首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wheat irrigated with nutrient solutions containing 0, 0.2, 0.5, 1, 2, or 6 millimolar K+ had maximum photosynthetic rates at 1 to 2 millimolar K+ concentrations. Rates in the 6 millimolar K+-grown plants were not higher than the 2 millimolar K+-grown wheat, and rates were inhibited below 0.5 millimolar K+. Photosynthesis was measured by both attached whole leaf CO2 uptake and by 14CO2 fixation of leaf slices in solution. Exposure of leaf slices from 0.2, 2, and 6 millimolar K+-grown wheat to various assay media water potentials showed that photosynthesis of the 0.2 millimolar K+-grown wheat decreased from control (high water potential) rates by 35%, that of the 2 millimolar K+-grown wheat by 20.4%, and that of the 6 millimolar K+-grown wheat by only 8.3% at −3.11 megapascals. Also, photosynthesis of the 6 millimolar K+-grown wheat was enhanced by 28% over that of the 2 millimolar K+ wheat at the most severe water stress (−3.11 megapascals), indicating that the excess leaf K+ in the 6 millimolar K+-grown wheat partially reversed dehydration effects on photosynthesis. Oligomycin eliminated the protective effects of high K+ on photosynthesis in dehydrated leaf slices. These results suggest that the protective effect of high K+ under water stress may involve the exchange of K+ in the cytoplasm for stroma H+, thus altering stromal pH and restoring photosynthesis. The protective effect of high K+ was also observed in attached whole leaf photosynthesis of in situ water-stressed wheat grown on 0.2, 2, and 6 millimolar K+. Under water stress, rates of the 6 millimolar K+-grown wheat were enhanced by 66.2% and 113.9% over that of 2 millimolar K+-grown wheat in two separate experiments. Internal CO2 concentration of the 6 millimolar K+-grown wheat was lower than that of the 0.2 and 2 millimolar K+-grown wheat. These results suggest that the high K+ effects on chloroplast photosynthesis seen in leaf slices also occur at the whole plant level.  相似文献   

2.
Plants often respond to elevated atmospheric CO2 levels with reduced tissue nitrogen concentrations relative to ambient CO2-grown plants when comparisons are made at a common time. Another common response to enriched CO2 atmospheres is an acceleration in plant growth rates. Because plant nitrogen concentrations are often highest in seedlings and subsequently decrease during growth, comparisons between ambient and elevated CO2-grown plants made at a common time may not demonstrate CO2-induced reductions in plant nitrogen concentration per se. Rather, this comparison may be highlighting differences in nitrogen concentration between bigger, more developed plants and smaller, less developed plants. In this study, we directly examined whether elevated CO2 environments reduce plant nitrogen concentrations independent of changes in plant growth rates. We grew two annual plant species. Abutilon theophrasti (C3 photosynthetic pathway) and Amaranthus retroflexus (C4 photosynthetic pathway), from seed in glass-sided growth chambers with atmospheric CO2 levels of 350 mol·mol–1 or 700 mol·mol–1 and with high or low fertilizer applications. Individual plants were harvested every 2 days starting 3 days after germination to determine plant biomass and nitrogen concentration. We found: 1. High CO2-grown plants had reduced nitrogen concentrations and increased biomass relative to ambient CO2-grown plants when compared at a common time; 2. Tissue nitrogen concentrations did not vary as a function of CO2 level when plants were compared at a common size; and 3. The rate of biomass accumulation per rate of increase in plant nitrogen was unaffected by CO2 availability, but was altered by nutrient availability. These results indicate that a CO2-induced reduction in plant nitrogen concentration may not be due to physiological changes in plant nitrogen use efficiency, but is probably a size-dependent phenomenon resulting from accelerated plant growth.  相似文献   

3.
Seedlings of Eucalyptus pauciflora, were grown in open-top chambers fumigated with ambient and elevated [CO2], and were divided into two populations using 10% light transmittance screens. The aim was to separate the effects of timing of light interception, temperature and [CO2] on plant growth. The orientation of the screens exposed plants to a similar total irradiance, but incident during either cold mornings (east-facing) or warm afternoons (west-facing). Following the first autumn freezing event elevated CO2-grown plants had 10 times more necrotic leaf area than ambient CO2 plants. West-facing plants had significantly greater (25% more) leaf damage and lower photochemical efficiency (Fv/Fm) in comparison with east-facing plants. Following a late spring freezing event east-facing elevated CO2 plants suffered a greater sustained loss in Fv/Fm than west-facing elevated CO2- and ambient CO2-grown plants. Stomatal conductance was lower under elevated CO2 than ambient CO2 except during late spring, with the highest leaf temperatures occurring in west-facing plants under elevated CO2. These higher leaf temperatures apparently interfered with cold acclimation thereby enhancing frost damage and reducing the ability to take advantage of optimal growing conditions under elevated CO2.  相似文献   

4.
Broccoli (Brassica oleracea L. var. italica) is an important, nutritionally rich vegetable crop, but severely affected by environmental stresses, pests and diseases which cause massive yield and quality losses. Genetic manipulation is becoming an important method for broccoli improvement. In the present study, a reproducible and highly efficient protocol for obtaining organogenesis from hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica cv. Solan green head) has been developed. Hypocotyl and cotyledon explants were used from 10 to 12 days old aseptically grown seedlings whereas leaf and petiole explants were excised from 18 to 20 days old green house grown seedlings and surface sterilized. These explants were cultured on shoot induction medium containing different concentration and combination of BAP and NAA. High efficiency shoot regeneration has been achieved in hypocotyl (83.33 %), cotyledon (90.11 %), leaf (62.96 %) and petiole (91.10 %) explants on MS medium supplemented with 3.5 mg/l BAP + 0.019 mg/l NAA 2.5 mg/l BAP + 0.5 mg/l NAA, 4.0 mg/l BAP + 0.5 mg/l NAA and 4.5 mg/l BAP + 0.019 mg/l NAA respectively. Petiole explants showed maximum shoot regeneration response as compared to other explants. MS medium supplemented with 0.10 mg/l NAA was found best for root regeneration (100 %) from in vitro developed shoots. The regenerated complete plantlets were transferred to the pots containing cocopeat and successfully acclimatized. This optimized regeneration protocol can be efficiently used for genetic transformation in broccoli. This is the first comparative report on multiple shoot induction using four different types of explants viz. hypocotyl, cotyledon, leaf and petiole.  相似文献   

5.
Abstract: Growth in elevated CO2 led to an increase in biomass production per plant as a result of enhanced carbon uptake and lower rates of respiration, compared to ambient CO2-grown plants. No down-regulation of photosynthesis was found after six months of growth under elevated CO2. Photosynthetic rates at 15°C or 35 °C were also higher in elevated than in ambient CO2-grown plants, when measured at their respective CO2 growth condition. Stomata of elevated CO2-grown plants were less responsive to temperature as compared to ambient CO2 plants. The after effect of a heat-shock treatment (4 h at 45 °C in a chamber with 80% of relative humidity and 800–1000 tmol m-2 s-1 photon flux density) on Amax was less in elevated than in ambient CO2-grown plants. At the photochemical level, the negative effect of the heat-shock treatment was slightly more pronounced in ambient than in elevated CO2-grown plants. A greater tolerance to oxidative stress caused by high temperatures in elevated CO2-grown plants, in comparison to ambient CO2 plants, is suggested by the increase in superoxide dismutase activity, after 1 h at 45 °C, as well as its relatively high activity after 2 and 4 h of the heat shock in the elevated CO2-grown plants in contrast with the decrease to residual levels of superoxide dismutase activity in ambient CO2-grown plants immediately after 1 h at 45 °C. The observed increase in catalase after 1 h at 45 °C in both ambient and elevated CO2-grown plants, can be ascribed to the higher rates of photorespiration and respiration under this high temperature.  相似文献   

6.
The classical theory of the relationship between gas fluxes and photosynthetic electron fluxes was extended by two additional terms: JL describing flux to electron sinks other than the Calvin cycle, and RL accounting for light-induced changes in non-photorespiratory CO2 evolution. RL comprises two main components, Rr resulting from light-induced decrease in tricarboxylic acid activity, and RS related to extra CO2 evolution resulting from citrate-to-2-oxoglutarate conversion for N-assimilation in NO3 grown leaves. This extended theory was applied to two experiments. First, A–Ci curves (dependence of CO2 flux on stomatal CO2 concentration) revealed a higher apparent CO2 compensation point (Γ*app) in NO3-grown plants than in NH4+-grown plants. Secondly, photosynthetic electron fluxes at different light intensities were determined by means of the Genty parameter of chlorophyll fluorescence and compared with those calculated from measured CO2 uptake. Curve-fitting based on the extended theory provided a coincidence of these two measurements and resulted in higher RS in NO3-grown than in NH4+-grown plants. This difference in RS (about 15% of the CO2 flux bound by carboxylation) is the same as that obtained from the analysis of Γ*app. Further, the analysis suggests that JL related to the extra electron flux used for N-assimilation in NO3-grown plants is diverted to other sinks in NH4+-grown plants. SHAM decreased photosynthetic electron flow and O2 evolution in NH4+-grown plants, antimycin A in NO3-grown plants. The effect of oligomycin was small. The results are discussed in terms of different mechanisms of chloroplast/mitochondrion interaction in NO3- and NH4+-grown plants, their effects on non-photorespiratory CO2 evolution and on Γ*app.  相似文献   

7.
Background and Aims Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase.Methods The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4–5 years to either ambient (AC; 385 µmol mol−1) or elevated (EC; 700 µmol mol−1) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques.Key Results Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry.Conclusions Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary.  相似文献   

8.
Elevated atmospheric partial pressure of CO2 and plant growth   总被引:4,自引:0,他引:4  
Cotton plants were grown in late spring under full sunlight in glasshouses containing normal ambient partial pressure of CO2 (32±2Pa) and enriched partial pressure of CO2 (64±1.5Pa) and at four levels of nitrogen nutrition. Thirty-five days after planting, the total dry weights of high CO2-grown plants were 2- to 3.5-fold greater than plants grown in normal ambient CO2 partial pressure. Depending on nitrogen nutrition level, non-structural carbohydrate content (mainly starch) in the leaves of plants grown in normal CO2 was between 4 and 37% of the total leaf dry weight compared to 39 to 52% in the leaves of high CO2-grown plants. Specific leaf weight calculated using total dry weight was 1.6- to 2-fold greater than that based on structural dry weight. In high CO2-grown plants the amount of non-structural carbohydrate translocated from the leaves at night was between 10 and 20% of the level at the end of the photoperiod. This suggests that the plant was unable to utilize all the carbohydrate it assimilated in elevated CO2 atmosphere. While there was a 1.5-fold enhancement in the rate of CO2 assimilation in plants grown in 64 Pa CO2, there was, however, some evidence to suggest that the activities of other metabolic pathways in the plants were not stimulated to the same extent by the enriched CO2 atmosphere. This resulted in massive accumulation of non-structural carbohydrate, particularly at low level of nitrogen nutrition.Abbreviations A rate of CO2 assimilation - PPFD photosynthetic photo flux density - NAR net assimilation rate - pCO2 partial pressure of CO2 - RGR relative growth rate  相似文献   

9.
Study on the effect of elevated CO2 concentration on leaf structure of Brassica juncea L. cv. Bio-141 (95) under moisture stress revealed, that CO2 elevated to 600 mol mol–1 increased the length of epidermal cel and length of palisade parenchyma cells, and induced larger chloroplasts and more oval shaped starch granules in comparison with plants grown at ambient CO2 concentration. This increase in structural sink size helped in check feedback inhibition by excessive photoassimilate which was subsequently used to compensate the adverse moisture stress effect in B. juncea leaves.  相似文献   

10.
In C4 plants carbonic anhydrase catalyzes the critical first step of C4 photosynthesis, the hydration of CO2 to bicarbonate. The maximum activity of this enzyme in C4 leaf extracts, measured by H+ production with saturating CO2 and extrapolated to 25°C, was found to be 3,000 to 10,000 times the maximum photosynthesis rate for these leaves. Similar activities were found in C3 leaf extracts. However, the calculated effective activity of this enzyme at in vivo CO2 concentrations was apparently just sufficient to prevent the rate of conversion of CO2 to HCO3 from limiting C4 photosynthesis. This conclusion was supported by the mass spectrometric determination of leaf carbonic anhydrase activities.  相似文献   

11.
Four-year-old Gingko (Ginkgo biloba L.) trees were exposed to ambient and elevated concentrations of CO2 and O3, and their combination for 1 year, using open-top chambers in Shenyang, China in 2006. Growth parameters and endogenous plant hormones were measured simultaneously over the experiment period. Elevated CO2 increased leaf area and leaf dry weight but had no effect on shoot length, increased indole-3-acetic acid (IAA), gibberellins A3 (GA3), zeatin riboside (ZR), dihydrozeatin (DHZR) and isopentenyl-adenosine (iPA) content but decreased abscisic acid (ABA) content. Elevated O3 significantly decreased leaf area, leaf dry weight, shoot length, and decreased IAA, GA3, ZR content but increased ABA content and had a little effect on iPA, DHZR content. Elevated CO2 + O3 decreased IAA, iPA and DHZR content while increased ABA and GA3 content in the early stage of the exposure and then decreased in the late stage. The evidence from this study indicates that elevated CO2 ameliorated the effects of elevated ozone on tree growth, and elevated CO2 may have a largely positive impact on forest tree growth while elevated O3 will likely have a negative impact.  相似文献   

12.
Despite mounting evidence showing that C4 plants can accumulate more biomass at elevated CO2 partial pressure (p(CO2)), the underlying mechanisms of this response are still largely unclear. In this paper, we review the current state of knowledge regarding the response of C4 plants to elevated p(CO2) and discuss the likely mechanisms. We identify two main routes through which elevated p(CO2) can stimulate the growth of both well-watered and water-stressed C4 plants. First, through enhanced leaf CO2 assimilation rates due to increased intercellular p(CO2). Second, through reduced stomatal conductance and subsequently leaf transpiration rates. Reduced transpiration rates can stimulate leaf CO2 assimilation and growth rates by conserving soil water, improving shoot water relations and increasing leaf temperature. We argue that bundle sheath leakiness, direct CO2 fixation in the bundle sheath or the presence of C3-like photosynthesis in young C4 leaves are unlikely explanations for the high CO2-responsiveness of C4 photosynthesis. The interactions between elevated p(CO2), leaf temperature and shoot water relations on the growth and photosynthesis of C4 plants are identified as key areas needing urgent research.  相似文献   

13.
Effects of chlorocholine chloride (CCC) on phytohormones and photosynthetic characteristics of Zhongshu 3, a potato (Solanum tuberosum L.) variety widely cultivated in south China, were studied by foliar CCC application on 24 and 28 days after emergence, that is, at the tuber initiation stage. It was found that on 42 days after emergence, that is, at the tuber bulking stage, spraying CCC increased indolacetic-3-acid (IAA) and zeatin (Z) contents but decreased abscisic acid (ABA) content in leaves. The content ratios of IAA/Z, IAA/ABA, Z/ABA, and (IAA + Z)/ABA in leaves treated with CCC were higher than those of the control. CCC plays a prominent regulating role in the photosynthesis of Zhongshu 3. The net photosynthetic rate (P n), stomatal conductance (G s), intercellular CO2 concentration (C i), and transpiration rate (T r) of treated leaves were superior to those of controls at the tuber bulking stage. CCC markedly increased tuber yield and quality. The contents of sucrose and starch in tubers treated with CCC increased at the end of the vegetation period, whereas the contents of reducing sugars and solanine decreased. CCC at 2.0 g L−1 was found to be the most effective concentration. Collectively, the results of this research identify phytohomonal metabolism and photosynthetic physiology of potato leaves as processes affected early after application of CCC resulting in significantly improved increases in tuber yield and quality.  相似文献   

14.
Imaging of photochemical yield of photosystem II (PSII) computed from leaf chlorophyll fluorescence images and gas-exchange measurements were performed on Rosa rubiginosa leaflets during abscisic acid (ABA) addition. In air ABA induced a decrease of both the net CO2 assimilation (An) and the stomatal water vapor conductance (gs). After ABA treatment, imaging in transient nonphotorespiratory conditions (0.1% O2) revealed a heterogeneous decrease of PSII photochemical yield. This decline was fully reversed by a transient high CO2 concentration (7400 μmol mol−1) in the leaf atmosphere. It was concluded that ABA primarily affected An by decreasing the CO2 supply at ribulose-1,5-bisphosphate carboxylase/oxygenase. Therefore, the An versus intercellular mole fraction (Ci) relationship was assumed not to be affected by ABA, and images of Ci and gs were constructed from images of PSII photochemical yield under nonphotorespiratory conditions. The distribution of gs remained unimodal following ABA treatment. A comparison of calculations of Ci from images and gas exchange in ABA-treated leaves showed that the overestimation of Ci estimated from gas exchange was only partly due to heterogeneity. This overestimation was also attributed to the cuticular transpiration, which largely affects the calculation of the leaf conductance to CO2, when leaf conductance to water is low.  相似文献   

15.
The quantum yields of C3 and C4 plants from a number of genera and families as well as from ecologically diverse habitats were measured in normal air of 21% O2 and in 2% O2. At 30 C, the quantum yields of C3 plants averaged 0.0524 ± 0.0014 mol CO2/absorbed einstein and 0.0733 ± 0.0008 mol CO2/absorbed einstein under 21 and 2% O2. At 30 C, the quantum yields of C4 plants averaged 0.0534 ± 0.0009 mol CO2/absorbed einstein and 0.0538 ± 0.0011 mol CO2/absorbed einstein under 21 and 2% O2. At 21% O2, the quantum yield of a C3 plant is shown to be strongly dependent on both the intercellular CO2 concentration and leaf temperature. The quantum yield of a C4 plant, which is independent of the intercellular CO2 concentration, is shown to be independent of leaf temperature over the ranges measured. The changes in the quantum yields of C3 plants are due to changes in the O2 inhibition. The evolutionary significance of the CO2 dependence of the quantum yield in C3 plants and the ecological significance of the temperature effects on the quantum yields of C3 and C4 plants are discussed.  相似文献   

16.
The anatomical features of leaves in 11 species of plants grown in a temperature gradient and a temperature + CO2 gradient were studied. The palisade parenchyma thickness, the spongy parenchyma thickness and the total leaf thickness were measured and analyzed to investigate the effects of elevated temperature and CO2 on the anatomical characteristics of the leaves. Our results show that with the increase of temperature, the leaf thickness of C4 species increased while the leaf thickness of C3 species showed no constant changes. With increased CO2, seven out of nine C3 species exhibited increased total leaf thickness. In C4 species, leaf thickness decreased. As for the trend on the multi-grades, the plants exhibited linear or non-linear changes. With the increase of temperature or both temperature and CO2 for the 11 species investigated, leaf thickness varied greatly in different plants (species) and even in different branches on the same plant. These results demonstrated that the effect of increasing CO2 and temperature on the anatomical features of the leaves were species-specific. Since plant structures are correlated with plant functions, the changes in leaf anatomical characteristics in elevated temperature and CO2 may lead to functional differences. Translated from Acta Ecologica Sinica, 2006, 26(2): 326–333 [译自: 生态学报]  相似文献   

17.
Maize is one of the major cultivated crops of China, having a central role in ensuring the food security of the country. There has been a significant increase in studies of maize under interactive effects of elevated CO2 concentration ([CO2]) and other factors, yet the interactive effects of elevated [CO2] and increasing precipitation on maize has remained unclear. In this study, a manipulative experiment in Jinzhou, Liaoning province, Northeast China was performed so as to obtain reliable results concerning the later effects. The Open Top Chambers (OTCs) experiment was designed to control contrasting [CO2] i.e., 390, 450 and 550 µmol·mol−1, and the experiment with 15% increasing precipitation levels was also set based on the average monthly precipitation of 5–9 month from 1981 to 2010 and controlled by irrigation. Thus, six treatments, i.e. C550W+15%, C550W0, C450W+15%, C450W0, C390W+15% and C390W0 were included in this study. The results showed that the irrigation under elevated [CO2] levels increased the leaf net photosynthetic rate (P n) and intercellular CO2 concentration (C i) of maize. Similarly, the stomatal conductance (G s) and transpiration rate (T r) decreased with elevated [CO2], but irrigation have a positive effect on increased of them at each [CO2] level, resulting in the water use efficiency (WUE) higher in natural precipitation treatment than irrigation treatment at elevated [CO2] levels. Irradiance-response parameters, e.g., maximum net photosynthetic rate (P nmax) and light saturation points (LSP) were increased under elevated [CO2] and irrigation, and dark respiration (R d) was increased as well. The growth characteristics, e.g., plant height, leaf area and aboveground biomass were enhanced, resulting in an improved of yield and ear characteristics except axle diameter. The study concluded by reporting that, future elevated [CO2] may favor to maize when coupled with increasing amount of precipitation in Northeast China.  相似文献   

18.
不同植物叶片水分利用效率对光和CO2的响应与模拟   总被引:2,自引:0,他引:2  
植物叶片水分利用效率的高低取决于气孔控制的光合作用和蒸腾作用两个相互耦合的过程,模拟水分利用效率对环境变化的响应特征和机制是理解生态系统碳循环和水循环及其耦合关系的基础.研究通过人工控制光强和CO2浓度,对叶片水分利用效率进行了研究.提出了植物水分利用效率在光强和CO2浓度共同作用下的估算模型.数据分析表明,该模型在包括C3和C4植物、草本和木本植物在内的9种植物上能很好地模拟水分利用效率对光强和CO2浓度共同作用的响应.该模型可以用于估算CO2浓度升高条件下光合速率的提高和蒸腾速率的降低对水分利用效率提高的贡献量.CO2浓度变化条件下,水分利用效率在不同植物之间有巨大差异,研究区域尺度植物的水分利用效率时至少需要将植物区分为C4植物和C3植物,其中C3植物区分为草本和木本植物3种生态功能型才能较为准确地估算植物的整体水分利用效率.应用本研究提出的水分利用效率估算模型和植物水分利用效率生态功能型分类标准,可以为建立以植物的水分利用效率为基本参数的陆地生态系统水循环模型和陆地生态系统生产力模型提供重要依据.  相似文献   

19.
The effectiveness of several abscisic acid (ABA) analogs as palliatives against salt stress in intact citrus plants has been tested in this work. The effect of ABA, 8-methylene ABA, 8-acetylene ABA, ABA methyl ester, 8-methylene ABA methyl ester, and 8-acetylene ABA methyl ester on citrus responses to salt stress was studied on 2-year-old grafted plants. Leaf abscission, chloride accumulation, ethylene production, and net photosynthetic rate were the parameters used to characterize the performance of plants under stress. Data indicate that 8-methylene ABA was the most effective compound in delaying the deleterious effects of high salinity on citrus plants. Its regular application reduced leaf chloride concentration, ethylene production, and leaf abscission. Furthermore, it delayed the depletion of CO2 assimilation under these adverse conditions. Abscisic acid and 8-acetylene ABA also reduced salt-stress induced injuries in citrus, although to a lower extent. Neither ABA methyl ester nor its 8-C modified analogs showed biological activity in these assays.  相似文献   

20.
In Hordeum vulgare L. plants, NaCl stress imposed through the root medium for a period of 8 days decreased the rate of CO2 assimilation, the chlorophyll and protein leaf content, and the activity of ribulose-1,5-bisphosphate carboxylase. The activity of phosphoenolpyruvate carboxylase was twofold over the control. Pretreatment with abscisic acid (ABA) for 3 days before salinization diminished the inhibitory effect of NaCl on the rate of CO2 fixation. The leaf Na+ and Cl content decreased in ABA-pretreated plants. Both ABA and NaCl treatments led to an increase in the endogenous level of ABA in the plant leaves. Patterns of total proteins extracted from the leaves of control or ABA- and salt-treated plants were compared. Both ABA and NaCl induced marked quantitative and qualitative changes in the polypeptide profiles concerning mainly the proteins with approximately equal mobility. The results are discussed in terms of a possible role of ABA in increasing the salt tolerance when ABA is applied to the plants for a short period before exposure to salinity stress, thus improving the invulnerability to unfavorable conditions.Abbreviations RuBPC ribulose-1,5-bisphosphate carboxylase - PSII photosystem II - ABA abscisic acid - PEPC phosphoenolpyruvate carboxylase - DTTr dithiothreitol - BSA bovine serum albumin - ELISA enzyme-linked immunosorbent assay - SDS sodium dodecyl sulfate - PAGEr polyacrylamide gel electrophoresis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号