首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Candida albicans is an opportunistic human fungal pathogen that normally resides in the gastrointestinal tract and on the skin as a commensal but can cause life-threatening invasive disease. Salmonella enterica serovar Typhimurium is a gram-negative bacterial pathogen that causes a significant amount of gastrointestinal infection in humans. Both of these organisms are also pathogenic to the nematode Caenorhabditis elegans, causing a persistent gut infection leading to worm death. In the present study, we used a previously developed C. elegans polymicrobial infection model to assess the interactions between S. Typhimurium and C. albicans. We observed that when C. elegans is infected with C. albicans and serovar Typhimurium, C. albicans filamentation is inhibited. The inhibition of C. albicans filamentation by S. Typhimurium in C. elegans appeared to be mediated by a secretary molecule, since filter-sterilized bacterial supernatant was able to inhibit C. albicans filamentation. In vitro coculture assays under planktonic conditions showed that S. Typhimurium reduces the viability of C. albicans, with greater effects seen at 37°C than at 30°C. Interestingly, S. Typhimurium reduces the viability of both yeast and filamentous forms of C. albicans, but the killing appeared more rapid for the filamentous cells. The antagonistic interaction was also observed in a C. albicans biofilm environment. This study describes the interaction between two diverse human pathogens that reside within the gastrointestinal tract and shows that the prokaryote, S. Typhimurium, reduces the viability of the eukaryote, C. albicans. Identifying the molecular mechanisms of this interaction may provide important insights into microbial pathogenesis.Candida albicans, the most common human fungal pathogen, is a prototypical opportunistic organism that lives harmlessly in the human gastrointestinal tract but has the ability to cause life-threatening invasive disease. Bloodstream infection with C. albicans remains the most lethal form (10), with translocation of the gastrointestinal mucosa being an important pathogenic mechanism, especially in hemato-oncology patients and those who have undergone abdominal surgery. A key virulence determinant of C. albicans is its ability to transition from yeast to a filamentous form (16, 17, 19, 22). This morphogenesis appears important for tissue adherence and invasion (22). Furthermore, C. albicans has the ability to form complex biofilms on medical devices (13) and on human mucosal surfaces, such as the gastrointestinal and bronchial mucosa. C. albicans biofilm formation has immense clinical and economic consequences (13).Recently the interactions between this important fungal pathogen and bacteria were described (11, 12, 18). These studies focus on the interaction between C. albicans and nonfermenting, gram-negative bacteria, such as Pseudomonas aeruginosa and Acinetobacter baumannii, whose interactions are likely found in the clinical environment, especially in the respiratory tracts of critically ill patients and on wounds of patients with burn injuries (7, 20). Of interest, these bacteria show antagonistic properties toward C. albicans, with a predilection toward reducing the viability of C. albicans filaments. In order to study these prokaryote-eukaryote interactions, our laboratory developed a polymicrobial infection model system using Caenorhabditis elegans as a substitute host (18). Previously, we showed that C. albicans causes a persistent lethal infection of the C. elegans intestinal tract (6). This leads to overwhelming C. albicans intestinal proliferation with subsequent filamentation through the worm cuticle (6). Given these characteristics, we decided to use this model to study the interaction of C. albicans with another intestinal pathogen, Salmonella enterica serovar Typhimurium.S. Typhimurium is a gram-negative organism that belongs to the Enterobacteriaceae family. It is a gastrointestinal tract pathogen of humans, being responsible for approximately 2 million to 4 million cases of enterocolitis each year in the United States (4, 8, 21, 23). During infection, S. Typhimurium competes with normal intestinal flora (23). Its virulence pathways are well described, and it has been shown to cause a persistent and lethal gut infection of the nematode C. elegans, similar to infection seen with C. albicans (1, 14). Given this and the fact that C. albicans is a common inhabitant of the human gastrointestinal tract, we used the C. elegans polymicrobial infection model (18) to study the interactions between S. Typhimurium and C. albicans. Understanding the interactions between these diverse organisms within the complex milieu of an intestinal tract may provide important pathogenic and therapeutic insights.  相似文献   

3.
Glutamate contributes to the acid tolerance response (ATR) of many Gram-negative and Gram-positive bacteria, but its role in the ATR of the oral bacterium Streptococcus mutans is unknown. This study describes the discovery and characterization of a glutamate transporter operon designated glnQHMP (Smu.1519 to Smu.1522) and investigates its potential role in acid tolerance. Deletion of glnQHMP resulted in a 95% reduction in transport of radiolabeled glutamate compared to the wild-type UA159 strain. The addition of glutamate to metabolizing UA159 cells resulted in an increased production of acidic end products, whereas the glnQHMP mutant produced less lactic acid than UA159, suggesting a link between glutamate metabolism and acid production and possible acid tolerance. To investigate this possibility, we conducted a microarray analysis with glutamate and under pH 5.5 and pH 7.5 conditions which showed that expression of the glnQHMP operon was downregulated by both glutamate and mild acid. We also measured the growth kinetics of UA159 and its glnQHMP-negative derivative at pH 5.5 and found that the mutant doubled at a much slower rate than the parent strain but survived at pH 3.5 significantly better than the wild type. Taken together, these findings support the involvement of the glutamate transporter operon glnQHMP in the acid tolerance response in S. mutans.Streptococcus mutans is 1 of over 700 bacterial species commonly found in the oral environment (1). Its ability to rapidly metabolize dietary carbohydrates to acid end products causes demineralization of the tooth enamel, leading to caries formation (19). Acidogenicity (the ability to produce acid end products via glycolysis) and aciduricity (the ability to survive and grow in acidic environments) are two important virulence factors of S. mutans. Maintenance of a pH gradient across the cell membrane by increasing intracellular pH by 0.5 to 1.0 relative to the extracellular pH (ΔpH) when exposed to a low pH environment is critical for the survival of S. mutans at low pH. This is primarily accomplished by acid-induced mechanisms that facilitate proton extrusion via the proton-translocating ATPase (5, 20) and by acid end product efflux (8, 12). S. mutans also possesses an acid tolerance response (ATR) mechanism, whereby preexposure to sublethal pH environments (e.g., pH 5.5) affords protection from killing under lethal pH values as low as pH 3.0 (7). This adaptive process is characterized by increased acid resistance (4), increased glycolytic capacities (20), and increased proton-translocating enzyme F1F0-ATPase activity (44). The ATR is enhanced by sugar starvation and the addition of amino acids (48), the addition of potassium ions (12), growth in biofilms, and activity of multiple two-component signal transduction systems that include the ComDE, HK11/RR11 (also designated LiaS/LiaR), VicKR, CiaHR, LevSR, ScnKR, and HK1037/RR1038 (6, 17, 31, 32, 46).Previously, Noji et al. and Sato et al. described a glutamate/aspartate transporter in S. mutans (38, 45). Those researchers showed that the presence of potassium ions was required for transport and that, in environments of pH 6.0 or below, the activity of the H+-ATPase system was required (38, 45). Potassium ions are the main cations in plaque (50), and potassium uptake is associated with intracellular pH homeostasis in S. mutans (24, 35). In addition, expression of several genes involved in the glutamate synthesis pathway (icd, citZ, and acn) are downregulated under low pH (10), suggesting a link between glutamate metabolism, potassium levels, and aciduricity in S. mutans. Since acid tolerance is an important virulence property of S. mutans, we aimed to investigate a possible link between glutamate uptake and acid resistance in this oral pathogen. In bacteria, intracellular glutamate and glutamine levels are closely linked with nitrogen metabolism of the cell. Glutamine is synthesized from glutamate and ammonium, which is a major way for cells to assimilate the nitrogen required for biosynthesis of all amino acids, thus affecting protein synthesis and the structural and functional integrity of the cell. Notably, nitrogen metabolism, especially glutamine metabolism, has been linked to virulence in a number of microorganisms, including Streptococcus pneumoniae (26, 42), Staphylococcus aureus (41), Candida albicans (33), and Pseudomonas aeruginosa (51). Glutamate uptake and metabolism are known to be involved in the ATR of Gram-negative bacteria such as Escherichia coli via the use of glutamate decarboxylase and the glutamate/gamma-amino butyrate (glutamate/GABA) antiporter (9). Similarly, the homologous proteins of these systems in Lactococcus lactis, encoded by the gadBC genes, were shown to assist in a glutamate-dependent acid-resistance mechanism in that Gram-positive bacterium (44).In this study, we searched the S. mutans UA159 genome for potential glutamine transporter operons. We constructed a deletion mutant (SmuGLT) of the glnQHMP operon (Smu.1519 to Smu.1522) and confirmed its role as a glutamate transporter. The inability of SmuGLT to take up glutamate resulted in a general growth deficiency, especially at pH 5.5, as well as an increased tolerance to acid. Results from this study provide insight into the ATR of S. mutans, including a potential link between glutamate metabolism and acid resistance in S. mutans.  相似文献   

4.
5.
6.
7.
8.
Streptococcus mutans is a key contributor to the formation of the extracellular polysaccharide (EPS) matrix in dental biofilms. The exopolysaccharides, which are mostly glucans synthesized by streptococcal glucosyltransferases (Gtfs), provide binding sites that promote accumulation of microorganisms on the tooth surface and further establishment of pathogenic biofilms. This study explored (i) the role of S. mutans Gtfs in the development of the EPS matrix and microcolonies in biofilms, (ii) the influence of exopolysaccharides on formation of microcolonies, and (iii) establishment of S. mutans in a multispecies biofilm in vitro using a novel fluorescence labeling technique. Our data show that the ability of S. mutans strains defective in the gtfB gene or the gtfB and gtfC genes to form microcolonies on saliva-coated hydroxyapatite surfaces was markedly disrupted. However, deletion of both gtfB (associated with insoluble glucan synthesis) and gtfC (associated with insoluble and soluble glucan synthesis) is required for the maximum reduction in EPS matrix and biofilm formation. S. mutans grown with sucrose in the presence of Streptococcus oralis and Actinomyces naeslundii steadily formed exopolysaccharides, which allowed the initial clustering of bacterial cells and further development into highly structured microcolonies. Concomitantly, S. mutans became the major species in the mature biofilm. Neither the EPS matrix nor microcolonies were formed in the presence of glucose in the multispecies biofilm. Our data show that GtfB and GtfC are essential for establishment of the EPS matrix, but GtfB appears to be responsible for formation of microcolonies by S. mutans; these Gtf-mediated processes may enhance the competitiveness of S. mutans in the multispecies environment in biofilms on tooth surfaces.Oral diseases related to dental biofilms afflict the majority of the world''s population, and dental caries is still the single most prevalent and costly oral infectious disease (12, 32). Dental caries results from the interaction of specific bacteria with constituents of the diet within a biofilm formed on the tooth surface known as plaque (5, 36). Streptococcus mutans is a key contributor to the formation of biofilms associated with dental caries disease, although other microorganisms may also be involved (3); S. mutans (i) effectively utilizes dietary sucrose (and possibly starch) to rapidly synthesize exopolysaccharides (EPS) using glucosyltransferases and a fructosyltransferase that adsorb to surfaces, (ii) adheres tenaciously to glucan-coated surfaces, and (iii) is acidogenic and acid tolerant (5, 30).In general, biofilms develop after initial attachment of microbes to a surface, followed by formation of highly structured cell clusters (or microcolonies) and further development and stabilization of the microcolonies, which are in a complex extracellular matrix (6, 49). The majority of biofilm matrices contain exopolysaccharides, and dental biofilms are no exception; up to 40% of the dry weight of dental plaque is composed of polysaccharides (depending on the type of carbohydrate consumption and the time of plaque collection), which are mostly glucans synthesized by microbial glucosyltransferases (Gtfs) (for a review, see reference 36). S. mutans plays a major role in the development and establishment of the EPS matrix in dental biofilms. This bacterium produces at least three Gtfs, which are products of the gtfB, gtfC, and gtfD genes; GtfB synthesizes mostly insoluble glucans containing elevated amounts of α-1,3-linked glucose, GtfC synthesizes a mixture of insoluble and soluble glucans (rich in α-1,6-linked glucose), and GtfD synthesizes predominantly soluble glucans (for reviews, see references 30 and 36). The Gtfs secreted by S. mutans bind avidly to the pellicle formed on the tooth surface and to bacterial surfaces and are enzymatically active; when they are exposed to sucrose, glucans are formed in situ within minutes (17, 33, 38, 40, 46). It is noteworthy that most nonstreptococcal oral bacteria (e.g., Actinomyces and Veillonella spp.) do not produce glucans unless Gtfs are adsorbed on their surfaces (33, 46). The glucans synthesized in situ provide binding sites for colonization and accumulation of S. mutans on the apatitic surface and for binding to each other through interactions with several membrane-associated glucan-binding proteins and surface glucans (8, 39, 47). The exopolymers also contribute to the bulk and physical integrity and stability of the biofilm matrix (for a review, see reference 36). The glucan-mediated processes promote tight adherence and coherence of bacterial cells bound to each other and to the apatitic surface, which leads to the formation of microcolonies by S. mutans and thereby modulates the initial steps of cariogenic biofilm development.When dietary sucrose is consumed frequently, S. mutans, as a member of the oral biofilm community, continues to synthesize polysaccharides and metabolize this sugar to form organic acids. The elevated amounts of EPS, which may involve upregulation of gtf genes in response to pH and carbohydrate availability (29), increase the virulence of the biofilms (42, 51). In addition, the ability of S. mutans to utilize some extra- and intracellular polysaccharides as short-term storage compounds provides an additional ecological benefit and simultaneously increases the amount of acid produced and the extent of acidification within the biofilm (5, 7). The persistence of this aciduric environment leads to selection and dominance of highly acid-tolerant (and acidogenic) organisms, such as S. mutans (32, 37); the low-pH environment in the biofilm matrix results in dissolution of enamel, thus initiating the pathogenesis of dental caries (32, 36).Recently, we have shown that EPS produced by S. mutans Gtfs modulate the initial formation, sequence of assembly, and structural organization of microcolonies by this bacterium on apatitic surfaces (50). However, it was unclear which of the Gtf enzymes were associated with these processes. Furthermore, the polysaccharides may also modulate the formation of microcolonies by complex ecological interactions in a multispecies system. In this study, we investigated (i) the role of each of the S. mutans gtf genes in EPS matrix and microcolony development on a saliva-coated hydroxyapatite (sHA) surface and (ii) the influence of exopolysaccharides on establishment of microcolonies at distinct developmental phases during formation of biofilms by S. mutans in the presence of Streptococcus oralis and Actinomyces naeslundii.(This study was presented at 5th ASM Conference on Biofilms, Cancun, Mexico, 15 to 19 November 2009.)  相似文献   

9.
10.
11.
12.
13.
14.
This study concerns the use of low-energy pulsed ultrasound as nondestructive photodynamic antimicrobial therapy for controlling dental plaque. We examined the antibacterial and bactericidal effects of low-energy pulsed ultrasound on mutans streptococci and its inhibitory effects on bacterial cell adhesion of Streptococcus mutans. The results indicated weak antibacterial and bactericidal effects. However, ultrasonic stimulation for less than 20 min markedly decreased bacterial cell adhesion. To analyze the mechanism underlying the inhibitory effect, we examined cell surface protein antigen C (PAc) and glucosyltransferase I (GTF-I) expression in S. mutans. The levels of PAc gene and protein expression were markedly decreased by ultrasonic stimulation for 20 min. However, no change in GTF-I expression was observed. The expression of stress response heat shock proteins GroEL and DnaK was also examined. GroEL and DnaK levels were significantly decreased by ultrasonic stimulation, and the expression of the PAc protein was also diminished upon the addition of GroEL or DnaK inhibitors without ultrasonic stimulation. These observations suggest that the expression of the PAc protein in S. mutans may be dependent on heat shock proteins. Thus, low-energy pulsed ultrasound decreases bacterial adhesion by the inhibitory effect on the PAc protein and heat shock protein expression and may be useful as photodynamic antimicrobial chemotherapy in controlling dental plaque.The mutans streptococci Streptococcus mutans and Streptococcus sobrinus are believed to be the primary etiological agents of human dental caries, as many studies have demonstrated correlations between the presence of caries and elevated numbers of these organisms in dental plaque (25). In addition, experimental studies of animals have indicated the extreme cariogenic nature of these organisms (43, 47). Therefore, both species are believed to be highly cariogenic in dental plaque. Colonization of tooth surfaces by these microorganisms is the first step in the induction of dental caries. The colonization process is mediated by sucrose-independent and sucrose-dependent mechanisms (18, 19). The former mechanisms involve an interaction between bacterial cells and acquired pellicles on the tooth surfaces via the cell surface protein antigen C (PAc) or protein antigen G (PAg) in S. mutans and S. sobrinus, respectively (19, 30). The latter mechanisms are attributable to the synthesis of water-insoluble glucan from sucrose, catalyzed by glucosyltransferase (GTF) (22). To prevent dental caries, one must remove plaque containing mutans streptococci. However, it is difficult to remove plaque completely using conventional methods. Novel methods, such as the use of some chemical agents, laser irradiation, and both sonic and ultrasonic treatments, may be useful for controlling plaque (1, 2, 3, 20, 45, 46).Therapeutic ultrasound, which has a long history of use as a therapeutic, diagnostic, and surgical tool (4, 5, 7, 38), uses sound waves to transfer mechanical energy to tissues and cells. The application of therapeutic and surgical ultrasound (1 to 300 W/cm2) generates considerable heat in living tissue and can homogenize tissues. In addition, the cells in the tissues are destroyed, proteins are denatured, and random fragmentation of DNA and RNA may occur (39). Low-intensity pulsed ultrasound (<100 mW/cm2), which is nonthermogenic and nondestructive, is widely used to accelerate bone growth during fracture healing and distraction osteogenesis (9, 33). Low-intensity pulsed ultrasound can accelerate osteogenic differentiation and the differentiation from progenitor cells of myoblasts to osteoblasts (12, 26, 40, 41, 42). The possible effects of low- and high-intensity ultrasound on tissues and cells include mechanical stress or production of free radicals due to ultrasound irradiation, which may be recognized as oxidative stress (14, 15, 32). Recently, the inactivation of pathogens through the production of the free radicals, termed photodynamic therapy, has been used in anticancer therapy (10, 29). Photodynamic antimicrobial chemotherapy on pathogenic microbes has also been reported (13, 21), and ultrasonic stimulation may be considered an appropriate photosensitizer (27). However, the appropriate parameters for ultrasonic stimulation in terms of power and applicable devices have not been determined.Living microorganisms can adapt to diverse environmental conditions, such as carbon starvation or pH, mechanical, osmotic, oxidative, or heat shock stress, enabling survival under physiological stress. Heat shock proteins (HSPs), which act as stress proteins, are among the most highly conserved proteins in nature. First discovered in studies of thermal stress, HSPs can respond to other types of stress and have a number of important biological roles, e.g., as molecular chaperones and in protein homeostasis. HSPs are divided into families: HSP60 (approximately 60 kDa; GroEL) and HSP70 (approximately 70 kDa; DnaK) are identified mainly in bacteria (8, 11, 17). Ultrasonic stimulation is a form of environmental stress and may influence HSPs in photodynamic antimicrobial chemotherapy. However, there have been no reports to date on the association between ultrasonic stimulation and HSP expression.To develop the use of low-energy ultrasound as nondestructive photodynamic antimicrobial chemotherapy for controlling dental plaque (28, 35), we tested the antibacterial effects of ultrasonic stimulation and inhibitory effects on bacterial adhesion and the colonization process. Furthermore, inhibitory effects on HSPs were also determined in mutans streptococci.  相似文献   

15.
16.
17.
18.
Intracellular polysaccharide (IPS) is accumulated by Streptococcus mutans when the bacteria are grown in excess sugar and can contribute toward the cariogenicity of S. mutans. Here we show that inactivation of the glgA gene (SMU1536), encoding a putative glycogen synthase, prevented accumulation of IPS. IPS is important for the persistence of S. mutans grown in batch culture with excess glucose and then starved of glucose. The IPS was largely used up within 1 day of glucose starvation, and yet survival of the parental strain was extended by at least 15 days beyond that of a glgA mutant; potentially, some feature of IPS metabolism distinct from providing nutrients is important for persistence. IPS was not needed for persistence when sucrose was the carbon source or when mucin was present.Streptococcus mutans is a facultative colonizer of the human dental plaque, the microbial pellicle that covers the surface of the teeth. It is the major etiological agent of dental caries (17). Sugar metabolism is central to the behavior of S. mutans (4, 7). It can use a variety of sugars. The sugars are fermented by glycolysis with production of organic acids, particularly lactic acid (4, 7). In addition to providing energy, sucrose is used to produce extracellular polysaccharides to form the biofilm matrix that aids in the association of S. mutans with the dental plaque. Once the S. mutans biofilm becomes part of the dental plaque, the acidic by-products of sugar fermentation dissolve tooth enamel, eventually resulting in dental caries (17). The presence of sugars in the dental plaque is periodic and reflects the intake of dietary sugars. If there is excess sugar available, in addition to producing organic acids and matrix, intracellular (iodophilic) polysaccharide (IPS; glycogen) is formed.The IPS of S. mutans is a polymer of the glycogen-amylopectin type, with α-(1, 4)- and α-(1, 6)-linked glucose, and is stored as intracellular granules (10). Intracellular glycogen storage reserves in various bacterial species are synthesized from glucose-1-P via ADP-glucose (1). The synthesis involves at least three enzymes: glycogen synthase, glucose-1-phosphate pyrophosphorylase, and branching enzyme. The genes encoding these enzymes are commonly found in a glg operon, although the order of genes differs between species. In two gram-positive species, Bacillus subtilis and Bacillus stearothermophilus, the gene order is glgB-glgC-glgD-glgA-glgP (15, 29): glgA encodes glycogen synthase, glgB encodes glucan branching enzyme, and glgC and glgD encode subunits of glucose-1-phosphate pyrophosphorylase. The glgP gene encodes glycogen phosphorylase, which is unlikely to be involved in glycogen synthesis (29). Genes putatively encoding similar enzymes are present in the same order in the genome of S. mutans (29); they are thought also to form an operon.The IPS can be used as a source of carbohydrate for fermentation upon nutrient depletion (11, 13). In planktonic cultures, IPS reserves are largely consumed within 12 h of the imposition of sugar starvation (11, 13, 32). In S. mutans, IPS utilization may prolong acid production and hence the period of lowered pH of the resting (between meals) plaque, a factor that contributes to the incidence of caries. Indeed, IPS is implicated in dental caries: a mutant that synthesized elevated levels of IPS was hypercariogenic in germfree rats (27). Strains isolated from human carious lesions were nearly all stable IPS producers, whereas most strains from caries-inactive persons were variable IPS producers (13, 33).Since S. mutans deep in the dental plaque may not have access to nutrients because of competition with the bacteria at the surface of the plaque, the bacteria may need to survive longer periods of nutrient starvation. Previous studies in our laboratory showed that S. mutans can survive under sugar starvation conditions, provided that the pH remains above ∼5.5 (22). The presence of spent medium and mucin significantly prolonged survival of sugar-starved biofilms and batch cultures (22; also unpublished observations). Here we examine the role of IPS.The role of IPS (glycogen) in bacterial survival has been tested for several other bacterial species. It was found to extend survival of Aerobacter aerogenes (8) and Escherichia coli (28). Intracellular glycogen was also shown to support the survival of Streptococcus mitis during stationary-phase starvation (32). In contrast, glycogen-rich Sarcina lutea died at a higher rate during starvation than did bacteria without glycogen (2).In order to test the role of IPS in S. mutans survival, we constructed an IPS-deficient mutant by inactivating glgA (GenBank SMU.1536) (http://www.oralgen.lanl.gov/), putatively encoding the glycogen synthase. We also constructed a mutant potentially altered in IPS metabolism by inactivating the putative pullulanase structural gene, pul (SMU.1541). Pullulanases are responsible for hydrolyzing α-(1,6) linkages (and in some cases 1,4 linkages) in pullulan and in other polysaccharides (35) and may be important in determining the branching in IPS and/or affecting the catabolism of IPS. We studied the persistence of bacteria under conditions of sugar limitation and of sugar excess in both batch cultures and biofilms. We found that IPS can play a role in supporting S. mutans persistence in batch cultures but found no role for IPS in survival in biofilms.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号