首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The substrate specificity of neutral alpha-mannosidase purified from Japanese quail oviduct [Oku, H., Hase, S., & Ikenaka, T. (1991) J. Biochem. 110, 29-34] was analyzed by using 21 oligomannose-type sugar chains. The enzyme activated with Co2+ hydrolyzed the Man alpha 1-3 and Man alpha 1-6 bonds from the non-reducing termini of Man alpha 1-6(Man alpha 1-3)Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc (M5A), but hardly hydrolyzed the Man alpha 1-2 bonds of Man9GlcNAc2. The hydrolysis rate decreased as the reducing end of substrates became more bulky: the hydrolysis rate for the pyridylamino (PA) derivative of M5A as to that of M5A was 0.8; the values for M5A-Asn and Taka-amylase A having a M5A sugar chain being 0.5 and 0.04, respectively. The end product was Man beta 1-4GlcNAc2. For the substrates with the GlcNAc structure at their reducing ends (Man5GlcNAc, Man6GlcNAc and Man9GlcNAc), the hydrolysis rate was remarkably increased: Man5GlcNAc was hydrolyzed 16 times faster than M5A, and Man2GlcNAc 40 times faster than Man9GlcNAc2. The enzyme did not hydrolyze Man alpha 1-2 residue(s) linked to Man alpha 1-3Man beta 1-4GlcNAc. The end products were as follows: [formula; see text] These results suggest that oligomannose-type sugar chains with the GlcNAc structure at their reducing ends seem to be native substrates for neutral alpha-mannosidase and the enzyme seems to hydrolyze endo-beta-N-acetylgucosaminidase digests of oligomannose-type sugar chains in the cytosol.  相似文献   

2.
In our previous study (Woo, K. K., et al., Biosci. Biotechnol. Biochem., 68, 2547-2556 (2004), we purified an alpha-mannosidase from Ginkgo biloba seeds; it was activated by cobalt ions and highly active towards high-mannose type free N-glycans occurring in plant cells. In the present study, we have found that the substrate specificity of Ginkgo alpha-mannosidase is significantly regulated by cobalt ions. When pyridylamino derivative of Man9GlcNAc2 (M9A) was incubated with Ginkgo alpha-mannosidase in the absence of cobalt ions, Man5GlcNAc2-PA (M5A) having no alpha1-2 mannosyl residue was obtained as a major product. On the other hand, when Man9GlcNAc2-PA was incubated with alpha-mannosidase in the presence of Co2+ (1 mM), Man3-1GlcNAc2-PA were obtained as major products releasing alpha1-3/6 mannosyl residues in addition to alpha1-2 mannosyl residues. The structures of the products (Man8-5GlcNAc2-PA) derived from M9A by enzyme digestion in the absence of cobalt ions were the same as those in the presence of cobalt ions. These results clearly suggest that the trimming pathway from M9A to M5A is not affected by the addition of cobalt ions, but that hydrolytic activity towards alpha1-3/6 mannosyl linkages is stimulated by Co2+. Structural analysis of the products also showed clearly that Ginkgo alpha-mannosidase can produce truncated high-mannose type N-glycans, found in developing or growing plant cells, suggesting that alpha-mannosidase might be involved in the degradation of high-mannose type free N-glycans.  相似文献   

3.
Hen oviduct membranes were shown to contain high activity of a novel enzyme, UDP-GlcNac:GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-R (GlcNAc to Man) beta 4-GlcNAc-transferase VI. The enzyme was shown to transfer GlcNAc in beta 1-4 linkage to the D-mannose residue of GlcNAc beta 1-6 (GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or methyl. Radioactive enzyme products were purified by several chromatographic steps, including high performance liquid chromatography, and structures were determined by proton nmr, fast atom bombardment-mass spectrometry, and methylation analysis to be GlcNAc beta 1-6 ([14C]GlcNAc beta 1-4) (GlcNAc beta 1-2) Man alpha-R. The enzyme is stimulated by Triton X-100 and has optimum activity at a relatively high MnCl2 concentration of about 100 mM; Co2+, Mg2+, and Ca2+ could partially substitute for Mn2+. A tissue survey demonstrated high GlcNAc-transferase VI activity in hen oviduct and lower activity in chicken liver and colon, duck colon, and turkey intestine. No activity was found in mammalian tissues. Hen oviduct membranes cannot act on GlcNAc beta 1-6Man alpha-R but have a beta 4-GlcNAc-transferase activity that converts GlcNAc beta 1-2Man alpha-R to GlcNAc beta 1-4(GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or 1-6Man beta methyl. The latter activity is probably due to GlcNAc-transferase IV which preferentially adds GlcNAc in beta 1-4 linkage to the Man alpha 1-3 arm of the GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn core structure of asparagine-linked glycans. The minimum structural requirement for a substrate of beta 4-GlcNAc-transferase VI is therefore the trisaccharide GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-; this trisaccharide is found on the Man alpha 6 arm of many branched complex asparagine-linked oligosaccharides. The data suggest that GlcNAc-transferase VI acts after the synthesis of the GlcNAc beta 1-2Man alpha 1-3-, GlcNAc beta 1-2Man alpha 1-6-, and GlcNAc beta 1-6 Man alpha 1-6-branches by GlcNAc-transferases I, II, and V, respectively, and is responsible for the synthesis of branched oligosaccharides containing the GlcNAc beta 1-6(GlcNAc beta 1-4)(GlcNAc beta 1-2)Man alpha 1-6Man beta moiety.  相似文献   

4.
An alpha-mannosidase differing from 1,2-alpha-mannosidase was found to occur in Aspergillus saitoi. By a series of column chromatographies the enzyme was purified up to 1,000-fold, and its properties were studied in detail. The enzyme preparation, which was practically free from other exoglycosidases, showed a pH optimum of 5.0. In contrast to 1,2-alpha-mannosidase, the enzyme was strongly activated by Ca2+ ions. p-Nitrophenyl alpha-mannopyranoside was not hydrolyzed by the enzyme. Accordingly, the substrate specificity of the new alpha-mannosidase was studied by using a variety of tritium-labeled oligosaccharides. Studies with linear oligosaccharides revealed that the enzyme cleaves the Man alpha 1----3Man linkage more than 10 times faster than the Man alpha 1----6Man and the Man alpha 1----2Man linkages. Furthermore, it cleaves the Man alpha 1----6Man linkage of the Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcOT only after its Man alpha 1----3 residue is removed. Because of this specificity, the enzyme can be used as an effective reagent to discriminate R----Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAcOT from its isomeric counterparts, Man alpha 1----6(R----Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAcOT, in which R represents sugars.  相似文献   

5.
Golgi alpha-mannosidase II is an enzyme that processes the intermediate oligosaccharide Gn(1)M(5)Gn(2) to Gn(1)M(3)Gn(2) during biosynthesis of N-glycans. Previously, we isolated a cDNA encoding a protein homologous to alpha-mannosidase II and designated it alpha-mannosidase IIx. Here, we show by immunocytochemistry that alpha-mannosidase IIx resides in the Golgi in HeLa cells. When coexpressed with alpha-mannosidase II, alpha-mannosidase IIx colocalizes with alpha-mannosidase II in COS cells. A protein A fusion of the catalytic domain of alpha-mannosidase IIx hydrolyzes a synthetic substrate, 4-umbelliferyl-alpha-D-mannoside, and this activity is inhibited by swainsonine. [(3)H]glucosamine-labeled Chinese hamster ovary cells overexpressing alpha-mannosidase IIx show a reduction of M(6)Gn(2) and an accumulation of M(4)Gn(2). Structural analysis identified M(4)Gn(2) to be Man alpha 1-->6(Man alpha 1-->2Man alpha 1-->3)Man beta 1-->4GlcNAc beta 1-->4GlcNAc. The results suggest that alpha-mannosidase IIx hydrolyzes two peripheral Man alpha 1-->6 and Man alpha 1-->3 residues from [(Man alpha 1-->6)(Man alpha 1-->3)Man alpha 1-->6](Man alpha 1-->2Man alpha 1-->3)Man beta 1-->4GlcNAc beta 1-->4GlcNAc, during N-glycan processing.  相似文献   

6.
Glycopeptides representing individual N-glycosylation sites of the heterodimeric glycoprotein hormone human chorionic gonadotrophin (hCG) were obtained from subunits hCG alpha (N-glycosylated at Asn-52 and Asn-78) and hCG beta (N-glycosylated at Asn-13 and Asn-30) by digestion with trypsin and chymotrypsin, respectively. Following purification by reverse-phase HPLC and identification by amino acid sequencing, the glycopeptides were analysed by one- and two-dimensional 1H NMR spectroscopy. The results are summarized as follows: (i) oligosaccharides attached to Asn-52 of hCG alpha comprised monosialylated 'monoantenary' NeuAc alpha 2-3Gal beta 1-4GlcNAc beta 1-2Man alpha 1-3[Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc (N1-4'), disialylated diantennary NeuAc alpha 2-3Gal beta 1-4GlcNAc beta 1-2Man alpha 1-3[NeuAc alpha 2-3-Gal beta 1-4GlcNAc beta 1-2Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc (N2), and the monosialylated hybrid-type structures NeuAc alpha 2-3Gal beta 1-4GlcNAc beta 1-2Man alpha 1-3[Man alpha 1-3Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc (N1-A) and NeuAc alpha 2-3Gal-beta 1-4GlcNAc beta 1-2Man alpha 1-3[Man alpha 1-3(Man alpha 1-6)Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc (N1-AB) in a ratio approaching 5:2:2:1; (ii) Asn-78 of hCG alpha carried N2 and N1-4' almost exclusively (ratio approximately 3:2); (iii) both N-glycosylation sites of hCG beta contained predominantly component N2, partially (approximately 25%) and completely alpha 1-6-fucosylated at the N-acetylglucosamine linked to Asn-13 and Asn-30, respectively. The distinct site-specific distribution of the oligosaccharide structures among individual N-glycosylation sites of hCG appears to reflect primarily the influence of the surrounding protein structure on the substrate accessibility of the Golgi processing enzymes alpha-mannosidase II, GlcNAc transferase II and alpha 1,6-fucosyltransferase.  相似文献   

7.
The primary structure of the N-linked sugar chains of glucose oxidase from Aspergillus niger was investigated. These sugar chains were released from the polypeptide backbone by hydrazinolysis, and the reducing ends of the sugar chains were pyridylaminated. HPLC of the pyridylamino sugar chains with an amide-silica column showed at least seven sugar chain peaks. Chemical and exoglycosidase digestion and 400 lMHz H-NMR studies of the sugar chains of lower molecular weight showed that these were novel oligomannose-type sugar chains, (Man)5-7 (GlcNAc)2, with the structure: +/- Man alpha 1----3Man alpha 1----3(Man alpha 1----6)Man alpha 1----6(+/- Man alpha 1----3Man alpha 1---3)Man )Man beta 1----4GlcNAc beta 1----4GlcNAc.  相似文献   

8.
Two alpha-D-mannosidases have previously been identified in rat epididymis. This communication reports the purification and characterization of the "acid" alpha-D-mannosidase. The enzyme was purified over 1000-fold to near homogeneity by acetone and (NH4)2SO4 precipitation followed by ion-exchange and hydroxylapatite chromatography. The molecular weight of the enzyme was estimated to be 220,000 by gel filtration. Polyacrylamide gel electrophoresis of the native enzyme under two conditions of buffer and pH showed a single band when stained for protein while electrophoresis under denaturing conditions resulted in bands of apparent Mr 60,000 and 31,000. The enzyme is a glycoprotein containing about 5.6% hexose. In addition to mannose (3.1%) and glucosamine (2.0%), the enzyme also contained small amounts of glucose, fucose, and galactose. Chemical analysis indicated the absence of sialic acid. The substrate specificity of the purified enzyme was investigated using linear and branched mannose-containing oligosaccharides. The enzyme cleaved linear oligosaccharides [Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc and Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc] very efficiently. However, little or no activity was observed toward high mannose oligosaccharides (Man9GlcNAc through Man5GlcNAc) or the branched trimannosyl derivative Man3GlcNAc. This specificity is very similar to that observed with rat kidney lysosomal alpha-D-mannosidase. Additional evidence that the epididymal enzyme is essentially a lysosomal alpha-D-mannosidase is the fact that polyclonal antibody prepared against the purified epididymal enzyme cross-reacted with lysosomal alpha-D-mannosidase from several rat tissues and with acidic alpha-D-mannosidase of a human cell line, results suggesting that the antibody will be useful in studying the biosynthesis and turnover of lysosomal alpha-D-mannosidases in at least two species.  相似文献   

9.
Sasaki A  Ishimizu T  Geyer R  Hase S 《The FEBS journal》2005,272(7):1660-1668
Endo-beta-mannosidase is an endoglycosidase that hydrolyzes only the Man beta 1-4GlcNAc linkage of the core region of N-linked sugar chains. Recently, endo-beta-mannosidase was purified to homogeneity from Lilium longiflorum (Lily) flowers, its corresponding gene was cloned and important catalytic amino acid residues were identified [Ishimizu T., Sasaki A., Okutani S., Maeda M., Yamagishi M. & Hase S. (2004) J. Biol. Chem.279, 38555-38562]. In the presence of Man beta 1-4GlcNAc beta 1-4GlcNAc-peptides as a donor substrate and p-nitrophenyl beta-N-acetylglucosaminide as an acceptor substrate, the enzyme transferred mannose to the acceptor substrate by a beta1-4-linkage regio-specifically and stereo-specifically to give Man beta 1-4GlcNAc beta 1-pNP as a transfer product. Further studies indicated that not only p-nitrophenyl beta-N-acetylglucosaminide but also p-nitrophenyl beta-glucoside and p-nitrophenyl beta-mannoside worked as acceptor substrates, however, p-nitrophenyl beta-N-acetylgalactosaminide did not work, indicating that the configuration of the hydroxyl group at the C4 position of an acceptor is important. Besides mannose, oligomannoses were also transferred. In the presence of (Man)(n)Man alpha 1-6Man beta 1-4GlcNAc beta 1-4GlcNAc-peptides (n = 0-2) and pyridylamino GlcNAc beta 1-4GlcNAc, the enzyme transferred (Man)(n)Man alpha 1-6Man en bloc to the acceptor substrate to produce pyridylamino (Man)(n)Man alpha 1-6Man beta 1-4GlcNAc beta 1-4GlcNAc (n =0-2). Thus, the lily endo-beta-mannosidase is useful for the enzymatic preparation of oligosaccharides containing the mannosyl beta 1,4-structure, chemical preparations of which have been frequently reported to be difficult.  相似文献   

10.
Connective tissue of the freshwater pulmonate Lymnaea stagnalis was shown to contain galactosyltransferase activity capable of transferring Gal from UDP-Gal in beta 1-3 linkage to terminal GalNAc of GalNAc beta 1-4GlcNAc-R [R = beta 1-2Man alpha 1-O(CH2)8COOMe, beta 1-OMe, or alpha,beta 1-OH]. Using GalNAc beta 1-4GlcNAc beta 1-2Man alpha-1-O(CH2)8COOMe as substrate, the enzyme showed an absolute requirement for Mn2+ with an optimum Mn2+ concentration between 12.5 mM and 25 mM. The divalent cations Mg2+, Ca2+, Ba2+ and Cd2+ at 12.5 mM could not substitute for Mn2+. The galactosyltransferase activity was independent of the concentration of Triton X-100, and no activation effect was found. The enzyme was active with GalNAc beta 1-4GlcNAc beta 1-2Man alpha 1-O(CH2)8COOMe (Vmax 140 nmol.h-1.mg protein-1; Km 1.02 mM), GalNAc beta 1-4GlcNAc (Vmax 105 nmol.h-1.mg protein-1; Km 0.99 mM), and GalNAc beta 1-4GlcNAc beta 1-OMe (Vmax 108 nmol.h-1.mg protein-1; Km 1.33 mM). The products formed from GalNAc beta 1-4GlcNAc beta 1-2Man alpha 1-O(CH2)8COOMe and GalNAc beta 1-4GlcNAc beta 1-OMe were purified by high performance liquid chromatography, and identified by 500-MHz 1H-NMR spectroscopy to be Gal beta 1-3GalNAc beta 1-4GlcNAc 1-OMe, respectively. The enzyme was inactive towards GlcNAc, GalNac beta 1-3 GalNAc alpha 1-OC6H5, GalNAc alpha 1--ovine-submaxillary-mucin, lactose and N-acetyllactosamine. This novel UDP-Gal:GalNAc beta 1-4GlcNAc-R beta 1-3-galactosyltransferase is believed to be involved in the biosynthesis of the hemocyanin glycans of L. stagnalis.  相似文献   

11.
The primary structural analysis of O- and N-linked carbohydrate chains of the C-1-esterase inhibitor purified from normal serum was carried out by 400-MHz 1H-NMR spectroscopy. C-1-esterase inhibitor protein of a molecular weight of 116,000 daltons contains 24 O-glycans: NeuAc (alpha 2-3) Gal (beta 1-3) GalNAc, 4 N-glycans: NeuAc (alpha 2-6) Gal (beta 1-4) (GlcNAc (beta 1-2) Man (alpha 1-3) [NeuAc (alpha 2-6) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-6)] Man (beta 1-4) GlcNAc (beta 1-4) GlcNAc and 2 N-glycans: NeuAc (alpha 2-3) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-3) [NeuAc (alpha 2-3) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-6)] Man (beta 1-4) GlcNAc (beta 1-4) GlcNAc. 30% of the N-glycans are fucosylated.  相似文献   

12.
T Szumilo  G P Kaushal  A D Elbein 《Biochemistry》1987,26(17):5498-5505
The presence of an N-acetylglucosaminyltransferase (GlcNAc-transferase) capable of adding a GlcNAc residue to GlcNAcMan3GlcNAc was demonstrated in mung bean seedlings. This enzyme was purified about 3400-fold by using (diethylaminoethyl)cellulose and phosphocellulose chromatographies and chromatography on Concanavalin A-Sepharose. The transferase was assayed by following the change in the migration of the [3H]mannose-labeled GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc on Bio-Gel P-4, or by incorporation of [3H]GlcNAc from UDP-[3H]GlcNAc into a neutral product, (GlcNAc)2Man3GlcNAc. Thus, the purified enzyme catalyzed the addition of a GlcNAc to that mannose linked in alpha 1,6 linkage to the beta-linked mannose. GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc was an excellent acceptor while Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, Man alpha 1,6(Man alpha 1,3)Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, and Man alpha 1,6(Man apha 1,3)Man alpha 1,6[GlcNAcMan alpha 1,3]Man beta 1,4GlcNAc were not acceptors. Methylation analysis and enzymatic digestions showed that both terminal GlcNAc residues on (GlcNAc)2Man3GlcNAc were attached to the mannoses in beta 1,2 linkages. The GlcNAc transferase had an almost absolute requirement for divalent cation, with Mn2+ being best at 2-3 mM. Mn2+ could not be replaced by Mg2+ or Ca2+, but Cd2+ showed some activity. The enzyme was also markedly stimulated by the presence of detergent and showed optimum activity at 0.15% Triton X-100. The Km for UDP-GlcNAc was found to be 18 microM and that for GlcNAcMan3GlcNAc about 16 microM.  相似文献   

13.
We have purified a protein with hemagglutinating activity from the seeds of a West African legume, Bowringia milbraedii. The purified protein, designated BMA, has a native Mr = 38,000 on gel filtration and a subunit size of Mr = 16,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing or nonreducing conditions. Hemagglutination was inhibited most effectively by Man alpha 1----2 linked sugars. Affinity chromatography of oligosaccharides on BMA-Sepharose showed that Man alpha 1----2Man alpha 1----2Man alpha 1----3Man beta 1----4GlcNAcol (where GlcNAcol is N-acetylglucosaminitol) and Man alpha 1----2Man alpha 1----3Man beta 1----4GlcNAcol were retarded on the column, whereas Man alpha 1----3Man beta 1----4GlcNAcol did not bind. Oligomannosidic-type glycans obtained by treatment of [3H] mannose-labeled baby hamster kidney cells with endo-beta-N-acetylglucosaminidase H bound more strongly to BMA-Sepharose and required 10 or 200 mM methyl-alpha-mannoside for elution. Oligosaccharides bearing the sequence Man alpha 1----2Man alpha 1----6Man alpha 1----6Man, i.e. Man9GlcNAc and certain isomers of Man8GlcNAc and Man7GlcNAc, bound more tightly than other Man8 GlcNAc and Man7GlcNAc isomers lacking this sequence. Man6GlcNAc and Man5GlcNAc were weakly bound. These results suggest that BMA binds preferentially to glycoproteins that are subjected to early steps of oligosaccharide processing in the endoplasmic reticulum but not to glycoproteins that are exposed to more extensive processing by Golgi mannosidases. Staining of permeabilized cells with BMA-chromophore conjugates revealed a reticular cytoplasmic pattern consistent with a preferential visualization of the endoplasmic reticulum. BMA staining was less evident in the juxtanuclear regions that were stained brightly with wheat germ agglutinin, a lectin that binds preferentially to sialylated glycoproteins located in Golgi compartments.  相似文献   

14.
A series of glycosphingolipids containing 2'-aminoethylphosphoryl(----6)-N-acetylglucosamine as a polar group has been demonstrated in larvae of the green-bottle fly, Lucilia caesar. The thin-layer chromatographic pattern of the total polar glycolipid revealed the presence of more than eight components, of which five major components were purified by the use of successive column chromatography on QAE- and DEAE-Sephadex and silicic acid (Iatrobeads). From structural studies including compositional sugar analysis, hydrogen fluoride degradation, proton magnetic resonance spectroscopy, methylation analysis, and fast atom bombardment mass spectrometry, their structures were deduced to be as follows: 2'-aminoethylphosphoryl----6GlcNAc beta 1-3Man beta 1-4Glc beta 1-Cer, GalNAc beta 1-4(2'-aminoethylphosphoryl----6)GlcNAc beta 1-3Man beta 1-4Glc beta 1-Cer, GalNAc alpha 1-4GalNAc beta 1-4(2'-aminoethylphosphoryl----6)GlcNAc beta 1-3Man beta 1-4Glc beta 1-Cer, Gal beta 1-3GalNAc alpha 1-4GalNAc-beta 1-4(2'-aminoethylphosphoryl----6)GlcNAc beta 1-3Man beta 1-4Glc beta 1-Cer, and GlcNAc beta 1-3Gal-beta 1-3GalNAc alpha 1-4GalNAc beta 1-4 (2'-aminoethylphosphoryl----6)GlcNAc beta 1-3Man beta 1-4Glc-beta 1-Cer. The main molecular species of the ceramide moiety was arachidinyltetradecasphingenine in all of the major glycolipids.  相似文献   

15.
The substrate specificity of rat liver cytosolic neutral alpha-D-mannosidase was investigated by in vitro incubation with a crude cytosolic fraction of oligomannosyl oligosaccharides Man9GlcNAc, Man7GlcNAc, Man5GlcNAc I and II isomers and Man4GlcNAc having the following structures: Man9GlcNAc, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-2)Man(alpha 1-6)]Man(alpha 1-6) [Man(alpha 1-2)Man(alpha 1-3)]Man(beta 1-4)GlcNAc; Man5GlcNAc I, Man(alpha 1-3)[Man(alpha 1-6)]-Man(alpha 1-6)Man(alpha 1-3)] Man(beta 1-4)GlcNAc; Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3) [Man(alpha 1-6)]Man(beta 1-4)GlcNAc; Man4GlcNAc, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc. The different oligosaccharide isomers resulting from alpha-D-mannosidase hydrolysis were analyzed by 1H-NMR spectroscopy after HPLC separation. The cytosolic alpha-D-mannosidase activity is able to hydrolyse all types of alpha-mannosidic linkages found in the glycans of the oligomannosidic type, i.e. alpha-1,2, alpha-1,3 and alpha-1,6. Nevertheless the enzyme is highly active on branched Man9GlcNAc or Man5GlcNAc I oligosaccharides and rather inactive towards the linear Man4GlcNAc oligosaccharide. Structural analysis of the reaction products of the soluble alpha-D-mannosidase acting on Man5-GlcNAc I and Man9GlcNAc gives Man3GlcNAc, Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4)GlcNAc, and Man5GlcNAc II oligosaccharides, respectively. This Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc, represents the 'construction' Man5 oligosaccharide chain of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. The cytosolic alpha-D-mannosidase is activated by Co2+, insensitive to 1-deoxymannojirimycin but strongly inhibited by swainsonine in the presence of Co2+ ions. The enzyme shows a highly specific action different from that previously described for the lysosomal alpha-D-mannosidases [Michalski, J.C., Haeuw, J.F., Wieruszeski, J.M., Montreuil, J. and Strecker, G. (1990) Eur. J. Biochem. 189, 369-379]. A possible complementarity between cytosolic and lysosomal alpha-D-mannosidase activities in the catabolism of N-glycosylprotein is proposed.  相似文献   

16.
Incubation of a membrane preparation from the lactating bovine mammary gland with UDP-[3H]GlcNAc, GDP-[14C]Man, and UDP-[3H]Glc results in the biosynthesis of 15 lipid-linked saccharides that differ from one another by a monosaccharide unit. Pulse and chase kinetics indicate that these glycolipids are related to one another as precursor products for the biosynthesis of asparagine-linked glycoproteins of this tissue. [Man-14C]- and [Man-14C, GlcNAc-3H]saccharides were prepared from corresponding glycolipids by mild acid hydrolysis. Following extensive purification by paper and gel filtration chromatography, structural characterization was conducted on tri-, tetra-, penta-, and undecasaccharides via size determination on calibrated columns of Bio-Gel P-2 and P-4, compositional analysis, exo- and endoglycosidase digestions, methylation, Smith degradation, and acetolysis. These structures were identified as: Man beta 1 leads to 4(3)GlcNAc beta 1 leads to 4(3)Glc-NAc, Man alpha 1 leads to 3Man beta 1 leads to 4(3)GlcNAc beta 1 leads to 4(3)GlcNAc, Man alpha 1 leads to 3(Man alpha 1 leads to 6)Man beta 1 leads to 4(3)Glc NAc beta 1 leads to 4(3)Glc-NAc, and Man alpha 1 leads to 2 Man alpha 1 leads to 2Man alpha 1 leads to 3(Man alpha 1 leads to 2Man alpha 1 leads to 6[Man alpha 1 leads to 2Man alpha 1 leads to 3]Man alpha 1 leads to 6)Man beta 1 leads to 4(3)GlcNAc beta 1 leads to 4(3)GlcNAc.  相似文献   

17.
UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I catalyzes an essential first step in the conversion of high mannose to hybrid and complex N-glycans (Schachter, H. (1986) Biochem. Cell Biol. 64, 163-181; Oppenheimer, C.L., and Hill, R.L. (1981) J. Biol. Chem. 256, 799-804), i.e. the addition of GlcNAc to (Man alpha 1-6(Man alpha 1-3)Man alpha 1-6)(Man alpha 1-3)Man beta 1-4GlcNAc-OR to form (Man alpha 1-6(Man alpha 1-3)Man alpha 1-6)(GlcNAc beta 1-2Man alpha 1- 3)Man beta 1-4GlcNAc-OR. The enzyme has been purified from Triton X-100 extracts of rabbit liver by chromatography on CM-Sephadex, Affi-Gel blue, UDP-hexanolamine-Sepharose, and a novel adsorbent in which UDP-GlcNAc is linked to thiopropyl-Sepharose at the 5-position of uracil. The enzyme exists in crude liver extracts in two molecular weight forms separable on Sephadex G-200. The low molecular weight form was purified 64,000-fold with a specific activity of 19.8 mumol/min/mg. The pure enzyme was free of N-acetylglucosaminyltransferase II-V activities. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single major band of Mr 45,000 and two minor bands of Mr 54,000 and 50,000. All three bands showed retarded elution from an affinity column in which the acceptor substrate for the transferase was covalently linked to Sepharose. Kinetic analysis indicated a largely ordered sequential mechanism with UDP-GlcNAc binding to the enzyme first and UDP leaving last. Studies with synthetic analogues of the substrate Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc showed that an unsubstituted equatorial hydroxyl on carbon 4 of the beta-linked Man residue was essential for enzyme activity.  相似文献   

18.
Structures of the sugar chains of mouse immunoglobulin G   总被引:2,自引:0,他引:2  
The asparagine-linked sugar chains of mouse immunoglobulin G (IgG) were quantitatively liberated as radioactive oligosaccharides from the polypeptide portions by hydrazinolysis followed by N-acetylation, and NaB3H4 reduction. After fractionation by paper electrophoresis, lectin (RCA120) affinity high-performance liquid chromatography, and gel filtration, their structures were studied by sequential exoglycosidase digestion in combination with methylation analysis. Mouse IgG was shown to contain the biantennary complex type sugar chains. Eight neutral oligosaccharide structures, viz, +/- Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(+/- Gal beta 1---- 4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAc, were found after the sialidase treatment. The molar ratio of the sugar chains with 2,1, and 0 galactose residues was 2:5:3. The galactose residue in the monogalactosylated sugar chains was distributed on Man alpha 1----3 and Man alpha 1----6 sides in the ratio of 1:3. The oligosaccharides were almost wholly fucosylated and contained no bisecting N-acetylglucosamine which is present in human, rabbit, and bovine IgGs.  相似文献   

19.
Pyridylamino (PA) derivatives of sugar chains were converted to 1-amino-1-deoxy derivatives. PA-lactose as a model compound was reduced with hydrogen, then treated with hydrazine. The product obtained was identified as 1-amino-1-deoxylactitol by mass spectrometry and chromatography with 1-amino-1-deoxylactitol as standard. PA-N-acetylglucosamine was converted to 1-amino-1-deoxy-N-acetylglucosaminitol under the same conditions. As an application, Man alpha 1-6(Man alpha 1-3)Man alpha 1- 6(Man alpha 1-2Man alpha 1-3)-Man beta 1-4GlcNAc beta 1-4GlcNAc-PA was converted to the 1-amino-1-deoxy derivative, which was further derivatized with fluorescein isothiocyanate or biotin sulfo-N-hydroxy-succinimide ester. Binding of these derivatives to concanavalin A dot-blotted on a nitrocellulose membrane was confirmed by fluorescence and by streptavidin-peroxidase conjugate. This conversion allowed replacement of the PA-group in PA-sugar chains which can be easily purified from glycoconjugates.  相似文献   

20.
The structures of the sugar chains present in two human monoclonal IgM molecules purified from the serum of a patient with Waldenstr?m's macroglobulinemia have been determined. The asparagine-linked sugar chains were liberated as oligosaccharides by hydrazinolysis and labeled by reduction with NaB3H4 after N-acetylation. Their structures were studied by serial lectin column chromatography and sequential exoglycosidase digestion in combination with methylation analysis. These two IgM's were shown to contain almost the same sugar chains. The sugar chains were a mixture of a series of high-mannose-type and biantennary complex-type oligosaccharides. The complex-type oligosaccharides contain Man alpha 1----6(+/- GlcNAc beta 1----4)(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAc as their core and GlcNAc beta 1----, Gal beta 1----4GlcNAc beta 1---- and Neu5Ac alpha 2----6Gal beta 1----4GlcNAc beta 1---- groups in their outer chain moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号