首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
Trimethyltin (TMT), a by-product of tin, is used in a wide variety of industrial and agricultural purposes which serves as a model neurotoxicant in hippocampal neurodegeneration, and this could, in turn, be exploited for various therapeutic compounds essential for hippocampal neurodegeneration. Therefore, the present investigation explores the sequential changes in behavior, oxidative burden, and apoptosis following TMT administration in rat hippocampus. Male SD rats weighing 250 g were given single dose of 8.5 mg/kg TMT (i.p.) that resulted in “TMT syndrome” which begins at the third post-TMT exposure and continued till 21 days posttreatment. This resulted in behavioral alteration (aggression and spontaneous seizures), cognitive impairment as assessed by plus maze, and passive avoidance resulting in short-term memory deficits. These behavioral alterations were associated with an increase in oxidative stress. The levels of malondialdehyde, reactive oxygen species, and protein carbonyl were significantly increased (p?<?0.001) in the TMT-treated rats after the third day of exposure and were maximum at day 14 postexposure. The glutathione system was not able to adapt rapidly in response to oxidative stress which resulted in imbalance in redox status. The imbalance in the redox state resulted in the death of neurons as seen by a significant increase in caspase activation at gene as well as protein level after TMT exposure on day 14, quoting an extent of changes. Therefore, it is proposed that behavioral deficits could be accounted by the impairment of endogenous glutathione homeostasis which resulted in death of neurons in the hippocampal region.  相似文献   

2.
Trimethyltin (TMT) is an organotin compound with potent neurotoxic effects characterized by neuronal destruction in selective regions, including the hippocampus. Glycogen synthase kinase-3 (GSK-3) regulates many cellular processes, and is implicated in several neurodegenerative disorders. In this study, we evaluated the therapeutic effect of lithium, a selective GSK-3 inhibitor, on the hippocampus of adult C57BL/6 mice with TMT treatment (2.6 mg/kg, intraperitoneal [i.p.]) and on cultured hippocampal neurons (12 days in vitro) with TMT treatment (5 µM). Lithium (50 mg/kg, i.p., 0 and 24 h after TMT injection) significantly attenuated TMT-induced hippocampal cell degeneration, seizure, and memory deficits in mice. In cultured hippocampal neurons, lithium treatment (0–10 mM; 1 h before TMT application) significantly reduced TMT-induced cytotoxicity in a dose-dependent manner. Additionally, the dynamic changes in GSK-3/β-catenin signaling were observed in the mouse hippocampus and cultured hippocampal neurons after TMT treatment with or without lithium. Therefore, lithium inhibited the detrimental effects of TMT on the hippocampal neurons in vivo and in vitro, suggesting involvement of the GSK-3/β-catenin signaling pathway in TMT-induced hippocampal cell degeneration and dysfunction.  相似文献   

3.
Acute treatment with trimethyltin chloride (TMT) produces neuronal damage in the hippocampal dentate gyrus of mice. We investigated the in vivo role of glutathione in mechanisms associated with TMT-induced neural cell damage in the hippocampus by examining mice depleted of endogenous glutathione by prior treatment with 2-cyclohexen-1-one (CHO). In the hippocampus of animals treated with CHO 1h beforehand, a significant increase was seen in the number of single-stranded DNA-positive cells in the dentate gyrus when determined on day 2 after the injection of TMT at a dose of 2.0 mg/kg. Immunoblot analysis revealed that CHO treatment induced a significant increase in the phosphorylation of c-Jun N-terminal kinase in the cytosolic and nuclear fractions obtained from the dentate gyrus at 16 h after the TMT injection. There was also a concomitant increase in the level of phospho-c-Jun in the cytosol at 16 h after the injection. Expectedly, lipid peroxidation was increased by TMT in the hippocampus, and was enhanced by the CHO treatment. Moreover, CHO treatment facilitated behavioral changes induced by TMT. Taken together, our data indicate that TMT-induced neuronal damage is caused by activation of cell death signals induced at least in part by oxidative stress. We conclude that endogenous glutathione protectively regulates neuronal damage induced by TMT by attenuating oxidative stress.  相似文献   

4.
Aims Rutin is one of the flavonoids that has many beneficial effects on the health. Previously, we showed that rutin has a protective effect on trimethyltin (TMT)-induced memory dysfunction in rats. The aim of this study was to investigate the protective effects of rutin on TMT-induced hippocampal injury and the time course profiles of these effects in rats. Methods Four-week-old male Sprague-Dawley (SD) rats were fed chow with or without rutin (0.75%) during the experimental period and were administered with a single dose of TMT (8.5 mg/kg b.w., p.o.) or vehicle at 6 weeks of age. The rats were sacrificed 5, 10, or 20 days after the TMT administration and then histological and molecular examinations of the hippocampus were performed. Results Rutin supplementation suppressed the TMT-induced decrease in the number of hippocampal pyramidal neurons 20 days after TMT administration. The TMT-induced up-regulation of the mRNA expression levels of reactive microglia marker and pro-inflammatory cytokines were reversed by rutin supplementation 10 or 20 days after the TMT administration. Conclusions These results suggested that the neuroprotective effect of rutin on TMT-induced spatial memory impairment could be attributable to its inhibitory effect against microglial activation and its role in synapse formation via neurotrophic factors in the hippocampus.  相似文献   

5.
Abstract: The effects on brain neurochemistry of two neurotoxic tin compounds, trimethyltin (TMT) hydroxide and triethyltin (TET) sulfate, were examined. Long-Evans rats were treated with TMT hydroxide (1 mg/kg, i.p.) on alternate days from day 2 to 29 of life. These treatments caused a weight deficit of 10–20% by the time the animals were killed on day 55 by head-focused microwave irradiation. These TMT treatments are known to cause severe neuronal loss in the hippocampus and lesser damage in other brain regions. Accordingly, the concentration of γ-aminobutyric acid (GABA) was decreased in the hippocampus; however, acetylcholine and choline concentrations were unaffected. These data suggest that TMT-induced effects on GABA systems are greater than that due simply to generalized neuronal loss. The TMT treatments also caused a significant decrease in dopamine concentrations in the striatum, but did not alter the concentrations of dihydroxyphenylacetic acid or homovanillic acid, the acidic metabolites of dopamine. Conversely, concentrations of dopamine and norepinephrine in the brain stem and norepinephrine in the cerebellum were not altered. Despite reports in the literature of TMT-induced neuronal damage in areas of the cortex, no effects on GABA, acetylcholine, or choline levels were found in the cortical areas examined, or in the hypothalamus. TET sulfate (0.3 mg/kg/day) was administered for 6 consecutive days of every week during days 2–29 of life. This dose is lower than that needed to cause intramyelin edema, yet it does result in long-term behavioral changes. Despite this, no changes in the concentration of any of the measured neurotransmitters or their metabolites were detected. In concert, these data demonstrate that neurochemical methods should not be used as neurological “screens,” but rather to define specific mechanisms suggested by detailed behavior, pharmacological, and/or physiological studies.  相似文献   

6.
L Zimmer  D Woolley  L Chang 《Life sciences》1985,36(9):851-858
Because of the similarity in the pattern of limbic sites damaged by both compounds, it has been suggested that trimethyltin (TMT) may be an excitotoxin like kainic acid (KA). KA produces seizures which eventually result in neuronal damage similar to that found in epilepsy. Anticonvulsants reduce both the seizures and pathology associated with KA. Because TMT may also produce seizures, we undertook to determine whether or not some of the TMT-induced limbic neuropathology could result from seizure activity. To do this, a single dose of TMT chloride (either 7.5 or 15 mg/kg) was given per os to rats, and then phenobarbital (30 mg/kg) was administered subcutaneously in repeated doses. Treatment with phenobarbital did not prevent pathologic changes in the hippocampus, dentate gyrus, and pyriform or prepyriform cortex. Since phenobarbital did not protect against TMT-induced neuronal damage, as it has been reported by others to protect against KA-induced damage, the present findings suggest that these two toxicants probably produce hippocampal pathology via different mechanisms and that the TMT-induced pathologic changes do not require sustained electrical seizure activity.  相似文献   

7.
The selective vulnerability of specific neuronal subpopulations to trimethyltin (TMT), an organotin compound with neurotoxicant effects selectively involving the limbic system and especially marked in the hippocampus, makes it useful to obtain in vivo models of neurodegeneration associated with behavioural alterations, such as hyperactivity and aggression, cognitive impairment as well as temporal lobe epilepsy. TMT has been widely used to study neuronal and glial factors involved in selective neuronal death, as well as the molecular mechanisms leading to hippocampal neurodegeneration (including neuroinflammation, excitotoxicity, intracellular calcium overload, mitochondrial dysfunction and oxidative stress). It also offers a valuable instrument to study the cell–cell interactions and signalling pathways that modulate injury-induced neurogenesis, including the involvement of newly generated neurons in the possible repair processes. Since TMT appears to be a useful tool to damage the brain and study the various responses to damage, this review summarises current data from in vivo and in vitro studies on neuroprotective strategies to counteract TMT-induced neuronal death, that may be useful to elucidate the role of putative candidates for translational medical research on neurodegenerative diseases.  相似文献   

8.
Evidence demonstrates that rodents learn to associate a foot shock with time of day, indicating the formation of a fear related time-stamp memory, even in the absence of a functioning SCN. In addition, mice acquire and retain fear memory better during the early day compared to the early night. This type of memory may be regulated by circadian pacemakers outside of the SCN. As a first step in testing the hypothesis that clock genes are involved in the formation of a time-stamp fear memory, we exposed one group of mice to fox feces derived odor (TMT) at ZT 0 and one group at ZT 12 for 4 successive days. A separate group with no exposure to TMT was also included as a control. Animals were sacrificed one day after the last exposure to TMT, and PER2 and c-Fos protein were quantified in the SCN, amygdala, hippocampus, and piriform cortex. Exposure to TMT had a strong effect at ZT 0, decreasing PER2 expression at this time point in most regions except the SCN, and reversing the normal rhythm of PER2 expression in the amygdala and piriform cortex. These changes were accompanied by increased c-Fos expression at ZT0. In contrast, exposure to TMT at ZT 12 abolished the rhythm of PER2 expression in the amygdala. In addition, increased c-Fos expression at ZT 12 was only detected in the central nucleus of the amygdala in the TMT12 group. TMT exposure at either time point did not affect PER2 or c-Fos in the SCN, indicating that under a light-dark cycle, the SCN rhythm is stable in the presence of repeated exposure to a fear-inducing stimulus. Taken together, these results indicate that entrainment to a fear-inducing stimulus leads to changes in PER2 and c-Fos expression that are detected 24 hours following the last exposure to TMT, indicating entrainment of endogenous oscillators in these regions. The observed effects on PER2 expression and c-Fos were stronger during the early day than during the early night, possibly to prepare appropriate systems at ZT 0 to respond to a fear-inducing stimulus.  相似文献   

9.
Prion diseases are fatal neurodegenerative diseases of the CNS that are associated with the accumulation of misfolded cellular prion protein. There are several different strains of prion disease defined by different patterns of tissue vacuolation in the brain and disease time course, but features of neurodegeneration in these strains have not been extensively studied. Our previous studies using the prion strains ME7, 79A and 22L showed that infected mice developed behavioural deficits in the same sequence and temporal pattern despite divergent end-stage neuropathology. Here the objective was to address the hypothesis that synaptic loss would occur early in the disease in all three strains, would precede neuronal death and would be associated with the early behavioural deficits. C57BL/6 mice inoculated with ME7, 79A, or 22L-infected brain homogenates were behaviourally assessed on species typical behaviours previously shown to change during progression and euthanised when all three strains showed statistically significant impairment on these tasks. A decrease in labelling with the presynaptic marker synaptophysin was observed in the stratum radiatum of the hippocampus in all three strains, when compared to control animals. Negligible cell death was seen by TUNEL at this time point. Astrocyte and microglial activation and protease resistant prion protein (PrPSc) deposition were assessed in multiple brain regions and showed some strain specificity but also strongly overlapping patterns. This study shows that despite distinct pathology, multiple strains lead to early synaptic degeneration in the hippocampus, associated with similar behavioural deficits and supports the idea that the initiation of synaptic loss is a primary target of the misfolded prion agent.  相似文献   

10.
The α2δ subunit of voltage‐sensitive calcium channels (VSCCs) is the molecular target of pregabalin and gabapentin, two drugs marked for the treatment of focal epilepsy, neuropathic pain, and anxiety disorders. Expression of the α2δ subunit is up‐regulated in the dorsal horns of the spinal cord in models of neuropathic pain, suggesting that plastic changes in the α2δ subunit are associated with pathological states. Here, we examined the expression of the α2δ‐1 subunit in the amygdala, hippocampus, and frontal cortex in the trimethyltiazoline (TMT) mouse model of innate anxiety. TMT is a volatile molecule present in the feces of the rodent predator, red fox. Mice that show a high defensive behavior during TMT exposure developed anxiety‐like behavior in the following 72 h, as shown by the light–dark test. Anxiety was associated with an increased expression of the α2δ‐1 subunit of VSCCs in the amygdaloid complex at all times following TMT exposure (4, 24, and 72 h). No changes in the α2δ‐1 protein levels were seen in the hippocampus and frontal cortex of mice exposed to TMT. Pregabalin (30 mg/kg, i.p.) reduced anxiety‐like behavior in TMT‐exposed mice, but not in control mice. These data offer the first demonstration that the α2δ‐1 subunit of VSCCs undergoes plastic changes in a model of innate anxiety, and supports the use of pregabalin as a disease‐dependent drug in the treatment of anxiety disorders.  相似文献   

11.
The distribution patterns of M1 and M2 muscarinic receptor subtypes following TMT and JO 1784 administration in the male Sprague-Dawley rat were investigated. In the present study, JO 1784 was injected in doses of 1, 4 and 16 mg/kg i.p. for one week prior to the single injection of TMT (8 mg/kg i.p.) and subsequently for 33 days. The effects of JO 1784 on the density of muscarinic receptor sub-types (M1 and M2) in the control and trimethyltin (TMT) treated rats were then evaluated. The topographic distribution and changes in muscarinic (M1 and M2) receptor densities were determined by means of autoradiography using [3H]quinuclidinylbenzilate (QNB). Both sub-types of muscarinic receptors contributed to the observed decrease in total muscarinic receptor binding in TMT-treated rats. In control rats, JO 1784 alone decreased M1 receptor density in the amygdaloid nuclei, basal ganglia, cortex and hippocampus and decreased M2 receptor density in the amygdaloid nuclei, basal ganglia, cortex, hippocampus, hypothalamus and septal regions. In TMT treated rats, chronic JO 1784 administration has a “neuroprotective effect” on both M1 and M2 receptors subtypes. Thus, following chronic administration of JO 1784 to TMT treated rats, both increases and decreases in M1 receptor density were observed relative to TMT animals. A significant increase in M1 receptor density was found in the cortex, olfactory regions, septum, thalamus and basal forebrain nuclei. In the hippocampus (CA2 and CA3), a significant decrease in M1 receptor density was observed. In TMT-treated rats, JO 1784 produced a significant increase in M2 receptor density in several brain regions with the most marked effects occurring in the amygdaloid nuclei, basal ganglia, cortex, hippocampus and hypothalamus. The ability of the selective sigma ligand, JO 1784, to attenuate the loss of muscarinic receptors in TMT treated rats could be of importance in the development of novel neuroprotective drugs.  相似文献   

12.
Trimethyltin (TMT) is an organometal neurotoxin which produces lesions primarily in the limbic system. Selectivity seems to depend upon the dose, but the hippocampus and related entorhinal cortical structures, of importance for learning and memory, are most often described as target sites. We have previously demonstrated that subjects treated with a moderate dose of TMT prior to acquisition sessions, are unable to learn a forward autoshaping task with a 6 sec delay of reinforcement, but are capable of acquiring the same task when no delay of reinforcement is used. These data suggested that the performance deficit is one of learning (i.e. consolidation) rather than of memory (i.e. storage), retrieval, or sensorimotor impairment. To more rigorously test this hypothesis, we determined if performance of a task already learned would be impaired by the neurotoxin. Adult male Long Evans rats were given 10 acquisition sessions of 24 trials, following which TMT (6.0 mg/kg, p.o.) was administered. One month later, these rats performed the lever-touching behavior as well as controls, despite the fact that the same dose of TMT interfered with learning if given one month prior to acquisition sessions, thus confirming our hypothesis. In a second experiment we determined if the peptide analog of vasopressin, desglycinamide-8-arginine vasopressin (DGAVP), could reverse a learning deficit in a population of non-learners. Rats were treated with TMT or water vehicle one month prior to autoshaping. TMT significantly retarded acquisition. After 10 sessions of 12 trials each, non-learners (i.e. rats treated with TMT that failed to associate the lever with delivery of a reinforcer) were administered saline or DGAVP (7.5 micrograms/kg, s.c.) 1 hr before sessions 11-13; treatment was discontinued prior to sessions 14 and 15. Peptide treated subjects showed evidence of acquisition and exhibited higher levels of lever-directed behavior than saline treated nonlearners. Performance was maintained after DGAVP treatment was discontinued, indicating that the learning-enhancing action of DGAVP was not transient or state-dependent.  相似文献   

13.
Li  XinYu  Ma  Jingrui  Xu  Jia  Zhu  DaShuai  Li  Anran  Che  YongZhe  Chen  DongYan  Feng  XiZeng 《Neurochemical research》2017,42(11):3268-3278

Glucocorticoid receptors (GRs) exert actions on the hippocampus that are important for memory formation. There are correlations between vascular dysfunctions and GR-related gene expression. Both vascular dysfunction and GR gene expression decline occur during the ageing process. Therefore, hypotensors, which have effects on improving vascular dysfunction, may be able to ameliorate GR gene expression decline in ageing mice and improve ageing-mediated memory deficits. In this study, we hypothesized that hypotensors could alleviate the decline of GR gene expression and ameliorate age-induced learning and memory deficits in a d-gal-induced ageing mice model. In line with our hypothesis, we found that chronic d-gal treatment decreased GR and DCX expression in the hippocampus, leading to learning and memory deficits. Amlodipine (AM) and puerarin (PU) treatment improved GR gene expression decline in the hippocampus and ameliorated the learning and memory deficits of d-gal-treated mice. These changes correlated with enhanced DCX expression and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Furthermore, PU treatment conveyed better effects than AM treatment, but combination therapy did not enhance the effects on improving GR expression. However, we did not find evidence of these changes in non-d-gal-treated mice that lacked GR gene expression decline. These results suggest that AM and PU could improve d-gal-induced behavioural deficits in correlation with GR gene expression.

  相似文献   

14.
Abstract: The effects of Al on the central cholinergic system have been studied. Al, at a dose of 10 mg/kg of body weight/day for 4 weeks, had a deleterious effect on the activities of biosynthetic (choline acetyltransferase) and hydrolytic (acetylcholinesterase) enzymes of the neurotransmitter acetylcholine. The levels of acetylcholine were also significantly lowered in different brain regions at the end of the dose regimen. There was a significant decrease in high-affinity choline uptake following Al exposure. Muscarinic acetylcholine receptor binding studies revealed a decreased number of binding sites ( B max), with the maximum effects being manifested in the hippocampus. Exogenous addition of 10 µ M desferrioxamine restored the muscarinic receptor binding completely. The impaired cholinergic functioning had severe effects on cognitive functions. Neurobehavioral deficits were manifested in terms of decreased active (52%) and passive (73.30%) avoidance tests. The results suggest that Al exerts its toxic effects by altering cholinergic transmission, which is ultimately reflected in neurobehavioral deficits.  相似文献   

15.
Trimethyltin (TMT) is an organotin neurotoxicant with effects that are selectively localized to the limbic system (especially the hippocampus), which produces memory deficits and temporal lobe seizures. Galectin-3 (Gal-3) is a beta-galactoside-binding lectin that is important in cell proliferation and regulation of apoptosis. The present study evaluated the temporal expression of Gal-3 in the hippocampus of adult BALB/c mice after TMT treatment (i.p., 2.5 mg/kg). Western blotting analyses showed that Gal-3 immunoreactivity began to increase 2 days after treatment; the immunoreactivity peaked significantly within 4 days after treatment but significantly declined between days 4 and 8. Immunohistochemical analysis indicated that Gal-3 expression was very rare in the hippocampi of vehicle-treated controls. However, Gal-3 immunoreactivity appeared between 2 and 8 days after TMT treatment and was primarily localized to the hippocampal dentate gyrus (DG), in which neuronal degeneration occurred. The immunoreactivity was detected predominantly in most of the Iba1-positive microglia and in some GFAP-positive astrocytes of the hippocampal DG. Furthermore, Gal-3 expression co-localized with the pro-inflammatory enzymes cyclooxygenase-2 and inducible nitric oxide synthase in the hippocampal DG. Therefore, we suggest that Gal-3 is involved in the inflammatory process of neurodegenerative disorder induced by organotin intoxication.  相似文献   

16.
Aging is associated with extensive cognitive impairments, although the biochemical and physiological basis of these deficits are unknown. As the hippocampus plays a vital role in cognitive functions, we have selected this tissue to analyze changes in gene expression at two different ages. Array technology is utilized to explore how gene expression in hippocampus is affected by accelerated cognitive impairment in Senescence-Accelerated Mouse (SAM P8) strain. We show that the expression of genes associated with stress response and xenobiotic metabolism are strongly affected at a time when cognitive impairment occurs. Affected genes include those involved both in signaling and chaperone function. The effector and regulator family of chaperones, which play an important role in protein folding, and also the xenobiotic metabolizing enzymes that play crucial role in antioxidant systems, show significant changes in gene expression between 4 and 12 months.  相似文献   

17.
Studies in humans and animal models link maternal infection and imbalanced levels of inflammatory mediators in the foetal brain to the aetiology of neuropsychiatric disorders. In a number of animal models, it was shown that exposure to viral or bacterial agents during a period that corresponds to the second trimester in human gestation triggers brain and behavioural abnormalities in the offspring. However, little is known about the early cellular and molecular events elicited by inflammation in the foetal brain shortly after maternal infection has occurred. In this study, maternal infection was mimicked by two consecutive intraperitoneal injections of 200 μg of LPS (lipopolysaccharide)/kg to timed-pregnant rats at GD15 (gestational day 15) and GD16. Increased thickness of the CP (cortical plate) and hippocampus together with abnormal distribution of immature neuronal markers and decreased expression of markers for neural progenitors were observed in the LPS-exposed foetal forebrains at GD18. Such effects were accompanied by decreased levels of reelin and the radial glial marker GLAST (glial glutamate transporter), and elevated levels of pro-inflammatory cytokines in maternal serum and foetal forebrains. Foetal inflammation elicited by maternal injections of LPS has discrete detrimental effects on brain development. The early biochemical and morphological changes described in this work begin to explain the sequelae of early events that underlie the neurobehavioural deficits reported in humans and animals exposed to prenatal insults.  相似文献   

18.
Chronic restraint stress causes spatial learning and memory deficits, dendritic atrophy of the hippocampal pyramidal neurons and alterations in the levels of neurotransmitters in the hippocampus. In contrast, intracranial self-stimulation (ICSS) rewarding behavioral experience is known to increase dendritic arborization, spine and synaptic density, and increase neurotransmitter levels in the hippocampus. In addition, ICSS facilitates operant and spatial learning, and ameliorates fornix-lesion induced behavioral deficits. Although the effects of stress and ICSS are documented, it is not known whether ICSS following stress would ameliorate the stress-induced deficits. Accordingly, the present study was aimed to evaluate the role of ICSS on stress-induced changes in hippocampal morphology, neurochemistry, and behavioral performance in the T-maze. Experiments were conducted on adult male Wistar rats, which were randomly divided into four groups; normal control, stress (ST), self-stimulation (SS), and stress + self-stimulation (ST + SS). Stress group of rats were subjected to restraint stress for 6 h daily over 21 days, SS group animals were subjected to SS from ventral tegmental area for 10 days and ST + SS rats were subjected to restraint stress for 21 days followed by 10 days of SS. Interestingly, our results show that stress-induced behavioral deficits, dendritic atrophy, and decreased levels of neurotransmitters were completely reversed following 10 days of SS experience. We propose that SS rewarding behavioral experience ameliorates the stress-induced cognitive deficits by inducing structural and biochemical changes in the hippocampus.  相似文献   

19.
A modified HPLC method is described for the determination of amino acids [aspartic acid, glutamic acid, glutamine, glycine, taurine, and gamma-aminobutyric acid (GABA)] in brain tissue utilizing precolumn derivatization with o-phthalaldehyde (OPA)-tert-butyl-thiol and electrochemical detection. A simple extraction procedure was employed and DL-homoserine used as internal standard. A neurotoxin previously shown to affect brain amino acids (trimethyltin, TMT) and a psychoactive compound hypothesized to act on these neurochemicals (delta-9-tetrahydrocannabinol, THC) were administered to adult male rats and amino acids were measured. Results revealed a gradient of distribution of most amino acids, with lowest levels posteriorly in the brain stem and increasing to the highest values in anterior cortical regions. TMT increased glutamine significantly in all brain regions examined, but increased glycine and decreased taurine only in the frontal cortex and hippocampus. No significant changes in any amino acid were found in hippocampus after THC treatment. The results establish the validity and usefulness of this HPLC method for detecting neurotoxicity-related changes in brain amino acid metabolism.  相似文献   

20.
Neuropathic pain is initiated or caused due to the primary lesion or dysfunction in the nervous system and is proposed to be linked to a cascade of events including excitotoxicity, oxidative stress, neuroinflammation and apoptosis. Oxidative/nitrosative stress aggravates the neuroinflammation and neurodegeneration through poly (ADP) ribose polymerase (PARP) overactivation. Hence, the present study investigated the antioxidant and anti-inflammatory effects of the phytoconstituent; morin in chronic constriction injury (CCI) induced neuropathy. Neuropathic pain was induced by chronic constriction of the left sciatic nerve in rats, and the effect of morin (15 and 30 mg/kg, p.o.) was evaluated by measuring behavioural and biochemical changes. Mechanical, chemical and thermal stimuli confirmed the CCI-induced neuropathic pain and treatment with morin significantly improved these behavioural deficits and improved the sciatic functional index by the 14th day after CCI induction. After 14 days of CCI induction, oxidative/nitrosative stress and inflammatory markers were elevated in rat lumbar spinal cord. Oxidative stress induced PARP overactivation resulted in depleted levels of ATP and elevated levels of poly (ADP) ribose (PAR). Treatment with morin reduced the levels of nitrites, restored glutathione levels and abrogated the oxidant induced DNA damage. It also mitigated the increased levels of TNF-α and IL-6. Protein expression studies confirmed the PARP inhibition and anti-inflammatory activity of morin. Findings of this study suggest that morin, by virtue of its antioxidant properties, limited PARP overactivation and neuroinflammation and protected against CCI induced functional, behavioural and biochemical deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号