substitution of Cys residues with Tyr and Ala abolishes the micellization of POPE/POPG bilayers but retains the orientation randomization of both POPC/POPG and POPE/POPG bilayers. Thus, linear tachyplesin derivatives have membrane disruptive abilities but use different mechanisms from the wild-type peptide. The different lipid-peptide interactions between TP-1 and other β-hairpin antimicrobial peptides are discussed in terms of their molecular structure.  相似文献   

19.
Enzymes that function on membrane surfaces offer many challenges to understanding structural and functional details due to the difficulties of obtaining relevant information of the protein in a physiological environment. Focusing on this aspect of structural biology, it is important to develop conditions that mimic the interaction of membrane proteins with their binding surface and ultimately the mechanisms of action. This approach has been used to characterize the allosteric nature of secreted phospholipase A2 (PLA2) to its substrate interface. The breakthrough here was to crystallize the pancreatic group-IB PLA2 in an anion-assisted dimer with five coplanar phosphate anions bound. In the anion-assisted dimer structure one molecule of a tetrahedral mimic inhibitor and five anions are shared between the two subunits of the dimer. The sn-2-phosphate of the inhibitor, which mimics the tetrahedral intermediate of the esterolysis reaction, is bound in the active site of one subunit, and the alkyl chain extends into the active site slot of the second subunit across the subunit-subunit interface. This interface-bound structural mimic provided insight into the active site environment and specific anionic interactions to the i-face of the protein. The presence or absence of a single critical active site water, corresponds to the difference between the activated or inactivated form of the enzyme. The anion-assisted dimer structure supports a calcium coordinated nucleophilic water mechanism, with its pK(a) modulated by this assisting water. This working model has been further strengthened with an enzyme-product complex structure solved with the hydrolysis products of the substrate PAF also bound to the anion-assisted dimer form of PLA2. Additional confirmation of the assisting-water mechanism comes from a structure of the inactive zymogen proPLA2 also crystallized in an anion-assisted dimer. Remarkably, the assisting water present in the activated complex is absent in this proPLA2 structure.  相似文献   

20.
Wang Y  Bruckner R  Stein RL 《Biochemistry》2004,43(1):265-270
Prokaryotic signal peptidases are membrane-bound enzymes. They cleave signal peptides from precursors of secretary proteins. To study the enzyme in its natural environment, which is phospholipid bilayers, we developed a method that allows us effectively to incorporate full-length Escherichia coli signal peptidase I into phospholipid vesicles. The membrane-bound signal peptidase showed high activity on a designed substrate. The autolysis site of the enzyme is separated from its catalytic site in vesicles by the lipid bilayer, resulting in a dramatic decrease of the autolysis rate. Phosphotidylethanolamine, which is the most abundant lipid in Escherichia coli inner membrane, is required to maintain activity of the membrane-incorporated signal peptidase. The maximal activity is achieved at about 55% phosphotidylethanolamine. Negatively charged lipids, which are also abundant in Escherichia coli inner membrane, enhances the activity of the enzyme too. Its mechanism, however, cannot be fully explained by its ability to increase the affinity of the substrate to the membrane. A reaction mechanism was developed based on the observation that cleavage only takes place when the enzyme and the substrate are bound to the same vesicle. Accordingly, a kinetic analysis is presented to explain some of the unique features of phospholipid vesicles incorporated signal peptidase, including the effect of lipid concentration and substrate-vesicle interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号