首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Addition of -mercaptoethanol at a concentration of 2–3 mM to media containing methanol, glucose, or yeast extract caused a 50% inhibition of the growth of wild-type yeastPichia methanolica; mercaptoethanol at a concentration of 0.7 to 25 mM inhibited the growth of the mutant strain ecr1. The mutation mth1 of P. methanolica repressed its ability to consume methanol and was accompanied by the loss of alcohol oxidase (EC 1.1.3.13) activity. -Mercaptoethanol restored the ability of mth1 mutant cells to grow on methanol and stimulated their growth under derepression conditions. The growth effect of -mercaptoethanol during derepression was accompanied by partial restoration of alcohol oxidase activity.  相似文献   

2.
The methylotrophic yeast Pichia methanolica can be used to express recombinant genes at high levels under the control of the methanol-inducible alcohol oxidase (AUG1) promoter. Methanol concentrations during the induction phase directly affect cellular growth and protein yield. Various methanol concentrations controlled by an on-line monitoring and control system were investigated in mixed glucose/methanol fed-batch cultures of P. methanolica expressing the human transferrin N-lobe protein. The PMAD18 P. methanolica strain utilized is a knock-out for the chromosomal AUG1 gene locus, resulting in a slow methanol utilization phenotype. Maximum growth of 100 g of dry cell weight per liter of culture was observed in cultures grown at 1.0% (v/v) methanol concentration. Maximum recombinant gene expression was observed for cultures controlled at 0.7% (v/v) methanol concentration, resulting in maximum volumetric production of 450 mg of transferrin per liter after 72 h of elapsed fermentation time.  相似文献   

3.
Two independent mutant strains of methylotrophic yeast Pichia methanolica (mth1 arg1 and mth2 arg4) from the initial line 616 (ade1 ade5) were investigated. The mutant strains possessed defects in genes MTH1 and MTH2 which resulted in the inability to assimilate methanol as a sole carbon source and the increased activity of alcohol oxidase (AO). The function of the AUG2 gene encoding one of the subunits of AO and CTA1, a probable homolog of peroxisomal catalase of Saccharomyces cereviseae, was investigated by analyses of the molecular forms of isoenzymes. It was shown that optimal conditions for the expression of the AUG2 gene on a medium supplemented with 3% of methanol leads to an increasing synthesis of peroxisomal catalase. The mutant mth1 possessed a dominant formation of AO isoform with electrophoretic mobility which is typical for isogenic form 9, the product of the AUG2 gene, and a decreased level of peroxisomal catalase. The restoration of growth of four spontaneous revertants of the mutant mth1 (Rmth1) on the methanol containing medium was accompanied by an increase in activity of AO isogenic form 9 and peroxisomal catalase. The obtained results confirmed the functional continuity of the structural gene AUG2 in mutant mth1. The correlation of activity of peroxisomal catalase and AO isogenic form 1 in different conditions evidenced the existence of common regulatory elements for genes AUG2 and CTA1 in methilotrophic yeast Pichia methanolica.  相似文献   

4.
The activity and localization of alcohol oxidase (EC 1.1.3.13) have been studied in the Pichia methanolica mutant ecr1 defective in ethanol-induced catabolite repression of enzymes of methanol utilization. Ultrasctuctural, immunocytochemical, and biochemical analyses revealed the presence of peroxisomes containing active alcohol oxidase in the mutant grown in media with methanol, ethanol, and a mixture of both substrates. No alcohol oxidase was detected in the wild-type cells (ECR1) grown on ethanol-containing media. Mutant ecr1 growing in medium containing a mixture of different alcohols and the wild-type strain growing on methanol demonstrated similar buoyant density of peroxisomes (1.24-1.27 g/cm3)during isopicnic centrifugation of the organelles in sucrose density gradients. The integrated genetic, immunocytochemical, and biochemical data are in agreement with the model that synthesis, translocation into peroxisomes, and assembly of alcohol oxidase in P. methanolica may not require any regulatory signals induced by methanol.  相似文献   

5.
The regulation of the synthesis of alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase was investigated in the methanol-utilizing yeast Hansenula polymorpha. The organism was found to synthesize immunologically identical alcohol oxidases during growth on glycerol and methanol. Growth on glycerol, however, was not dependent on the alcohol oxidase, as was shown with a mutant without alcohol oxidase protein. Similarly it was shown with a catalase activity negative mutant that high catalase activity during growth on glycerol was not a prerequisite for the utilization of this substrate, though absolutely required for growth on methanol.Experiments were conducted with mixed substrates to study the influence of methanol on alcohol oxidase synthesis. In batch cultures, growth on ribose plus methanol resulted in an enhanced rate of alcohol oxidase synthesis as compared to ribose alone. In continuous cultures, (D=0.1 h-1) addition of methanol to glycerol-, glucose-, or sorbose-limited cultures gave rise to increased alcohol oxidase activity of up to 20 U/mg, which is about by 2 times higher than the specific activity used for growth on methanol alone. The increase in specific activity of the dissimilatory enzymes on the mixed substrates is partly due to methanol per se, as was shown by a mutant unable to dissimilate or assimilate methanol.  相似文献   

6.
A methanol-utilizing yeast Kloeckera sp. No. 2201, when grown with methanol as a sole carbon and energy source, accumulated about three times much flavin as those grown with glucose, ethanol, or glycerol. A high proportion of the total flavin was FAD in methanol-grown cells. A remarkable derepression of FAD pyrophosphorylase accompanied by an inducible formation of an FAD-dependent alcohol oxidase which catalyzes oxidation of methanol, the first step in the oxidation sequence, was observed during growth of the yeast on methanol. Significant elevations of riboflavin synthetase and flavokinase were also found. Formate, as well as methanol, effectively induced both FAD pyrophosphorylase and methanol-oxidizing enzymes (alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase, and catalase). Observations with other methanol-utilizing yeasts also gave essentially same results. These results led to the conclusion that cellular flavin level might be under control with level of flavoprotein physiologically required.  相似文献   

7.
A catabolite repression-insensitive mutant of Candida boidinii A5, strain ADU-15, was investigated as to alcohol oxidase production and the production of cells exhibiting the maximum catalytic activity for formaldehyde production. The mutant strain ADU-15 showed higher cell productivity and higher alcohol oxidase activity when grown on mixed substrates (glucose-methanol), especially with a high concentration of glucose in the medium. Thus, even under substrate (glucose-methanol)-limited chemostat conditions, where the glucose concentration was low, partial derepression of alcohol oxidase by glucose in mutant strain ADU-15 was detected. The chemostat culture conditions with the glucose-methanol medium were optimized for alcohol oxidase production and the production of cells exhibiting the maximum catalytic activity for formaldehyde production, respectively. By means of chemostat culturing on mixed substrates, we improved the alcohol oxidase productivity 5.0-fold and the productivity of cells exhibiting the maximum catalytic activity for formaldehyde production 3.8-fold, in comparison with the parent strain chemostat cultured with methanol as the single substrate.  相似文献   

8.
Abstract Mutants of the methylotrophic actinomycete Amycolatopsis methanolica unable to grow on methanol as carbon source were isolated and characterized. Mutants specifically affected in methanol utilization were deficient in formaldehyde assimilation. Mutants blocked in the first step of primary alcohol oxidation (C1–C4) had lost activity of the tetrazolium-dependent alcohol dehydrogenase, a three-component enzyme complex. This complex, or individual components, thus play a crucial role in utilization of primary alcohols in A. methanolica .  相似文献   

9.
In methanol-limited chemostat cultures methanol concentration >K I for growth decreased sharply the alcohol oxidase activity in yeast cells. This effect was accompanied by accumulation of riboflavin phosphate in the medium. Purified alcohol oxidase showed higherK m for methanol, change in absorbance maxima in the riboflavin area and chemical modification of enzyme structure discovered by means of partial proteolysis.  相似文献   

10.
Mutants exhibiting alcohol oxidase (EC 1.1.3.13) activity when grown on glucose in the presence of methanol were found among 2-deoxyglucose-resistant mutants derived from a methanol yeast, Candida boidinii A5. One of these mutants, strain ADU-15, showed the highest alcohol oxidase activity in glucose-containing medium. The growth characteristics and also the induction and degradation of alcohol oxidase were compared with the parent strain and mutant strain ADU-15. In the parent strain, initiation of alcohol oxidase synthesis was delayed by the addition of 0.5% glucose to the methanol medium, whereas it was not delayed in mutant strain ADU-15. This showed that alcohol oxidase underwent repression by glucose. On the other hand, degradation of alcohol oxidase after transfer of the cells from methanol to glucose medium (catabolite inactivation) was observed to proceed at similar rates in parent and mutant strains. The results of immunochemical titration experiments suggest that catabolite inactivation of alcohol oxidase is coupled with a quantitative change in the enzyme. Mutant strain ADU-15 was proved to be a catabolite repression-insensitive mutant and to produce alcohol oxidase in the presence of glucose. However, it was not an overproducer of alcohol oxidase and, in both the parent and mutant strains, alcohol oxidase was completely repressed by ethanol.  相似文献   

11.
将编码黄孢原毛平革菌木质素过氧化物酶(lip)的cDNA克隆到酵母整合型质粒pMETA上,电转化Ade缺陷型甲醇毕赤酵母(Pichiamethanolica)PMAD16,通过MD平板及PCR方法筛选和鉴定重组子。重组子发酵液经SDSPAGE分析和木质素过氧化物酶活力测定等方法鉴定,表明带自身信号肽的黄孢原毛平革菌木质素过氧化物酶基因(lip)在甲醇毕赤酵母中得到表达。优化其发酵培养条件,以藜芦醇为底物进行酶活测定,其酶活可达932U/L。相应发酵指数为12.94U/h·L。比出发菌株提高了24.18%。  相似文献   

12.
We isolated a mutant strain of a methanol-utilizing yeast, Candida boidinii S2, which shows improved formaldehyde productivity. The procedure for mutant screening consisted of; 1) induction of alcohol oxidase on a methanol-plate, 2) catabolite inactivation of alcohol oxidase on a glucose-plate, and 3) visualization of alcohol oxidase activity in a colony. One of the mutants, strain AOU-1, showed 1.7 times higher formaldehyde productivity and a higher growth rate on methanol than the parent strain. The high formaldehyde productivity was proved to be due to the high alcohol oxidase activity. No qualitative change of the enzyme was detected between the parent strain and mutant strain AOU-1. The high activity of mutant strain AOU-1 could be attributed to a quantitative change and a change in the rate of enzyme synthesis. Catabolite repression and inactivation of alcohol oxidase in the mutant were also discussed.  相似文献   

13.
We isolated from Saccharomyces cerevisiae two mutants, esc1-1 and ESC3-1, in which genes FBP1, ICL1 or GDH2 were partially derepressed during growth in glucose or galactose. The isolation was done starting with a triple mutant pyc1 pyc2 mth1 unable to grow in glucose-ammonium medium and selecting for mutants able to grow in the non-permissive medium. HXT1 and HXT2 which encode glucose transporters were expressed at high glucose concentrations in both esc1-1 and ESC3-1 mutants, while derepression of invertase at low glucose concentrations was impaired. REG1, cloned as a suppressor of ESC3-1, was not allelic to ESC3-1. Two-hybrid analysis showed an increased interaction of the protein kinase Snf1 with Snf4 in the ESC3-1 mutant; this was not due to mutations in SNF1 or SNF4. ESC3-1 did not bypass the requirement of Snf1 for derepression. We hypothesize that ESC3-1 either facilitates activation of Snf1 or interferes with its glucose-dependent inactivation.  相似文献   

14.
According to the bias of codon utilization of Pichia methanolica, a fragment encoding bovine lactoferricin has been cloned and expressed in the P. methanolica under the control of the alcohol oxidase promoter, which was followed by the Saccharomyces cerevisiae alpha-factor signal peptide. The alpha-factor signal peptide efficiently directed the secretion of bovine lactoferricin from the recombinant yeast cell. The recombinant bovine lactoferricin appears to be successfully expressed, as it displays antibacterial activity (antibacterial assay). Moreover, the identity of the recombinant product was estimated by Tricine-SDS-PAGE.  相似文献   

15.
A mutant of the methylotrophic yeast Hansenula polymorpha with constitutive alcohol oxidase (AOX) and peroxisome biosynthesis was obtained after UV treatment followed by cell plating on a medium containing methanol and 2-deoxy-D-glucose (DOG). DOG-resistant colonies of mutants were insensitive to catabolic repression by glucose and methanol. A selection procedure is described that allows the isolation of a mutant exhibiting a constitutive phenotype of AOX involved in methanol utilization. Furthermore, additional features of the constitutive presence of peroxisomes are demonstrated. 562 DOG-resistant colonies were tested, 24 of them demonstrating constitutive AOX formation. Based on quantitative analysis, one of the strains--DOG-13 was selected and its growth, biochemical and ultrastructural characteristics were examined. Its specific enzyme activity when cultivated on a yeast nitrogen base + 1% glucose (YNB + 1% Glucose) was found to reach 145 nmol x min(-1) x mg(-1) protein (compared to zero of the parent strain) after he 20th hour of cultivation. This was confirmed by fine-structure analysis, showing typical peroxisomes, which number and size increased with the enzyme activity. This study demonstrates a constitutive AOX and peroxisome biosynthesis by the mutant strain H. polymorpha DOG-13 obtained.  相似文献   

16.
Summary Deficiency of inorganic phosphate caused the hyper production of invertase and the derepression of acid phosphatase in a continuous culture ofSaccharomyces carlsbergensis. The specific invertase activity was 40,000 enzyme units per g dry cell weight at a dilution rate lower than 0.05 h–1 with a synthetic glucose medium of which the molecular ratio of KH2PO4 to glucose was less than 0.006. This activity is eight fold higher than in a batch growth and 1.5 fold as much as the highest enzyme activity observed so far in a glucose-limited continuous culture.For the hyper production of invertase, it is necessary to culture the yeast continuously by keeping the Nyholm's conservative inorganic phosphate concentration at less than 0.2 m mole per g dry weight cell. The derepression of acid phosphatase brought about by phosphate deficiency, was similar in both batch and continuous cultures.Nomenclature D dilution rate of continuous culture (h–1) - Ei invertase concentration in culture (enzyme unit l–1) - Ep acid phosphatase concentration in culture (enzyme unit l–1) - P inorganic phosphate concentration in culture (mM) - S glucose concentration in culture (mM) - X cell concentration in culture (g dry weight cell l–1) Greek Letter specific rate of growth (h–1) Suffix f feed - 0 initial value  相似文献   

17.
An enzyme electrode for on-line determination of ethanol and methanol   总被引:1,自引:0,他引:1  
Since a stable alcohol oxidase with a high specific activity is not commercially available, we propose to produce and purify this enzyme from a strain of the yeast Hansenula polymorpha. This alcohol oxidase was immobilized into a gelatin matrix and its activity was estimated by a pO(2) sensor. The enzyme electrode obtained was then used in a continuous flow system to measure methanol or ethanol concentrations. The sample oxygen content dependence of the signal was minimized by the support properties. Measuring time for each sample were less than two minutes including response data treatment and rinsing step. The enzyme electrode response was set for ethanol from 0.5mM to 15mM and for methanol from 10mM to 300mM. On repeated use, the electrode signal for 10mM of ethanol was stable for at least 500 assays. Analysis have been performed in different beverages such as wine and beer, and the results compared to those obtained with classical methods of analysis.  相似文献   

18.
From an Escherichia coli purine auxotroph a mutant defective in phosphoribosylpyrophosphate (PRib-PP) synthetase has been isolated and partially characterized. In contrast to the parental strain, the mutant was able to grow on nucleosides as purine source, whereas growth on purine bases was reduced. Kinetic analysis of the mutant PRib-PP synthetase revealed an apparent Km for ATP and ribose 5-phosphate of 1.0 mM and 240 muM respectively, compared to 60 muM and 45 muM respectively for the wild-type enzyme. ADP, which inhibits the wild-type enzyme at a concentration of 0.5 mM ribose 5-phosphate, stimulated the mutant enzyme. The activity of PRib-PP synthetase in crude extract was higher in the mutant than in the parent. When starved for purines an accumulation of PRib-PP was observed in the parent strain, while the pool decreased in the mutant. During pyrimidine starvation derepression of PRib-PP synthetase activity was observed in both strains, although to a lesser extent in the mutant. Our data suggest that the mutant harbors a mutation in the structural gene for PRib-PP synthetase. The mutation responsible for the altered PRib-PP synthetase was located in the purB-hemA region at 26 min on the recalibrated linkage map.  相似文献   

19.
The cloning of 7.2- and 9.6-kbp fragments of the methylotrophic yeast Hansenula polymorpha DNA restored the wild-type phenotype Gsh+ in the glutathione-dependent gsh1 and gsh2 mutants of this yeast defective in glutathione (GSH) synthesis because of a failure of the gamma-glutamylcysteine synthetase reaction. The 9.6-kbp DNA fragment was found to contain a 4.3-kbp subfragment, which complemented the Gsh- phenotype of the gsh2 mutant. The Gsh+ transformants of the gsh1 and gsh2 mutants, which bear plasmids pG1 and pG24 with the 7.2- and 4.3-kbp DNA fragments, respectively, had a completely restored wild-type phenotype with the ability to synthesize GSH and to grow in GSH-deficient synthetic media on various carbon sources, including methanol, and with acquired tolerance to cadmium ions. In addition, the 4.3-kbp DNA fragment borne by plasmid pG24 eliminated pleiotropic changes in the gsh2 mutants associated with methylotrophic growth in a semisynthetic (GSH-supplemented) medium (poor growth and alterations in the activity of the GSH-catabolizing enzyme gamma-glutamyltransferase and the methanol-oxidizing enzyme alcohol oxidase).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号