首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 215 毫秒
1.
2.
Social animal species present a vast repertoire of social interactions when encountering conspecifics. Reproduction-related behaviors, such as mating, parental care, and aggression, are some of the most rewarding types of social interactions and are also the most sexually dimorphic ones. This review focuses on rodent species and summarizes recent advances in neuroscience research that link sexually dimorphic reproductive behaviors to sexual dimorphism in their underlying neuronal circuits. Specifically, we present a few possible mechanisms governing sexually-dimorphic behaviors, by hypothalamic and reward-related brain regions. Sex differences in the neural response to social isolation in adulthood are also discussed, as well as future directions for comparative studies with naturally solitary species.  相似文献   

3.
Jaffe K 《Acta biotheoretica》2004,52(3):155-172
The concept of altruism is used in very different forms by computer scientists,economists, philosophers, social scientists, psychologists and biologists. Yet, in order to be useful in social simulations, the concept "altruism" requires a more precise meaning. A quantitative formulation is proposed here, based on the cost/benefit analysis of the altruist and of society at large. This formulation is applied in the analysis of the social dynamic working of behaviors that have been called "altruistic punishments", using the agent based computer model Sociodynamica. The simulations suggest that "altruistic punishment" on its own cannot maintain altruistic behaviors. "Altruistic behavior" is sustainable in the long term only if these behaviors trigger synergetic forces in society that eventually make them produce benefits to most individuals. The simulations suggest however that "altruistic punishment" may work as a "social investment", and is thus better called "decentralized social punishment". This behavior is very efficient in enforcing social norms. The efficiency of decentralized social punishment in enforcing norms was dependent on the type of labor structured of the virtual society. I conclude that what is called "altruistic punishment" emerges as a type of social investment that can evolve either through individual and/or group selection, as a successful device for changing or enforcing norms in a society. Social simulations will help us in better understanding the underlying dynamic working of such devices.  相似文献   

4.
Central pattern generators and the control of rhythmic movements.   总被引:18,自引:0,他引:18  
E Marder  D Bucher 《Current biology : CB》2001,11(23):R986-R996
Central pattern generators are neuronal circuits that when activated can produce rhythmic motor patterns such as walking, breathing, flying, and swimming in the absence of sensory or descending inputs that carry specific timing information. General principles of the organization of these circuits and their control by higher brain centers have come from the study of smaller circuits found in invertebrates. Recent work on vertebrates highlights the importance of neuro-modulatory control pathways in enabling spinal cord and brain stem circuits to generate meaningful motor patterns. Because rhythmic motor patterns are easily quantified and studied, central pattern generators will provide important testing grounds for understanding the effects of numerous genetic mutations on behavior. Moreover, further understanding of the modulation of spinal cord circuitry used in rhythmic behaviors should facilitate the development of new treatments to enhance recovery after spinal cord damage.  相似文献   

5.
Human behaviors can determine the success of efforts to restore predators to ecosystems. While behaviors such as lethal predator control may impede predator restoration, other land management practices can facilitate coexistence between predators and humans. Socio‐psychological theories provide useful tools for understanding and improving these human behaviors. We explore three frameworks to understand what shapes Australian livestock graziers' behaviors with regards to management of the threat that dingoes pose to livestock. These frameworks are the theory of reasoned action (incorporating values and beliefs about dingoes), the social identity approach, and perception of risk. We distributed a survey to Australian graziers by mail and online (n = 138) which allowed recording of information on these three frameworks and their engagement in lethal dingo control. Among the respondents, we found that all three frameworks were linked with lethal dingo control when assessed individually, but when combined in a hierarchical regression, only social identity (specifically, identifying as an “environmentalist” or “pest controller”) was significant in predicting behavior. This result reveals the strength of social norms and normative beliefs over perceived risk in shaping behavior. As such, social identity is a useful metric for predicting and understanding environmental management behavior. Determining what these social identities mean in a given context is important for identifying how to implement behavior change to promote evidence‐based management that facilitates restoration of wildlife such as predators to landscapes where conflict with humans occurs.  相似文献   

6.
Neurobiologists have long sought to understand how circuits in the nervous system are organized to generate the precise neural outputs that underlie particular behaviors. Given the complexity of the nervous system in higher vertebrates this is a daunting task. Nevertheless, recent advances in developmental genetics hold out hope that studies of locomotor and respiratory circuits will provide general insight for understanding how ensembles of neurons are wired to control specific behaviors.  相似文献   

7.
Modulation of circuits underlying rhythmic behaviors   总被引:1,自引:0,他引:1  
Summary What have we learned about behavior from neuromodulatory studies of the crustacean stomatogastric system? The emphasis of this paper has been on the analysis of one single class of behaviors (rhythmic) in terms of microcircuitry (synaptic connections between identified neurons). But in the general case, all behaviors result from the generation of spatio-temporal patterns by the central nervous system. How individual nerve cells interact with each other to produce such patterns is of fundamental interest. We know from work on simple networks that it is possible to link the circuitry of the nervous system with behavior in a precise way, and that instead of a large number of dedicated circuits, behaviors can be altered by chemically adjusting the functional properties of the neuronal elements. One circuit can be configured to perform a variety of different behaviors by activating neurons which contain neuromodulatory substances or in response to neurohormones circulating in the hemolymph. At present we know only a few of the ways neuromodulatory neurons are triggered to release their contents onto the neurons making up CPGs.The findings described here raise many questions. What are the parameters which control the distribution of neuromodulatory substances throughout the nervous system? What happens when more than one neuromodulator is present? At the cellular level, what mechanisms are involved in transforming each neuron from one functional state to another, and then how does the entire constellation of changes give rise to a new output? It is important to answer such questions in reduced networks, because there are presently no techniques available to answer them in the more complex networks of the brain. While there is no question that modulatory activity occurs in the brain, whether or not the principles which have been discovered by using simple invertebrate circuits scale up to vertebrate circuits remains an intriguing question.  相似文献   

8.
Although estrogens are widely considered circulating “sex steroid hormones” typically associated with female reproduction, recent evidence suggests that estrogens can act as local modulators of brain circuits in both males and females. The functional implications of this newly characterized estrogen signaling system have begun to emerge. This essay summarizes evidence in support of the hypothesis that the rapid production of estrogens in brain circuits can drive acute changes in both the production and perception of acoustic communication behaviors. These studies have revealed two fundamental neurobiological concepts: (1) estrogens can be locally produced in brain circuits, independent of levels in nearby circuits and in the circulation and (2) estrogens can have very rapid effects within these brain circuits to modulate social vocalizations, acoustic processing, and sensorimotor integration. This vertebrate‐wide span of research, including vocalizing fishes, amphibians, and birds, emphasizes the importance of comparative model systems in understanding principles of neurobiology.  相似文献   

9.
Alterations in social behavior are among the major negative consequences observed in children with Fetal Alcohol Spectrum Disorders (FASDs). Several independent laboratories have demonstrated robust alterations in the social behavior of rodents exposed to alcohol during brain development across a wide range of exposure durations, timing, doses, and ages at the time of behavioral quantification. Prior work from this laboratory has identified reliable alterations in specific forms of social interaction following moderate prenatal alcohol exposure (PAE) in the rat that persist well into adulthood, including increased wrestling and decreased investigation. These behavioral alterations have been useful in identifying neural circuits altered by moderate PAE1, and may hold importance for progressing toward a more complete understanding of the neural bases of PAE-related alterations in social behavior. This paper describes procedures for performing moderate PAE in which rat dams voluntarily consume ethanol or saccharin (control) throughout gestation, and measurement of social behaviors in adult offspring.  相似文献   

10.
Vocalization is a common means of communication across vertebrates, but the evolutionary origins of the neural circuits controlling these behaviors are not clear. Peripheral mechanisms of sound production vary widely: fish produce sounds with a swimbladder or pectoral fins; amphibians, reptiles, and mammalians vocalize using a larynx; birds vocalize with a syrinx. Despite the diversity of vocal effectors across taxa, there are many similarities in the neural circuits underlying the control of these organs. Do similarities in vocal circuit structure and function indicate that vocal behaviors first arose in a single common ancestor, or have similar neural circuits arisen independently multiple times during evolution? In this review, we describe the hindbrain circuits that are involved in vocal production across vertebrates. Given that vocalization depends on respiration in most tetrapods, it is not surprising that vocal and respiratory hindbrain circuits across distantly related species are anatomically intermingled and functionally linked. Such vocal‐respiratory circuit integration supports the hypothesis that vocal evolution involved the expansion and functional diversification of breathing circuits. Recent phylogenetic analyses, however, suggest vocal behaviors arose independently in all major tetrapod clades, indicating that similarities in vocal control circuits are the result of repeated co‐options of respiratory circuits in each lineage. It is currently unknown whether vocal circuits across taxa are made up of homologous neurons, or whether vocal neurons in each lineage arose from developmentally and evolutionarily distinct progenitors. Integrative comparative studies of vocal neurons across brain regions and taxa will be required to distinguish between these two scenarios.  相似文献   

11.
From invertebrates to humans, males and females of a given species display identifiable differences in behaviors, mostly but not exclusively pertaining to sexual and social behaviors. Within a species, individuals preferentially exhibit the set of behaviors that is typical of their sex. These behaviors include a wide range of coordinated and genetically pre-programmed social and sexual displays that ensure successful reproductive strategies and the survival of the species. What are the mechanisms underlying sex-specific brain function? Although sexually dimorphic behaviors represent the most extreme examples of behavioral variability within a species, the basic principles underlying the sex specificity of brain activity are largely unknown. Moreover, with few exceptions, the quest for fundamental differences in male and female brain structures and circuits that would parallel that of sexual behaviors and peripheral organs has so far uncovered modest quantitative rather than the expected clear qualitative differences. As will be detailed in this review, recent advances have directly challenged the established notion of the unique role of steroid hormones in organizing and activating male- and female-specific brain circuits and have uncovered new mechanisms underlying the neural control of sex-specific behaviors.  相似文献   

12.
How are functional neural circuits formed during development? Despite recent advances in our understanding of the development of individual neurons, little is known about how complex circuits are assembled to generate specific behaviors. Here, we describe the ways in which Drosophila motor circuits serve as an excellent model system to tackle this problem. We first summarize what has been learned during the past decades on the connectivity and development of component neurons, in particular motor neurons and sensory feedback neurons. We then review recent progress in our understanding of the development of the circuits as well as studies that apply optogenetics and other innovative techniques to dissect the circuit diagram. New approaches using Drosophila as a model system are now making it possible to search for developmental rules that regulate the construction of neural circuits.  相似文献   

13.
In many animal species individuals aggregate to live in groups. A range of experimental approaches in different animals, including studies of social feeding in nematodes, maternal behavior in rats and sheep, and pair-bonding in voles, are providing insights into the neural bases for these behaviors. These studies are delineating multiple neural circuits and gene networks in the brain that interact in ways that are as yet poorly understood to coordinate social behavior.  相似文献   

14.
Recent studies suggest that obesity may be "contagious" between individuals in social networks. Social contagion (influence), however, may not be identifiable using traditional statistical approaches because they cannot distinguish contagion from homophily (the propensity for individuals to select friends who are similar to themselves) or from shared environmental influences. In this paper, we apply the stochastic actor-based model (SABM) framework developed by Snijders and colleagues to data on adolescent body mass index (BMI), screen time, and playing active sports. Our primary hypothesis was that social influences on adolescent body size and related behaviors are independent of friend selection. Employing the SABM, we simultaneously modeled network dynamics (friendship selection based on homophily and structural characteristics of the network) and social influence. We focused on the 2 largest schools in the National Longitudinal Study of Adolescent Health (Add Health) and held the school environment constant by examining the 2 school networks separately (N?=?624 and 1151). Results show support in both schools for homophily on BMI, but also for social influence on BMI. There was no evidence of homophily on screen time in either school, while only one of the schools showed homophily on playing active sports. There was, however, evidence of social influence on screen time in one of the schools, and playing active sports in both schools. These results suggest that both homophily and social influence are important in understanding patterns of adolescent obesity. Intervention efforts should take into consideration peers' influence on one another, rather than treating "high risk" adolescents in isolation.  相似文献   

15.
Adolescence is the developmental epoch during which children become adults—intellectually, physically, hormonally and socially. Brain development in critical areas is ongoing. Adolescents are risk-taking and novelty-seeking and they weigh positive experiences more heavily and negative experiences less than adults. This inherent behavioral bias can lead to risky behaviors like drug taking. Most drug addictions start during adolescence and early drug-taking is associated with an increased rate of drug abuse and dependence.The hormonal changes of puberty contribute to physical, emotional, intellectual and social changes during adolescence. These hormonal events do not just cause maturation of reproductive function and the emergence of secondary sex characteristics. They contribute to the appearance of sex differences in non-reproductive behaviors as well. Sex differences in drug use behaviors are among the latter. The male predominance in overall drug use appears by the end of adolescence, while girls develop the rapid progression from first use to dependence (telescoping) that represent a female-biased vulnerability. Sex differences in many behaviors including drug use have been attributed to social and cultural factors. A narrowing gap in drug use between adolescent boys and girls supports this thesis. However, some sex differences in addiction vulnerability reflect biologic differences in brain circuits involved in addiction. The purpose of this review is to summarize the contribution of sex differences in the function of ascending dopamine systems that are critical to reinforcement, to briefly summarize the behavioral, neurochemical and anatomical changes in brain dopaminergic functions related to addiction that occur during adolescence and to present new findings about the emergence of sex differences in dopaminergic function during adolescence.  相似文献   

16.
17.
Upon encountering a conspecific in the wild, males have to rapidly detect, integrate and process the most relevant signals to evoke an appropriate behavioral response. Courtship and aggression are the most important social behaviors in nature for procreation and survival: for males, making the right choice between the two depends on the ability to identify the sex of the other individual. In flies as in most species, males court females and attack other males. Although many sensory modalities are involved in sex recognition, chemosensory communication mediated by specific molecules that serve as pheromones plays a key role in helping males distinguish between courtship and aggression targets. The chemosensory signals used by flies include volatile and non-volatile compounds, detected by the olfactory and gustatory systems. Recently, several putative olfactory and gustatory receptors have been identified that play key roles in sex recognition, allowing investigators to begin to map the neuronal circuits that convey this sensory information to higher processing centers in the brain. Here, we describe how Drosophila melanogaster males use taste and smell to make correct behavioral choices.  相似文献   

18.
Carey M  Lisberger S 《Neuron》2002,35(2):223-226
Cellular mechanisms of plasticity must be linked to circuit mechanisms of behavior to understand learning and memory. Studies of how learning occurs in cerebellar circuits for classical conditioning of eyeblinks are meeting this challenge admirably. Several recent papers have added to the richness of our understanding of cerebellar learning by correlating complex aspects of learned behaviors with hitherto underappreciated properties of the cerebellar circuit.  相似文献   

19.
内侧前额叶与社会认知   总被引:2,自引:0,他引:2  
早期的研究表明杏仁核、前额叶、颞上沟、前扣带回等与人类的社会认知活动有关;随着多种新技术的应用。越来越多的研究发现其它一些脑区结构(如岛叶、基底节、白质等)也与社会认知和行为有关。本文综述了内侧前额叶在社会认知中的作用,重点介绍了内侧前额叶在心灵理论、情绪认知、社会推理与决策、道德判断、自我认知等社会认知活动中的作用。未来研究希望能从整体和动态上认识内侧前额叶在社会认知活动中的作用。  相似文献   

20.
Autism is a complex neurodevelopmental disorder characterized by impaired reciprocal social interaction, communication deficits and repetitive behaviors. A very large number of genes have been linked to autism, many of which encode proteins involved in the development and function of synaptic circuitry. However, the manner in which these mutated genes might participate, either individually or together, to cause autism is not understood. One factor known to exert extremely broad influence on brain development and network formation, and which has been linked to autism, is the neurotransmitter serotonin. Unfortunately, very little is known about how alterations in serotonin neuronal function might contribute to autism. To test the hypothesis that serotonin dysfunction can contribute to the core symptoms of autism, we analyzed mice lacking brain serotonin (via a null mutation in the gene for tryptophan hydroxylase 2 (TPH2)) for behaviors that are relevant to this disorder. Mice lacking brain serotonin (TPH2−/−) showed substantial deficits in numerous validated tests of social interaction and communication. These mice also display highly repetitive and compulsive behaviors. Newborn TPH2−/− mutant mice show delays in the expression of key developmental milestones and their diminished preference for maternal scents over the scent of an unrelated female is a forerunner of more severe socialization deficits that emerge in weanlings and persist into adulthood. Taken together, these results indicate that a hypo-serotonin condition can lead to behavioral traits that are highly characteristic of autism. Our findings should stimulate new studies that focus on determining how brain hyposerotonemia during critical neurodevelopmental periods can alter the maturation of synaptic circuits known to be mis-wired in autism and how prevention of such deficits might prevent this disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号