首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
SYNOPSIS. Heterotrophic (dark) CO2 fixation by Euglena gracilis strain Z varies with phase of batch culture and mode of nutrition. Dark CO2 fixation increased transiently during the growth of cells under photoautotrophic (CO2, light) and heterotrophic (glucose, dark) conditions. Cells grown heterotrophically with acetate or ethanol had no transient increase in fixation. The addition of acetate to a heterotrophically growing culture during the period of increasing dark CO2 fixation resulted in rapid elimination of this fixation. The results suggest that dark CO2 fixation in Euglena functions in anaplerotic feeding of the tricarboxylic acid cycle, drained by biosyntheses during growth. Induction of the glyoxylate cycle by acetate may provide an alternate source of tricarboxylic cycle intermediates, obviating the requirement for dark CO2 fixation as a source of the intermediates.  相似文献   

2.
SYNOPSIS. On prolonged incubation of ethionine-sensitive (ES) cells of Ochromonas danica in L-ethionine-containing media, growth was resumed by an ethionine-resistant (ER) mutant. Such mutants arise at random and are selected by the ethionine-containing medium. Ethionine resistance is not lost on repeated transfers thru ethionine-less media. ES cells incubated with ethionine form a large posterior vacuole before they disintegrate. Inhibition of reserve substance utilization is suggested to underlie growth inhibition of O. danica by ethionine. In ES cells incubated with ethionine, 14C uptake from labeled methionine, ethionine or serine is reduced by 65%. In ER cells the decrease in 14C uptake is 90%. This decrease in uptake of ethionine seems to be how ER O. danica evades growth inhibition by ethionine.  相似文献   

3.
The K+ (86Rb+) uptake and the growth of intact wheat seedlings ( Triticum aestivum L. cv. GK Szeged) grown in 0.5 m M CaCl2 solution and of seedlings grown on wet filter paper in Petri dishes were compared under different experimental conditions. Aeroponic (AP) and hydroponic (HP) conditions brought about striking differences in the growth of the roots, whereas the shoot growth was not influenced. The dry weight of the roots was higher for the AP plants than for the HP plants. The AP grown seedlings exhibit a low rate of K+ uptake, which seems to be a passive process. The effect of 2, 4–dinitrophenol (2, 4–DNP) clearly shows the absence of an active component of the K+ uptake in roots grown in air with a high relative humidity. In plants grown under AP conditions the effect of Ca2+ on the K+ uptake is unfavourable, i.e. there is an inhibition (negative Viets effect). Results relating to the effect of 2,4–DNP suggest that the "negative Viets effect" is a feature of the passive K+ uptake. The data suggest that the AP growth conditions play a very important role in the induction and/or development of the ion transport system(s), which becomes impaired under the AP conditions.  相似文献   

4.
Ecological stoichiometry focuses on the balance between multiple nutrient elements in resources and in consumers of those resources. The major consumers of bacteria in aquatic food webs are heterotrophic and mixotrophic nanoflagellates. Despite the importance of this consumer-resource interaction to understanding nutrient dynamics in the aquatic food web, few data are available addressing the element stoichiometry of flagellate consumers. Ochromonas danica, a mixotrophic bacterivore, was used as a model organism to study the relationships among temperature, growth rate and element stoichiometry. Ochromonas danica was grown in chemostats at dilution rates ranging between 0.03 and 0.10 h(-1) and temperatures ranging between 15 and 28 °C. Cells accumulated elements as interactive functions of temperature and growth rate, with the highest element concentrations corresponding to cells grown at a low temperature and high growth rates. The highest concentrations of elements were associated with small cells. Temperature and growth rate affected the element stoichiometry (as C:N, C:P and N:P) of O. danica in a complex manner, but the growth rate had a greater effect on ratios than did temperature.  相似文献   

5.
Chlorophyllous cells in suspension culture from the moss, Barbula unguculata Hedw., grown under photoheterotrophic conditions were transferred to photoautotrophic conditions. The cells started to grow photoautotrophically without selection. Maximum growth was observed under irradiances of more than 5 W m2 and in an atmosphere enriched with 1% (v/v) CO2. Under optimum growth conditions, dry weight and chlorophyll content in the culture had increased 20-fold after 20 days of cell growth. High concentration of chlorophyll [10–20 μg (mg dry weight)−1] and high photosynthetic actively [30–70 μmol O2 evolved (mg chlorophyll)−1 h−1] were observed throughout the culture period. In sugar-free culture medium, cell growth did not occur in the dark or in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) under light, although cell growth was observed in glucose-containing medium under those conditions. When cells that were grown photoautotrophically for one year were transferred to glucose-containing medium under ordinary air, they started to grow heterotrophically both in the light and in the dark.  相似文献   

6.
Bradyrhizobium japonicum utilizes cytochrome cbb 3 oxidase encoded by the fixNOQP operon to support microaerobic respiration under free-living and symbiotic conditions. It has been previously shown that, under denitrifying conditions, inactivation of the cycA gene encoding cytochrome c 550, the electron donor to the Cu-containing nitrite reductase, reduces cbb 3 expression. In order to establish the role of c 550 in electron transport to the cbb 3 oxidase, in this work, we have analyzed cbb 3 expression and activity in the cycA mutant grown under microaerobic or denitrifying conditions. Under denitrifying conditions, mutation of cycA had a negative effect on cytochrome c oxidase activity, heme c (FixP and FixO) and heme b cytochromes as well as expression of a fixP '–' lacZ fusion. Similarly, cbb 3 oxidase was expressed very weakly in a napC mutant lacking the c -type cytochrome, which transfers electrons to the NapAB structural subunit of the periplasmic nitrate reductase. These results suggest that a change in the electron flow through the denitrification pathway may affect the cellular redox state, leading to alterations in cbb 3 expression. In fact, levels of fixP '–' lacZ expression were largely dependent on the oxidized or reduced nature of the carbon source in the medium. Maximal expression observed in cells grown under denitrifying conditions with an oxidized carbon source required the regulatory protein RegR.  相似文献   

7.
Abstract: Thiosphaera pantotropha has been reported to denitrify aerobically and nitrify heterotrophically. However, recent evidence has indicated that these properties (particularly aerobic denitrification) have been lost. The occurrence and levels of aerobic denitrification and heterotrophic nitrification by T. pantotropha in chemostat cultures have therefore been re-evaluated. Only low nitrate reduction rates were observed: the apparent nitrogen loss was of the same order of magnitude as the combined error in the calculated nitrogen consumption. However, 15N mass spectrometry revealed low aerobic denitrification rates (about 10% of the rates originally published by this group). Heterotrophic nitrification rates were about a third of previous observations. N2 and N2O were both produced from NH4+, NO3 and NO2. Periplasmic nitrate reductase was present in aerobically grown cells.  相似文献   

8.
Abstract The effect of long-term energy starvation (lack of electron acceptor in respiration) on the culturability of Pseudomonas aeruginosa PAO303 was studied by subsequent incubations for growth on aerobic medanaerobic media. A batch culture was grown on O2-free citrate minimal medium containing NO3 as oxidant. Stationary phase was reached when NO3 was exhausted. This was followed by a rapid loss of cell culturability as tested by aerobic growth on agar plates (colony forming units, cfu) or on 0.2 μm membrane filters (epifluorescence technique) using the citrate minimal medium. However, energy-starved cells could form ten times more colonies when incubated anaerobically with NO3 (denitrifying conditions) than when incubated aerobically. Hence the energy starvation resulted in a subpopulation of cells, which were detectable under denitrifying, but not under aerobic growth conditions.  相似文献   

9.
Abstract Transport of Mn2+ was repressed in Candida utilis cells grown in continuous culture in high-Mn2+ (100 μM Mn2+) medium as compared to cells grown in basic (0.45 μM Mn2+) and low-Mn2+ (< 0.05 μM Mn2+) media. In contrast, no repression of Cu2+ uptake occurred in high-Cu2+-grown (25 μM Cu2+) cells as compared to cells grown in basic medium (0.54 μM Cu2+). Cu2+-limited cells did not hyperaccumulate Cu2+ and there was not significant difference in initial uptake rates for all 3 Cu2+ conditions. Mn2+ uptake appears to be regulated by a mechanism sensitive to the external Mn2+ concentration, whereas Cu2+ transport is not governed in this way by the external Cu2+.  相似文献   

10.
A vipp1 mutant of Synechocystis sp. PCC 6803 could not be completely segregated under either mixotrophic or heterotrophic conditions. A vipp1 gene with a copper-regulated promoter (P petE -vipp1 ) was integrated into a neutral platform in the genome of the merodiploid mutant. The copper-induced expression of P petE -vipp1 allowed a complete segregation of the vipp1 mutant and observation of the phenotype of Synechocystis 6803 with different levels of vesicle-inducing protein in plastids 1 (Vipp1). When P petE -vipp1 was turned off by copper deprivation, Synechocystis lost Vipp1 and photosynthetic activity almost simultaneously, and at a later stage, thylakoid membranes and cell viability. The photosystem II (PSII)-mediated electron transfer was much more rapidly reduced than the PSI-mediated electron transfer. By testing a series of concentrations, we found that P petE -vipp1 cells grown in medium with 0.025 μM Cu2+ showed no reduction of thylakoid membranes, but greatly reduced photosynthetic activity and viability. These results suggested that in contrast to a previous report, the loss of photosynthetic activity may not have been due to the loss of thylakoid membranes, but may have been caused more directly by the loss of Vipp1 in Synechocystis 6803.  相似文献   

11.
Abstract Pyridinnucleotides can be reduced by H2 in intact cells of chemolithoautotrophically grown Bradyrhizobium japonicum . This is demonstrated by following the NAD(P)H fluorescence emission in intact cells or by measuring the NAD(P)H content in the cells using the bioluminiscent assay. The experiments indicate that the respiratory complex I can operate in the reverse direction in intact cells of B. japonicum . NAD(P)H formed from H2 as reductant is utilized for CO2-fixation in the reductive pentose phosphate cycle in the cells. Attempts to grow cells chemolithoautotrophically and under N2-fixing conditions failed so far.  相似文献   

12.
Models for the regulation of K+ uptake in higher plant roots have become more complex as studies have moved from the level of excised low-salt roots to that of intact plants grown under fully autotrophic conditions. In this paper we suggest that some of the differences between the conditions are qualitative, possibly requiring fundamental changes to the model, rather than simply quantitative.
The uptake of K+ by low-salt roots of Zea mays L. [(A619 x Oh 43) x A632], was independent of Na+ concentration over a wide range. However, independence of Na+ was not the case in plants grown on complete nutrient medium in the light: inclusion of Na+ in the uptake medium enhanced K+ uptake. In the presence of Na+, K+ uptake rates were similar in whole plants with high root K+ contents to rates in excised or intact, low-salt roots.  相似文献   

13.
Abstract Washed cells of Rhodopseudomonas sphaeroides forma sp. denitrificans , grown under photodenitrifying conditions, exhibited K+ uptake dependent on the transmembrane proton gradient (Δ pH). These cells also acidified the suspension medium in response to K+ pulses both aerobically and anaerobically in light and in the dark. The results indicate that the photodenitrifier has a reversible K+/H+ exchange activity which reflects its role in regulating the intracellular K+ concentration, as well as intracellular pH. The acidification of the external medium resulting from K+ pulses was inhibited by carbonyl cyanide- m -chlorophenylhydrazone (CCCP) indicating that the antiporter is energy-dependent. Addition of KCl to washed cells depolarized the membrane potential (Δψ) with a concomitant increase in ΔpH, indicating that the K+/H+ antiporter was electrogenic.  相似文献   

14.
Spirulina (Arthrospira) platensis (Nordstedt) Geitler cells grown under mixotrophic conditions exhibit a modified response to light. The maximal photosynthetic rate and the light saturation value of mixotrophic cultures were higher than those of the photoautotrophic cultures. Dark respiration and light compensation point were also significantly higher in the mixotrophically grown cells. As expected, the mixotrophic cultures grew faster and achieved a higher biomass concentration than the photoautotrophic cultures. In contrast, the growth rate of the photoautotrophic cultures was more sensitive to light. The differences between the two cultures were also apparent in their responses to exposure to high photon flux density of 3000 μmol·m 2·s 1. The light-dependent O2 evolution rate and the maximal efficiency of photosystem II photochemistry declined more rapidly in photoautotrophically grown than in mixotrophically grown cells as a result of exposure to high photon flux density. Although both cultures recovered from the high photon flux density stress, the mixotrophic culture recovered faster and to a higher extent. Based on the above results, growth of S. platensis with a fixed carbon source has a significant effect on photosynthetic activity.  相似文献   

15.
Abstract. Nitellopsis cells grown in fresh water have a relatively low cytoplasmic Na+ (11 mol m−3) and high cytoplasmic K+ (90 mol m−3) content. A 30-min treatment with 100 mol m−3 external NaCl resulted in a high [Na+]c (90 mol m−3) and a low [K+]c (33 mol m−3), Subsequent addition of external Ca2+ (10 mol m−3) prevented Na+ influx and then [Na+]c decreased slowly. Changes in [K+]c were opposite to [Na+]c. During the recovery time vacuolar Na+ increased, while vacuolar K+ decreased. Since all these processes proceeded also under ice-cold conditions, the restoration of original cytoplasmic ion compositions is suggested to be a passive nature. The notion that the passive movement of ions across the tonoplast can act as an effective and economic mechanism of salt tolerance under transient or under mild salt stress conditions is discussed.  相似文献   

16.
The effects of NaCl and replacement of K+ by Na+ on the lipid composition of the two sugar beet inbred lines FIA and ADA were studied (a) with increasing additions of NaCl to the basal medium, and (b) with increasing replacement of K+ by Na+ at the same total concentration as in the basal medium. Direct relations were noted between NaCl concentration of the nutrient solution and the phospholipid concentration in the roots of FIA, the genotype characterized by a low K+/Na+ ratio, as well as between NaCl in the medium and the phospholipid concentration in the shoots of ADA, the genotype with a high K +/Na + ratio. The sulfolipid level in the roots of FIA was maintained at higher NaCl concentrations, while it was decreased in ADA. The glycolipid concentration in the shoots of ADA and the degree of unsaturation of the fatty acids of the total lipid fraction were decreased by salinity, indicating reduced biosynthesis of chloroplast glycolipids and/or accelerated oxidation of these lipids in the presence of NaCl.
In the Na+ for K+ replacement experiment a low content of K+ in the medium resulted in decreased levels of total lipids, phospholipids and sulfolipid in the roots of both genotypes, which did not relate to root growth. K+-leakage from the roots at low K+-level in the medium may be reduced by the increase in saturation of the lipids. In the shoots of ADA increased levels of total lipids, phospholipids and Sulfolipid were noted at a low K+-concentration of the nutrient solution.  相似文献   

17.
Symploca PCC 8002 Kützing is a filamentous cyanobacterium that lacks the specialized cells, known as heterocysts, that protect nitrogenase from O2 in most aerobic N2-fixing cyanobacteria. Nevertheless, Symploca is able to carry out N2 fixation in the light under aerobic conditions. When cultures were grown under light/dark cycles, nitrogenase activity commenced and increased in the light phase and declined towards zero in the dark. Immunolocalization of dinitrogenase reductase in sectioned Symploca trichomes showed that the enzyme was present only in 9% of the cells. These cells lacked any obvious mechanical protection against atmospheric O2 and their ultrastructural characteristics were similar to those of cells that did not contain any dinitrogenase reductase. The nitrogenase-containing cells possessed carboxysomes that were rich in ribulose-1,5-bisphosphate carboxylase/oxygenase and phycoerythrin, a light harvesting pigment of PS II. This indicates that these cells had a capacity for both N2 fixation and photosynthesis. The significance of the localization pattern for dinitrogenase reductase is discussed in the context of N2 fixation in Symploca PCC 8002.  相似文献   

18.
ABSTRACT Earlier studies showed that Leishmania major promastigotes are sensitive to osmotic conditions. A reduction in osmolality caused the cells to shorten and to rapidly release most of their large internal pool of alanine. In this study some effects of hyper-osmotic stress were examined. an increase in osmolality of the culture medium from 308 to 625 mOsm/kg caused only a small decrease in growth rate. When cells grown in the usual culture medium (308 mOsm/kg) were washed, resuspended in iso-osmotic buffer, and subjected to acute hyper-osmotic stress by addition of mannitol, the alanine content increased even in the absence of exogenous substrate. Promastigotes, depleted of alanine by a 5-min exposure to hypo-osmotic conditions, also synthesized alanine when resuspended in iso-osmotic buffer. Washed cells resuspended in iso-osmotic buffer consume their internal pool of alanine under aerobic conditions, Rates of consumption decreased on addition of mannitol, becoming zero at about 440 mOsm/kg. At higher osmolalities, alanine synthesis occurred. to estimate whether proteolysis could account for alanine synthesis in the absence of exogenous substrate, cells that had been grown with [1-14C]leucine were washed and resuspended under hypo-, iso-, and hyper-osmotic conditions and the amounts of 14CO2 and 14C-labelled peptides released in 1 h were measured. Little proteolysis occurred under these conditions, but the possibility that proteolysis was the source of the alanine increase, observed in response to hyper-osmotic stress, cannot be ruled out.  相似文献   

19.
Abstract: The rates of ingestion of bacteria and of accumulation of bacterial biomass by hungry Pteridomonas danica and Paraphysomonas imperforata were measured using dual radioactive-labelled bacteria in experiments lasting 4–8 h. Pteridomonas continuously consumed 4–5 bacteria h−1 throughout experiments lasting 8 h, irrespective of bacterial concentration above a threshold of about 5 × 105 bacteria ml−1, and continued to catch bacteria even below this density. The clearance rate of about 1 nl cell−1 h−1 at higher bacterial concentrations increased three or four times as bacterial numbers fell. Paraphysomonas cells, with only half the biomass of Pteridomonas , ingested up to 10 bacteria h−1 at high bacterial concentrations, and gradually reduced the feeding rate, effectively ceasing to feed at 106 bacteria ml−1; their initial clearance rate of 1–2.5 nl cell−1 h−1 subsequently fell as low as 0.1 nl cell−1 h−1. Estimation of feeding rate by extrapolation from short-term experiments on such flagellates requires extreme caution. These flagellates, starved to levels typical of the natural environment, accumulated ingested bacterial biomass at an efficiency of between 16 and 21%, indicating that in nature they would recycle 80% or more of the nutrients contained in their food.  相似文献   

20.
Abstract: Na+ flux was studied in cultured neuroblastoma cells grown in medium containing increased glucose or L - fucose concentrations. Chronic exposure of neuroblastoma cells to 30 m M glucose or 30 m M L-fucose caused a decrease in ouabain-sensitive and veratridine-stimulated 22Na+ uptake compared with cells cultured in unsupplemented medium. The Na+ current, determined by using whole-cell configuration of the patch clamp, was also decreased in these cells. Tetrodotoxin (3 μ M ), which blocked whole cell Na+ currents, also blocked veratridine-stimulated 22Na+ accumulation. Culturing cells in medium containing 30 m M fructose as an osmotic control had no effect on Na+ flux. Specific [3H] saxitoxin binding was not affected by 30 m M glucose or 30 m M L-fucose compared with cells grown in unsupplemented medium, suggesting that the number of Na+ channels was not decreased. These studies suggest that exposing cultured neuronal cells to conditions that occur in the diabetic milieu alters Na+ transport and Na+-channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号