首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
1. The zinc and copper concentration of plasma was determined in rainbow trout, lake trout, walleye and whitefish. 2. These fish had mean plasma zinc concentrations ranging from 9.3 to 15.1 ppm and copper concentrations from 0.6 to 1.3 ppm. 3. In rainbow trout, the concentration of zinc and copper is greater in the erythrocyte membrane than in the total erythrocyte. 4. Ultrafilterable plasma zinc and copper concentration in rainbow trout was determined to be 0.03 and 0.019 ppm, respectively. 5. Dialysis of rainbow trout plasma against 20 mM EDTA results in removal of 99% of the zinc and 88% of the copper from plasma proteins.  相似文献   

2.
Brown and rainbow trout, held in freshwater at 13 +/- 1 degrees, were injected, every 3 days, with iopanoic acid (IOP: 5 mg/100 g body wt), an inhibitor of deiodination of thyroxine (T4) to triiodothyronine (T3). One group of IOP-treated rainbow trout was immersed in T3 (20 micrograms/l water). In IOP trout, plasma T3 fell to very low levels by day 7, while changes in T4 levels were less marked. In IOP + T3 trout plasma T3 increased fivefold, plasma T4 being unchanged. No mortality occurred and plasma osmolarity (OP) was not altered by any treatment. After direct transfer to seawater (30/1000), IOP trout were unable to acclimate to salinity: all died within 2 or 3 days, while the survival at day 3 was 100% in control brown trout and 45 and 74% in control and IOP + T3 rainbow trout respectively. OP increased more in IOP and less in IOP + T3 than in controls. There was a significant inverse correlation between T3, but not T4, plasma level, at the time of transfer and the OP 1 day later. In conclusion, although T3 does not play a significant role in osmoregulation in freshwater, T3 and therefore the deiodination of T4 into T3, were required for the development of hypo-osmoregulatory capacity involved in acclimation of trout to seawater.  相似文献   

3.
Genomic sequences of gonadotropin-releasing hormone genes were amplified and examined for sequence divergence among members of three different genera of the subfamily Salmoninae: rainbow trout (Oncorhynchus mykiss), Atlantic salmon (Salmo salar), and Arctic charr (Salvelinus alpinus). Sequences of GNRH3A and GNRH3B (formerly known as sGnRH1 and sGnRH2) were 97-99% similar in coding regions and 94-98% similar in non-coding regions among genera, but comparisons within species between GNRH3A and GNRH3B were only 90-92% similar in coding regions and 83-89% similar in non-coding regions. Polymorphisms in the parents of mapping families for each species allowed for linkage mapping of the GNRH3B gene in all three species and the GNRH3A gene in rainbow trout. GNRH3B maps to linkage group 6 in rainbow trout, linkage group 16 in Atlantic salmon and linkage group 25 in Arctic charr. GNRH3A mapped to linkage group 30 in rainbow trout.  相似文献   

4.
The effect of short term confinement stress on sex steroid binding protein (SBP) binding characteristics was examined in female black bream (Acanthopagrus butcheri), and rainbow trout (Oncorhynchus mykiss). Black bream were sampled immediately after capture from the wild and again after 1, 6 or 24 h confinement. Rainbow trout were sampled before and after 5 h confinement. Confinement of black bream for 6 h after capture significantly reduced the binding capacity of SBP. Binding affinity also tended to be lower after confinement. There were no differences in binding affinity or capacity of black bream SBP after 1 or 24 h confinement, or rainbow trout SBP after 5 h confinement. Plasma from rainbow trout at 3 and 6 h after treatment with cortisol was compared to plasma from saline-injected controls. No significant differences in binding characteristics were detected, but there was a trend of decreased binding capacity in cortisol-injected fish compared to controls at 6 h post-injection. Relative binding studies indicated that plasma cortisol at concentrations 100x or more greater than plasma estradiol (E(2)) may displace E(2) from SBP in black bream, and act to reduce circulating levels of E(2) through increased clearance of free steroid. Physiological levels of cortisol did not displace E(2) from SBP in trout. The observed changes in SBP and the competition of physiological concentrations of cortisol for SBP binding sites may generate a component of the stress-induced falls in plasma levels of E(2) reported across a range of species.  相似文献   

5.
Two rainbow trout (Oncorhynchus mykiss) Mx cDNAs were cloned by using RACE (rapid amplification of cDNA ends) PCR and were designated RBTMx2 and RBTMx3. The deduced RBTMx2 and RBTMx3 proteins were 636 and 623 amino acids in length with molecular masses of 72 and 70.8 kDa, respectively. These proteins, along with the previously described RBTMx1 protein (G. D. Trobridge and J. A. Leong, J. Interferon Cytokine Res. 15:691-702, 1995), have between 88.7 and 96.6% identity at the amino acid level. All three proteins contain the tripartite GTP binding domain and leucine zipper motif common to Mx proteins. A monospecific polyclonal antiserum to an Escherichia coli-expressed fragment of RBTMx3 was generated, and that reagent was found to react with all three rainbow trout Mx proteins. Subsequently, endogenous Mx production in RTG-2 cells induced with poly(IC) double-stranded RNA was detected by immunoblot analysis. The cellular localization of the rainbow trout proteins was determined by transient expression of the RBTMx cDNAs in CHSE-214 (chinook salmon embryo) cells. A single-cell transient-transfection assay was used to examine the ability of each Mx cDNA clone to inhibit replication of the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV). No significant inhibition in the accumulation of the IHNV nucleoprotein was observed in cells expressing either trout Mx1, Mx2, or Mx3 in transiently transfected cells.  相似文献   

6.
The isolation and characterization of the receptor for vitellogenin from follicle membranes of the rainbow trout, Oncorhynchus mykiss, is described. Follicle membrane proteins subjected to SDS-polyacrylamide gel electrophoresis and subsequently to either protein staining or ligand blotting with radiolabelled vitellogenin (125iodine-vitellogenin) demonstrated that the vitellogenin receptor has an apparent molecular mass of 200 kD (probably comprising of two 100-kD subunits) under non-reducing conditions. The vitellogenin binding sites were identified as specific receptors: binding was saturable and the binding sites were both tissue specific to follicle membranes and exhibited ligand specificity. Scatchard analyses of specific binding data revealed a single class of binding sites with a high affinity for rainbow trout vitellogenin (K d=8.2·10-9 mol·1-1). Both brown trout, Salmo trutta, vitellogenin and carp, Cyprinus carpio, vitellogenin were able to displace the radiolabelled rainbow trout vitellogenin from its receptor, although they were less effective than rainbow trout vitellogenin.Abbreviations B max maximum number of binding sites available - BSA bovine serum albumin - bt-VTG brown trout vitellogenin - c-VTG earp vitellogenin - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - K d dissociatian constant - NCM nitrocellulose membranes - PMSF phenylmethylsulphonylfluoride - rt-VTG rainbow trout vitellogenin - VTG vitellogenin  相似文献   

7.
1. A comprehensive approach was taken to delineate the site of refractivity of trout to phenobarbital-type (PB-type) hepatic monoxygenase (MO) inducers. 2. Model inducers beta-naphthoflavone (BNF; 3-MC-type), and PB as well as the polychlorinated biphenyl isomers, 3,4,5,3',4',5'-hexachlorobiphenyl (3,4,5-HCB; 3-MC-type) and 2,4,5,2',4',5'-hexachlorobiphenyl (2,4,5-HCB; PB-type) were used to assess MO activities, total cytochromes P450, and [35S]-methionine incorporation into de novo synthesized microsomal protein in both trout and rats. 3. In rainbow trout immunodetection of P450 isozymes and nucleic acid hybridization of rainbow trout P(1)450 mRNA using pfP(1)450-3' (trout 3-MC-inducible, P450IA1 gene) and genomic DNA using pfP(1)450-3' or pSP450-oligo (rat PB-inducible, P450IIB1 gene) cDNAs were carried out. 4. In rainbow trout, PB and 2,4,5-HCB do not increase hepatic MO activities, total cytochromes P450, de novo synthesis of microsomal protein, levels of P450 isozymes, or levels of P(1)450 mRNA. 5. Rainbow trout have, within their genome, DNA with sequence(s) similar to rat P450IIB1, but inducibility of this P450 in trout by PB-type inducers is lacking.  相似文献   

8.
A factor binding tritiated testosterone was detected using "steady-state" polyacrylamide-gel electrophoresis, in rainbow trout genital tract. It migrated with a Rf identical to that of rat ABP. This binding was thermolabile, and was competitively inhibited by unlabelled testosterone. The steroid binding protein was found in cytosols from trout testes which had been previously perfused to avoid blood contamination, trout seminal plasma and in testicular explants incubation media. Using a quantitative assay and a Scatchard analysis, 25-50 pmol binding sites per gram gonad were found in testis cytosol. Binding affinity constant for testosterone in the various samples was close to 4 x 10(8) M(-1). The dissociation of steroid-protein complex was rapid (t 1/2 approximately 1.5 min). Hormonal specificity was studied by the competition of 3H-T binding with several concentrations of unlabelled competitors and the following order for affinities was obtained: dihydrotestosterone approximately androstenedione greater than testosterone greater than oestradiol greater than 17 alpha, 20 beta DHP greater than 11KT greater than cyproterone acetate greater than cortisol. High testicular cytosol and seminal plasma concentrations and apparent in vitro production indicate that the testis may synthesize an ABP-like protein in the trout. Such a factor would provide a unique marker of Sertoli cell activity and regulation in various physiological or experimental situations.  相似文献   

9.
We investigated the interaction of 2,4,6-triiodophenol (TIP), a potent thyroid hormone disrupting chemical, with serum proteins from rainbow trout (Onchorhynchus mykiss), bullfrog (Rana catesbeiana), chicken (Gallus gallus), pig (Sus scrofa domesticus), and rat (Rattus norvegicus) using a [(125)I]TIP binding assay, gel filtration chromatography, and native polyacrylamide gel electrophoresis. [(125)I]TIP bound non-specifically to proteins in trout serum, specifically but weakly to proteins in bullfrog serum, and specifically and strongly to proteins in chicken, pig, and rat serum samples. Candidate TIP-binding proteins included lipoproteins (220-320kDa) in trout, albumin in bullfrog, albumin and transthyretin (TTR) in chicken and pig, and TTR in rat. TTR in the chicken, pig, and rat serum samples was responsible for the high-affinity, low-capacity binding sites for TIP (dissociation constant 2.2-3.5×10(-10)M). In contrast, a weak interaction of [(125)I]TIP with tadpole serum proteins accelerated [(125)I]TIP cellular uptake in vitro. Intraperitoneal injection of [(125)I]TIP in tadpoles revealed that the radioactivity was predominantly accumulated in the gallbladder and the kidney. The differences in the molecular and binding properties of TIP binding proteins among vertebrates would affect in part the cellular availability, tissue distribution and clearance of TIP.  相似文献   

10.
In the study, the combination of protein fractionation by 1DE and HPLC‐ESI‐MS/MS was used to characterize the rainbow trout seminal plasma proteome. Our results led to the creation of a catalogue of rainbow trout seminal plasma proteins (152 proteins) and significantly contributed to the current knowledge regarding the protein composition of fish seminal plasma. The major proteins of rainbow trout seminal plasma, such as transferrin, apolipoproteins, complement C3, serum albumin, and hemopexin‐, alpha‐1‐antiproteinase‐, and precerebellin‐like protein, were recognized as acute‐phase proteins (proteins that plasma concentration changes in response to inflammation). This study provides the basis for further functional studies of fish seminal plasma proteins, as well as for the identification of novel biomarkers for sperm quality. The MS data have been deposited in the ProteomeXchange with identifier PXD000306 ( http://proteomecentral.proteomexchange.org/dataset/PXD000306 ).  相似文献   

11.
Abrupt transfer of rainbow trout from freshwater to 65% seawater caused transient disturbances in extracellular fluid ionic composition, but homeostasis was reestablished 48 h posttransfer. Intestinal fluid chemistry revealed early onset of drinking and slightly delayed intestinal water absorption that coincided with initiation of NaCl absorption and HCO(3)(-) secretion. Suggestive of involvement in osmoregulation, relative mRNA levels for vacuolar H(+)-ATPase (V-ATPase), Na(+)-K(+)-ATPase, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-HCO(3)(-) cotransporter 1, and two carbonic anhydrase (CA) isoforms [a general cytosolic isoform trout cytoplasmic CA (tCAc) and an extracellular isoform trout membrane-bound CA type IV (tCAIV)], were increased transiently in the intestine following exposure to 65% seawater. Both tCAc and tCAIV proteins were localized to apical regions of the intestinal epithelium and exhibited elevated enzymatic activity after acclimation to 65% seawater. The V-ATPase was localized to both basolateral and apical regions and exhibited a 10-fold increase in enzymatic activity in fish acclimated to 65% seawater, suggesting a role in marine osmoregulation. The intestinal epithelium of rainbow trout acclimated to 65% seawater appears to be capable of both basolateral and apical H(+) extrusion, likely depending on osmoregulatory status and intestinal fluid chemistry.  相似文献   

12.
Plasma levels of catecholamines, cortisol, and glucose were monitored in rainbow trout during a 6-week forced swimming exercise programme. Compared to resting non-exercised controls, resting trained fish had lower levels of epinephrine, norephinephrine, cortisol, and glucose during the last 3 weeks of training. Initially, trained fish that were swimming had higher levels of epinephrine than resting trained fish. After 2 weeks of exercise, swimming did not significantly elevate epinephrine levels in trained fish. Glucose levels were consistently greater in swimming fish than in resting fish. At the end of the training period, exercised trout had lower (15–20%) oxygen consumption rates while resting or swimming than unexercised fish.
After a 5-month forced swimming exercise programme plasma levels of catecholamines and glucose were monitored in trained and untrained cannulated rainbow trout after 2 min of mild agitation. Trained fish showed an immediate (within 1 min) increase in the levels of epinephrine, but not norepinephrine and a delayed (within 15 min) increase in the levels of plasma glucose. Epinephrine levels returned to pre-stress levels within 15 min. Untrained fish had no significant increase in the plasma levels of norepinephrine, epinephrine, or glucose.  相似文献   

13.
Summary To clarify the role of growth hormone (GH) in salmonids during seawater (SW) adaptation, we examined GH kinetics in chronically cannulated rainbow trout, weighing about 1 kg. When trout were transferred from fresh water (FW) to 75% SW, plasma chloride concentration was normalized within 1 week. Plasma GH concentration increased significantly 2 days after transfer and decreased to the initial level thereafter. Metabolic clearance rate (MCR) and secretion rate (SR) of GH were calculated from the plasma levels of GH measured by radioimmunoassay after intra-arterial injection of recombinant chum salmon GH. 4 days after transfer to 75% SW, both MCR and SR increased to levels five times higher than those in FW, and returned to the FW levels after 3–4 weeks. In rainbow trout GH seems to be involved in the development of hypoosmoregulatory mechanisms, especially during the early phase of adaptation.  相似文献   

14.
Administration of 17β-oestradiol (E2) to rainbow trout, in the form of hydrogenated coconut oil implants produced a stable, long-term elevation in plasma E2 levels. The elevation was doserelated (over the range 1–10mg kg-1 body weight) both 4 and 8 weeks after implantation. Dose-related increases were also observed with respect to liver weight-body weight ratios and plasma protein levels. Plasma T3 and total calcium levels were depressed and elevated, respectively, by E2 treatment but the responses were not linearly related to the dose of E2 administered; there was no significant effect of E2 on plasma T4 levels.
E2 induced a shift in the binding of T3 to plasma proteins, with T3 binding to smaller molecular weight proteins; neither T4 nor T3 bound to vitellogenin which was present at high levels in the plasma of E2-treated fish.  相似文献   

15.
1. The tryptophan requirement of rainbow trout (initial body wt, 13 g) was estimated by feeding diets containing varied levels of tryptophan from 0.06 to 0.5% of diet for 6 weeks. 2. The estimated tryptophan requirement was 0.20-0.25 (0.57-0.71)% of diet (dietary proteins). 3. Nitrogen retention increased and feed/gain decreased with dietary tryptophan levels up to 0.14%, but no further effect was observed at levels above 0.14%. 4. Carcass protein content gradually increased and lipid and ash contents decreased with increasing dietary tryptophan levels. 5. Dietary tryptophan levels did not affect hepatosomatic index or liver glutamate dehydrogenase activity.  相似文献   

16.
Vitellogenin synthesis is induced in juvenile rainbow trout (Salmo gairdneri) and juvenile sea trout (Salmo trutta) by estradiol-17 beta. A purification procedure for vitellogenin from trout plasma by precipitation with MgCl2-EDTA and subsequent anion exchange chromatography on DEAE-Sephacel is described. The total lipid contents of purified rainbow trout and sea trout vitellogenins are 18 and 19%, respectively. Approximately 2/3 of the lipids are phospholipids, while the remainder consists of triglycerides and cholesterol. Phosphorus determinations on delipidated vitellogenin yield a phosphorus content of 0.63% in rainbow trout and 0.58% in sea trout vitellogenin. Native (dimeric) vitellogenins from rainbow trout and sea trout both have an apparent molecular weight of 440,000, when estimated by gel filtration on Sepharose 6B.  相似文献   

17.
The levels of glycogen in brain, lactate and acetoacetate in brain and plasma, glucose in plasma and the activities of brain key enzymes of glycogen metabolism (glycogen phosphorylase, GPase, glycogen synthetase, GSase), gluconeogenesis (fructose 1,6-bisphosphatase, FBPase), and glycolysis (6-phosphofructo 1-kinase, PFK) were evaluated in rainbow trout, Oncorhynchus mykiss, from 0.5 to 3 hr after intraperitoneal injection of 1 ml/kg(-1) body weight of saline alone (controls) or containing bovine glucagon at three different doses: 10, 50, and 100 ng/g(-1) body weight. The results obtained demonstrate, for the first time in a teleost fish, the existence of changes in brain carbohydrate and ketone body metabolism following peripheral glucagon treatment. A clear stimulation of brain glycogenolytic potential was observed after glucagon treatment, as judged by the time- and dose-dependent changes observed in brain glycogen levels (up to 88% decrease), and GPase (up to 30% increase) and GSase (up to 42% decrease) activities. In addition, clear time- and dose-dependent increased and decreased levels were observed in brain of glucagon-treated rainbow trout for lactate (up to 60% increase) and acetoacetate (up to 67% decrease), respectively. In contrast, no significant changes were observed after glucagon treatment in those parameters related to glycolytic/gluconeogenic capacity of rainbow trout brain. Altogether, these in vivo results suggest that glucagon may play a role (direct or indirect) in the regulation of carbohydrate and ketone body metabolism in brain of rainbow trout.  相似文献   

18.
The sources of extracellular and intracellular 3,5,3'-triiodo-L-thyronine (T3) binding to putative thyroid hormone receptors in liver, kidney, and gill nuclei were determined in vivo for immature rainbow trout at 12 degrees C. Both [131I]T3 and [125I]T4 were injected intraperitoneally, the plasma and tissues were examined at isotopic equilibrium at 20 h, and the proportions of intracellular [125I]T3 and extracellular [131I]T3 saturably bound in the nucleus were determined. Comparable total amounts of T3 were saturably bound in the nuclei of liver (7.2), kidney (8.0), and gill (9.7 moles x 10(-13) .mg DNA-1), but the percentage of nuclear T3 generated within the target cell was greater for gill (76%) than for liver (50%) and kidney (28%). Both gill and liver possess a low Km T4 5'monodeiodinase which could be responsible for the high proportion of the nuclear T3 generated within those tissues.  相似文献   

19.
Ghrelin, a peptide hormone which stimulates growth hormone (GH) release, appetite and adiposity in mammals, was recently identified in fish. In this study, the roles of ghrelin in regulating food intake and the growth hormone (GH)-insulin-like growth factor I (IGF-I) system of rainbow trout (Oncorhynchus mykiss) were investigated in three experiments: 1) Pre- and postprandial plasma levels of ghrelin were measured in relation to dietary composition and food intake through dietary inclusion of radio-dense lead-glass beads, 2) the effect of a single intraperitoneal (i.p.) injection with rainbow trout ghrelin on short-term voluntary food intake was examined and 3) the effect of one to three weeks fasting on circulating ghrelin levels and the correlation with plasma GH and IGF-I levels, growth and lipid content in the liver and muscle was studied. There was no postprandial change in plasma ghrelin levels. Fish fed a normal-protein/high-lipid (31.4%) diet tended to have higher plasma ghrelin levels than those fed a high-protein/low-lipid (14.1%) diet. Plasma ghrelin levels decreased during fasting and correlated positively with specific growth rates, condition factor, liver and muscle lipid content, and negatively with plasma GH and IGF-I levels. An i.p. ghrelin injection did not affect food intake during 12-hours post-injection. It is concluded that ghrelin release in rainbow trout may be influenced by long-term energy status, and possibly by diet composition. Further, in rainbow trout, ghrelin seems to be linked to growth and metabolism, but does not seem to stimulate short-term appetite through a peripheral action.  相似文献   

20.
The core temperature of the rainbow trout Oncorhynchus mykiss (3·5 kg) dropped to 1·0° C during the first 6 h of chilling at 0·5° C, remained stable until 24 h, and dropped significantly to 0·7° C after 39 h. Blood plasma osmolality increased and muscle moisture content decreased gradually with increasing chilling time. After 39 h of chilling, the rainbow trout experienced 40 mosmol l-1 higher blood plasma osmolality and 2·8% less muscle moisture content compared with initial values. In the Atlantic salmon Salmo salar (5·3 kg), core temperature dropped to 1·3° C and blood plasma osmolality increased significantly during the first 6 h of chilling at 0·5° C, but remained relatively stable throughout the rest of the experimental period. After 39 h of chilling, the salmon experienced 20 mosmol l-1 higher blood plasma osmolality and 0·5% less muscle moisture content compared with initial values. In rainbow trout muscle moisture content was inversely related to blood plasma osmolality indicating reduced seawater adaptation with increasing hours of chilling. No such relationship was observed in the Atlantic salmon. Hence, changes in plasma osmolality and muscle moisture in the Atlantic salmon do not indicate osmoregulatory failure since the new levels, once established, were maintained throughout the chilling time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号