首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dromedary pancreatic PLA2 (DrPLA2) was purified from delipidated pancreases. Pure protein was obtained after heat and acidic treatment (70 degrees C; pH 3.0), precipitation by ammonium sulphate and ethanol respectively, followed by sequential column chromatographies on Sephadex G-50, MonoS Sepharose, MonoQ Sepharose and C-8 reverse phase high pressure liquid chromatography. Purified DrPLA2, which is not glycosylated protein, was found to be monomeric protein with a molecular mass of 13748.55 Da. A specific activity of 600 U/mg for purified DrPLA2 was measured at optimal conditions (pH 8.0 and 37 degrees C) in the presence of 3 mM NaTDC and 7 mM CaCl(2) using PC as substrate. The sequence of the first fourteen amino-acid residues at the N-terminal extremity of DrPLA2 was determined by automatic Edman degradation. One single sequence was obtained and shows a close similarity with all other known pancreatic secreted phospholipases A2.  相似文献   

2.
Turkey pancreatic phospholipase (TPP) has been purified from delipidated pancreases. The purification included ammonium sulfate fractionation, acidic (pH 5) treatment, followed by sequencial column chromatographies on DEAE-cellulose, Sephadex G-75, and reverse phase high pressure liquid chromatography. The purified enzyme was found to be a monomeric protein with molecular mass of 14 kDa. The optimal activity was measured at pH 8 and 37 degrees C using egg yolk emulsion as substrate. Our results show that the enzyme (TPP) was not stable for 1 h at 60 degrees C, and that bile salt and Ca2+ were required for the expression of the purified enzyme. The sequence of the N-terminal amino acids of the purified enzyme shows a very close similarity between TPP and all other known pancreatic phospholipases.  相似文献   

3.
Sayari A  Mejdoub H  Gargouri Y 《Biochimie》2000,82(2):153-159
Turkey pancreatic lipase (TPL) was purified from delipidated pancreases. Pure TPL (glycerol ester hydrolase, EC 3.1.1.3) was obtained after ammonium sulfate fractionation, Sephacryl S-200 gel filtration, anion exchange chromatography (DEAE-Sepharose) and size exclusion column using high performance liquid chromatography system (HPLC). The pure lipase, which is not a glycoprotein, was presented as a monomer having a molecular mass of about 45 kDa. The lipase activity was maximal at pH 8.5 and 37 degrees C. TPL hydrolyses the long chains triacylglycerols more efficiently than the short ones. A specific activity of 4300 U/mg was measured on triolein as substrate at 37 degrees C and at pH 8.5 in the presence of colipase and 4 mM NaTDC. This enzyme presents the interfacial activation when using tripropionin as substrate. TPL was inactivated when the enzyme was incubated at 65 degrees C or at pH less than 5. Natural detergent (NaTDC), synthetic detergent (Tween-20) or amphipatic protein (beta-lactoglobulin A) act as potent inhibitors of TPL activity. To restore the lipase activity inhibited by NaTDC, colipase should be added to the hydrolysis system. When lipase is inhibited by synthetic detergent or protein, simultaneous addition of colipase and NaTDC was required to restore the TPL activity. The first 22 N-terminal amino acid residues were sequenced. This sequence was similar to those of mammal's pancreatic lipases. The biochemical properties of pancreatic lipase isolated from bird are similar to those of mammals.  相似文献   

4.
Mannitol 2-dehydrogenase (MDH) catalyzes the pyridine nucleotide dependent reduction of fructose to mannitol. Lactobacillus intermedius (NRRL B-3693), a heterofermentative lactic acid bacterium (LAB), was found to be an excellent producer of mannitol. The MDH from this bacterium was purified from the cell extract to homogeneity by DEAE Bio-Gel column chromatography, gel filtration on Bio-Gel A-0.5m gel, octyl-Sepharose hydrophobic interaction chromatography, and Bio-Gel Hydroxyapatite HTP column chromatography. The purified enzyme (specific activity, 331 U/mg protein) was a heterotetrameric protein with a native molecular weight (MW) of about 170 000 and subunit MWs of 43 000 and 34 500. The isoelectric point of the enzyme was at pH 4.7. Both subunits had the same N-terminal amino acid sequence. The optimum temperature for the reductive action of the purified MDH was at 35 degrees C with 44% activity at 50 degrees C and only 15% activity at 60 degrees C. The enzyme was optimally active at pH 5.5 with 50% activity at pH 6.5 and only 35% activity at pH 5.0 for reduction of fructose. The optimum pH for the oxidation of mannitol to fructose was 7.0. The purified enzyme was quite stable at pH 4.5-8.0 and temperature up to 35 degrees C. The K(m) and V(max) values of the enzyme for the reduction of fructose to mannitol were 20 mM and 396 micromol/min/mg protein, respectively. It did not have any reductive activity on glucose, xylose, and arabinose. The activity of the enzyme on fructose was 4.27 times greater with NADPH than NADH as cofactor. This is the first highly NADPH-dependent MDH (EC 1.1.1.138) from a LAB. Comparative properties of the enzyme with other microbial MDHs are presented.  相似文献   

5.
Park J  Cho SY  Choi SJ 《BMB reports》2008,41(3):254-258
Lipase was purified from squid (Todarodes pacificus) liver in an attempt to investigate the possibility of applying the enzyme for biotechnological applications. Crude extract of squid liver was initially fractionated by the batch type ion exchange chromatography. The fraction containing lipase activity was further purified with an octyl-Sepharose column. Finally, lipase was purified by eluting active protein from a non-dissociating polyacrylamide gel after zymographic analysis. Molecular weight of the purified enzyme was determined to be 27 kDa by SDS-polyacrylamide gel electrophoresis. The enzyme showed the highest activity at a temperature range of 35-40 degrees C and at pH 8.0. The activity was almost completely inhibited at 1 mM concentration of Hg(2+) or Cu(2+) ion. Partial amino acid sequence of the enzyme was also determined.  相似文献   

6.
A beta-glucosidase from Phoma sp. KCTC11825BP isolated from rotten mandarin peel was purified 8.5-fold with a specific activity of 84.5 U/mg protein. The purified enzyme had a molecular mass of 440 kDa with a subunit of 110 kDa. The partial amino acid sequence of the purified beta-glucosidase evidenced high homology with the fungal beta- glucosidases belonging to glycosyl hydrolase family 3. Its optimal activity was detected at pH 4.5 and 60 degrees C, and the enzyme had a half-life of 53 h at 60 degrees C. The Km values for p-nitrophenyl-beta-D-glucopyranoside and cellobiose were 0.3 mM and 3.2 mM, respectively. The enzyme was competitively inhibited by both glucose (Ki=1.7 mM) and glucono-delta-lactone (Ki=0.1 mM) when pNPG was used as the substrate. Its activity was inhibited by 41% by 10 mM Cu2+ and stimulated by 20% by 10 mM Mg2+.  相似文献   

7.
A thermally stable lipase (EC 3.1.1.3.) was first identified in rice (Oryza sativa) bran, and the enzyme was purified to homogeneity using octyl-Sepharose chromatography. The enzyme was purified to 7.6-fold with the final specific activity of 0.38 micromol min(-1) mg(-1) at 80 degrees C using [9,10-(3)H]triolein as a substrate. The purified enzyme was found to be a glycoprotein of 9.4 kD. Enzyme showed a maximum activity at 80 degrees C and at pH 11.0. The protein was biologically active and retained most of its secondary structure even at 90 degrees C as judged by the enzymatic assays and far-ultraviolet circular dichroism spectroscopy, respectively. Differential scanning calorimetric studies indicated that the transition temperature was 76 degrees C and enthalpy 1.3 x 10(5) Calorie mol(-1) at this temperature. The purified lipase also exhibited phospholipase A(2) activity. Colocalization of both the hydrolytic activities in reverse-phase high-performance liquid chromatography and isoelectric focusing showed that the dual activity was associated with a single protein. Further, a direct interaction between both the substrates and the purified protein was demonstrated by photoaffinity labeling, using chemically synthesized analogs of triolein and phosphatidylcholine (PC). Apparent K(m) for triolein (6.71 mM) was higher than that for PC (1.02 mM). The enzyme preferentially hydrolyzed the sn-2 position of PC, whereas it apparently exhibited no positional specificity toward triacylglycerol. Diisopropyl fluorophosphate inhibited both lipase and phospholipase activities of the purified enzyme. This enzyme is a new member from plants in the family of lipases capable of hydrolyzing phospholipids.  相似文献   

8.
A method was developed to purify a 30-kDa protein from jelly fig (Ficus awkeotsang) pericarp, including preparation of jelly curd from achenes, extraction of proteins from the curd, and isolation of the 30-kDa protein by anion-exchanger and gel filtration. Chitinase activity was detected in the purified 30-kDa protein by activity staining in both non-denaturing gel electrophoresis and SDS-PAGE. Isoelectrofocusing showed that the isoelectric point of the 30-kDa protein was lower than pH 3.5. The K(m), k(cat), optimal pH and temperature of this putative chitinase were determined to be 0.076 mM, 0.089 s(-1), pH 4, and 60 degrees C, respectively. The purified 30-kDa protein was thermostable (retaining activity up to 65 degrees C for several hours) and could be stored at 4 degrees C for a year without apparent loss of chitinase activity. Antifungal activity of this putative chitinase was measured in terms of inhibition of Colletotrichum gloeosporioides spore germination.  相似文献   

9.
Turkey pancreatic phospholipase (TPP) has been purified from delipidated pancreases. The purification included ammonium sulfate fractionation, acidic (pH 5) treatment, followed by sequencial column chromatographies on DEAE-cellulose, Sephadex G-75, and reverse phase high pressure liquid chromatography. The purified enzyme was found to be a monomeric protein with molecular mass of 14 kDa. The optimal activity was measured at pH 8 and 37°C using egg yolk emulsion as substrate. Our results show that the enzyme (TPP) was not stable for 1 h at 60°C, and that bile salt and Ca2+ were required for the expression of the purified enzyme. The sequence of the N-terminal amino acids of the purified enzyme shows a very close similarity between TPP and all other known pancreatic phospholipases.  相似文献   

10.
Immunofluorescent studies showed that antibodies prepared against bovine milk sulfhydryl oxidase reacted with acinar cells of porcine and bovine pancreas. A close inspection of the specific location within bovine pancreatic cells revealed that the zymogen granules, themselves, bound the fluorescent antibody. Bovine pancreatic tissue was homogenized in 0.3 M sucrose, then separated into the zymogen granule fraction by differential centrifugation. The intact zymogen granules were immunofluorescent positive when incubated with antibodies to bovine milk sulfhydryl oxidase, and glutathione-oxidizing activity was detected under standard assay conditions. Pancreatic sulfhydryl oxidase was purified from the zymogen fraction by precipitation with 50% saturated ammonium sulfate, followed by Sepharose CL-6B column chromatography. Active fractions were pooled and subjected to covalent affinity chromatography on cysteinylsuccinamidopropyl-glass using 2 mM glutathione as eluant at 37 degrees C. The specific activity of bovine pancreatic sulfhydryl oxidase thus isolated was 10-20 units/mg protein using 0.8 mM glutathione as substrate. Ouchterlony double-diffusion studies showed that antibody directed against the purified bovine milk enzyme reacted identically with pancreatic sulfhydryl oxidase. The antibody also immunoprecipitated glutathione-oxidizing activity from crude pancreatic homogenates. Western blotting analysis indicated a 90,000 Mr antigen-reactive band in both bovine milk and pancreatic fractions while sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single silver-staining protein with an apparent Mr 300,000. Thus, we believe that sulfhydryl oxidase may exist in an aggregated molecular form. Bovine pancreatic sulfhydryl oxidase catalyzes the oxidation of low-molecular-weight thiols such as glutathione, N-acetyl-L-cysteine, and glycylglycyl-L-cysteine, as well as that of a high-molecular-weight protein substrate, reductively denatured pancreatic ribonuclease A.  相似文献   

11.
A tissue carboxypeptidase-A-like enzyme was purified to apparent homogeneity from terminally differentiated epidermal cells of 2-day-old rats by potato inhibitor affinity chromatography followed by FPLC Mono Q column chromatography. The enzyme has an Mr of 35,000 as determined by SDS-polyacrylamide gel electrophoresis and HPLC gel filtration. It has a pH optimum of 8.5 for hydrolysis of benzyloxycarbonyl-Phe-Leu (Km = 0.22 mM, kcat = 57.9 s-1). The enzyme does not hydrolyze substrates with Arg, Lys and Pro at the C-terminal and Pro at the penultimate position. Angiotensin I was effectively hydrolyzed (Km = 0.06 mM, kcat = 6.48 s-1) and produced both des-Leu10-angiotensin I and angiotensin II. The enzyme activity, relatively stable at 4 degrees C and pH 8.0-10.5, was inactivated at pH values higher than 12.0 and lower than 5.0 or at 65 degrees C for 10 min. Inhibitor profiles of the epidermal enzyme also differed slightly from those of tissue carboxypeptidase A of pancreatic or mast cell origin.  相似文献   

12.
Copper-zinc superoxide dismutase (Cu,Zn SOD) has been extracted, purified and characterized from Radix lethospermi seed (RLS), a kind of Chinese traditional medicine. Before extraction, the lipid was removed by super critical fluid extraction (SCF). Partial protein fractionation in the crude extract was affected by using 50-75% (NH(4))(2)SO(2). Subsequently, superoxide dismutase was fractionated by column chromatographies on DEAE-52, Sephadex G-200 and DEAE-52 again. Pure Cu,Zn SOD had a specific activity of 4843 U/mg protein and was purified 267.2-fold, with a yield of 23.55%. The purified enzyme has a molecular weight of about 30,500+/-100 and is composed of two non-covalently joined equal subunits. Purity was confirmed by Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), HPLC and mass spectroscopy. Amino acid content has been investigated. The enzyme was found to remain stable in the pH range 6.0-9.0 at 25 degrees C and up to 45 degrees C at pH 7.8 for a 30 min incubation period. RLS Cu,Zn SOD appeared to have significant thermal stability lower than other Cu,Zn SODs, as revealed by irreversible heat inactivation at 60 degrees C. The enzyme was not inhibited by DTT, NaN(3) and beta-mercaptoethanol, but was inhibited by cyanide and hydrogen peroxide. Finally, in the presence of 2 mM ethylendiamine tetra acetic acid (EDTA) and sodium dodecyl sulphate (SDS), the enzyme showed approximately 18 and 34% activity loss.  相似文献   

13.
2-Keto-3-deoxygluconate kinase (KDGK) catalyzes the ATP-dependent phosphorylation of 2-keto-3-deoxygluconate, a key intermediate in the modified (semi-phosphorylative) Entner-Doudoroff (ED) glucose metabolic pathway. We identified the gene (ORF ID: ST2478) encoding KDGK in the hyperthermophilic archaeon Sulfolobus tokodaii based on the structure of a gene cluster in a genomic database and functionally expressed it in Escherichia coli. The expressed protein was purified from crude extract by heat treatment and two conventional column chromatography steps, and the partial amino acid sequence in the N-terminal region of the purified enzyme (MAKLIT) was identical to that obtained from the gene sequence. The purified enzyme was extremely thermostable and retained full activity after heating at 80 degrees C for 1 h. The enzyme utilized ATP or GTP, but not ADP or AMP, as a phosphoryl donor and 2-keto-3-deoxy-D-gluconate or 2-keto-D-gluconate as a phosphoryl acceptor. Divalent cations including Mg(2+), Co(2+), Ni(2+), Zn(2+) or Mn(2+) were required for activity, and the apparent Km values for KDG and ATP at 50 degrees C were 0.027 mM and 0.057 mM, respectively. The presence of KDGK means that the hyperthermophilic archaeon S. tokodaii metabolizes glucose via both modified (semi-phosphorylative) and non-phosphorylative ED pathways.  相似文献   

14.
In the present study, we isolated modified LCAT (m-LCAT) by hydroxyapatite column chromatography after incubation of crude LCAT (after DEAE SephadexA-50 column chromatography, penultimate step of LCAT purification) with oxidized LDL (oxLDL) at 37 degrees C for 1 h. The activity was found to be about 30% lower than that of native LCAT (n-LCAT). When activity was determined in the presence of oxLDL, m-LCAT was less inhibited than n-LCAT by oxLDL. Treatments of purified LCAT either at 56 degrees C for 30 min, at 100 degrees C for 10 min, or with 6 mM 5-5' -dithiobis-2-nitrobenzoic acid or 9 mM diisopropyl fluorophosphates (each at 37 degrees C for 30 min) resulted in the loss of its cholesterol-esterifying activity. When examined for their ability to detoxify oxLDL, native LCAT and LCAT treated at 56 degrees C for 30 min were found to detoxify oxLDL. These results indicate that oxidation product(s) of LDL is transferred and bound to LCAT in a way that does not depend on its cholesterol-esterifying activity, but rather on the availability of the sulfhydryl group of cysteine residue and the hydroxyl group of serine residue.  相似文献   

15.
The marine, psychrotolerant, rod-shaped and Gram-negative bacterium 22b (the best of 41 beta-galactosidase producers out of 107 Antarctic strains subjected to screening), classified as Pseudoalteromonas sp. based on 16S rRNA gene sequence, isolated from the alimentary tract of Antarctic krill Thyssanoessa macrura, synthesizes an intracellular cold-adapted beta-galactosidase, which efficiently hydrolyzes lactose at 0-20 degrees C, as indicated by its specific activity of 21-67 U mg(-1) of protein (11-35% of maximum activity) in this temperature range, as well as k(cat) of 157 s(-1), and k(cat)/K(m) of 47.5 mM(-1) s(-1) at 20 degrees C. The maximum enzyme synthesis (lactose as a sufficient inducer) was observed at 6 degrees C, thus below the optimum growth temperature of the bacterium (15 degrees C). The enzyme extracted from cells was purified to homogeneity (25% recovery) by using the fast, three-step procedure, including affinity chromatography on PABTG-Sepharose. The enzyme is a tetramer composed of roughly 115 kDa subunits. It is maximally active at 40 degrees C (190 U mg(-1) of protein) and pH 6.0-8.0. PNPG is its preferred substrate (50% higher activity than against ONPG). The Pseudoalteromonas sp. 22b beta-galactosidase is activated by thiol compounds (70% rise in activity in the presence of 10 mM dithiotreitol), some metal ions (K(+), Na(+), Mn(2+)-40% increase, Mg(2+)-15% enhancement), and markedly inactivated by pCMB and heavy metal ions, particularly Cu(2+). Noteworthy, Ca(2+) ions do not affect the enzyme activity, and the homogeneous protein is stable at 4 degrees C for at least 30 days without any stabilizers.  相似文献   

16.
A glucuronan lyase extracted from Sinorhizobium meliloti strain M5N1CS was purified to homogeneity by anion-exchange chromatography. The purified enzyme corresponds to a monomer with a molecular mass of 20 kDa and a pI of 4.9. A specific activity was found only for polyglucuronates leading to the production of 4,5-unsaturated oligoglucuronates. The enzyme activity was optimal at pH 6.5 and 50 degrees C. Zn(2+), Cu(2+), and Hg(2+) (1 mM) inhibited the enzyme activity. No homology of the enzyme N-terminal amino acid sequence was found with any of the previously published protein sequences. This enzyme purified from S. meliloti strain M5N1CS corresponding to a new lyase was classified as an endopolyglucuronate lyase.  相似文献   

17.
A new restriction endonuclease BspLS2I was isolated from the thermophilic bacterium Bacillus species LS2 and purified by blue sepharose and hydroxyapatite chromatographies. The enzyme is an isoschizomer of SduI from Streptococcus durans. BspLS2I recognizes the sequence 5' G(G/A/T)GC(C/T/A) decreases C 3' on double-stranded DNA and cleaves it is indicated by the arrow to yield sticky-ended DNA fragments. Maximum catalytic activity of endonuclease was found in 10 mM tris-HCl (pH 7.9) in the presence of 15-30 mM MgCl2 at 50 degrees C. The phage T4 glucosylated DNA is not cleaved by the enzyme.  相似文献   

18.
An extracellular lipase was isolated from the cell-free broth of Bacillus sp. GK 8. The enzyme was purified to 53-fold with a specific activity of 75.7 U mg(-1) of protein and a yield of 31% activity. The apparent molecular mass of the monomeric protein was 108 kDa as estimated by molecular sieving and 112 kDa by SDS-PAGE. The proteolysis of the native molecule yields a low molecular weight component of 11.5 kDa that still retains the active site. It was stable at the pH range of 7.0-10.0 with optimum pH 8.0. The enzyme was stable at 50 degrees C for 1 h with a half life of 2 h, 40 min, and 18 min at 60, 65, and 70 degrees C, respectively. With p-nitrophenyl laurate as substrate the enzyme exhibited a K(m) and V(max) of 3.63 mM and 0.26 microM/min/ml, respectively. Activity was stimulated by Mg(2+) (10 mM), Ba(2+) (10 mM), and SDS (0.1 mM), but inhibited by EDTA (10 mM), phenylmethane sulfonyl fluoride (100 mM), diethylphenylcarbonate (10 mM), and eserine (10 mM). It hydrolyzes triolein at all positions. The fatty acid specificity of lipase is broad with little preference for C(4) and C(18:1). Thermostability of the proteolytic fragment at 60 degrees C was observed to be 37% of the native protein. The native enzyme was completely stable in ethylene glycol and glycerol (30% v/v each) for 60 min at 65 degrees C.  相似文献   

19.
The araA gene encoding L-arabinose isomerase (AI) from the hyperthermophilic bacterium Thermotoga maritima was cloned and overexpressed in Escherichia coli as a fusion protein containing a C-terminal hexahistidine sequence. This gene encodes a 497-amino-acid protein with a calculated molecular weight of 56,658. The recombinant enzyme was purified to homogeneity by heat precipitation followed by Ni(2+) affinity chromatography. The native enzyme was estimated by gel filtration chromatography to be a homotetramer with a molecular mass of 232 kDa. The purified recombinant enzyme had an isoelectric point of 5.7 and exhibited maximal activity at 90 degrees C and pH 7.5 under the assay conditions used. Its apparent K(m) values for L-arabinose and D-galactose were 31 and 60 mM, respectively; the apparent V(max) values (at 90 degrees C) were 41.3 U/mg (L-arabinose) and 8.9 U/mg (D-galactose), and the catalytic efficiencies (k(cat)/K(m)) of the enzyme were 74.8 mM(-1).min(-1) (L-arabinose) and 8.5 mM(-1).min(-1) (D-galactose). Although the T. maritima AI exhibited high levels of amino acid sequence similarity (>70%) to other heat-labile mesophilic AIs, it had greater thermostability and higher catalytic efficiency than its mesophilic counterparts at elevated temperatures. In addition, it was more thermostable in the presence of Mn(2+) and/or Co(2+) than in the absence of these ions. The enzyme carried out the isomerization of D-galactose to D-tagatose with a conversion yield of 56% for 6 h at 80 degrees C.  相似文献   

20.
A dimethoate-degrading enzyme from Aspergillus niger ZHY256 was purified to homogeneity with a specific activity of 227.6 U/mg of protein. The molecular mass of the purified enzyme was estimated to be 66 kDa by gel filtration and 67 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was found to be 5.4, and the enzyme activity was optimal at 50 degrees C and pH 7.0. The activity was inhibited by most of the metal ions and reagents, while it was induced by Cu(2+). The Michaelis constant (K(m)) and V(max) for dimethoate were 1.25 mM and 292 micromol min(-1) mg of protein(-1), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号