首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A dialysate-feed, immobilized-cell dialysis continuous fermentation system was investigated as a method of relieving product inhibition in the conversion of glucose to ethanol by cells of Saccharomyces cerevisiae ATCC 4126. The substrate was fed into a continuous dialysate circuit and then into a batch fermentor circuit via diffusion through the microporous membranes of an intermediate dialyzer. Simultaneously, product was withdrawn from the fermentor circuit through the dialyzer membranes into the dialysate circuit and out in the effluent. Since the fermentor was operated without an effluent, the cells essentially were immobilized and converted substrate to product by maintenance metabolism. Contrary to prior results with this novel system for the continuous fermentation of lactose to lactate by lactobacillus cells, a steady state of yeast cells in the fermentor did not occur initially but was obtained by the depletion of medium nitrogen and the prevention of cell breakage, although the substrate and product concentrations then became unsteady. The inherent advantages of the system was offset in the ethanol fermentation by relatively low productivity, which appeared to be limited by membrane permeability.  相似文献   

2.
A mathematical model has been developed for the process of extractive fermentation. The model rigorously treats the material balance, reaction kinetics, and liquid-liquid equilibrium relationships. Convergence is promoted through use of the Quasi-Newton Method. Extractive fermentation is particularly attractive for those bioreactions where the cell growth and product formation is inhibited by the product or other secondary cellular products. The model is illustrated for the production of ethanol. The results show an increase in specific productivity and the ability to process a more concentrated feed. However, volumetric productivity is reduced in the presence of a low capacity solvent.  相似文献   

3.
In this article, a mathematical model describing the kinetics of ethanol fermentation in a whole cell immobilized tubular fermentor is proposed. Experimental results show reasonable agreement with the proposed model. A procedure for treating the fermentation data for determining the ethanol inhibition constants k(1) and k(2) is described. The ethanol productivity of the immobilized cell fermentor is compared with those of traditional fermentors. Experimental studies indicate that with Saccharomyces cerevisiae (NRRL Y132) culture, ethanol productivity in the range 21.2-83.7 g ethanol L(-1) h(-1) at ethanol concentration of 76-60 g/L can be achieved. This is comparable to or higher than those reported in the literature for yeast. The product yield factor of 0.5 g ethanol/g glucose was obtained. The immobilized cell fermentor does not show washout at dilution rates of 7 h(-1) and shows good stability over a 650-h operating period.  相似文献   

4.
This work presents the development of an unstructured kinetic model incorporating the differing degrees of product, substrate, and pH inhibition on the kinetic rates of ethanol fermentation by recombinant Zymomonas mobilis CP4:pZB5 for growth on two substrates. Product inhibition was observed to start affecting the specific growth rate at an ethanol concentration of 20 g/L and the specific productivity at about 35-40 g/L. Specific growth rate was also shown to be more sensitive to inhibition by lowered pH as well. A model for the inhibition of two competing substrates' cellular uptake via membrane transport is proposed. Inhibition functions and model parameters were determined by fitting experimental data to the model. The model was utilized in a nonlinear model predictive control (NMPC) algorithm to control the product concentration during fed-batch fermentation to offset the inhibitory effects of product inhibition. Using the optimal feeding policy determined online, the volumetric productivity of ethanol was improved 16.6% relative to the equivalent batch operation when the final ethanol concentration was reached.  相似文献   

5.
A continuous process was employed to improve the volumetric productivity of bioethanol production from cassava mash containing sludge and to simplify the process of ethanol production from cassava. After raw cassava powder was liquefied, it was used directly in a continuous process without sludge filtration or saccharification. A fermentor consisting of four linked stirrer tanks was used for simultaneous saccharification and continuous fermentation (SSCF). Although the mash contained sludge, continuous fermentation was successfully achieved. We chose the dilution rate on the basis of the maximum saccharification time; the highest volumetric productivity and ethanol yield were observed at a dilution rate of 0.028 h?1. The volumetric productivity, final ethanol concentration, and % of theoretical ethanol yield were 2.41 g/Lh, 86.1g/L, and 91%, respectively. This SSCF process using the self-flocculating yeast Saccharomyces cerevisiae CHFY0321 illustrates the possibility of realizing cost-effective bioethanol production by eliminating additional saccharification and filtration processes. In addition, flocculent CHFY0321, which our group developed, showed excellent fermentation results under continuous ethanol production.  相似文献   

6.
Intrinsic models, which take into account biomass volume fraction, must be formulated for adequate simulation of high-biomass-density fermentations with cell recycle. Through comparison of corresponding intrinsic and non-intrinsic models in dimensionless form, constraints for non-intrinsic model usage in terms of biokinetic and fermenter operating parameters can be identified a priori. Analysis of a simple product-inhibition model indicates that the non-intrinsic approach is suitable only when the attainable biomass volume fraction in the fermentation broth is less than about 0.10. Inappropriate application of a non-intrinsic model can lead to gross errors in calculated substrate and product concentrations, substrate conversion, and volumetric productivity.  相似文献   

7.
A laboratory process was established for ethanol production by fermentation of sugar beet molasses with the bacterium Zymomonas mobilis. Sucrose in the molasses was hydrolyzed enzymatically to prevent levan formation. A continuous system was adopted to reduce sorbitol formation and a two-stage fermentor was used to enhance sugar conversion and the final ethanol concentration. This two-stage fermentor operated stably for as long as 18 d. An ethanol concentration of 59.9 g/l was obtained at 97% sugar conversion and at high ethanol yield (0.48 g/g, 94% of theoretical). The volumetric ethanol productivity (3.0 g/l·h) was superior to that of batch fermentation but inferior to that of a single-stage continuous system with the same medium. However, the thanol concentration was increased to a level acceptable for economical recovery. The process proposed in this paper is the first report of successful fermentation of sugar beet molasses in the continuous mode using the bacterium Z. mobilis.  相似文献   

8.
Studies have been conducted in a gas circulation type fermentor in order to characterize the ethanol fermentation of uncooked cassava starch with Rhizopus koji. Results showed that ethanol concentration reached 13-14% (v/v) in 4-day broth, and the maximum productivity of ethanol was 2.3 g ethanol/L broth h. This productivity was about 50% compared to the productivity of a glucose-yeast system. Ethanol yield reached 83.5-72.3% of the theoretical yield for the cassava starch used. The fermentor used in the present work has been proven by experiment to be suitable for ethanol fermentation of the broth with solid substrate.  相似文献   

9.
Response surface methodology was applied to optimize the growth of the yeast Phaffia rhodozyma in continuous fermentation using peat hydrolysates as substrate. A second-order, complete, factorial design of the experiments was used to develop empirical models providing a quantitative interpretation of the relationships between the two variables studied, dilution rate and pH. Maximum biomass concentration in the fermentor was obtained by employing the following predicted optimum fermentation conditions: a dilution rate of 0.017/h and a pH level of 7.19. A verification experiment, conducted at previously optimized conditions for maximum biomass volumetric productivity (a dilution rate of 0.022/h, and a pH level of 6.90), produced values for biomass concentration, residual substrate concentration, biomass yield, and biomass volumetric productivity that were very close to the predicted values, indicating the reliability of the empirical model. The concentration of the pigment astaxanthin produced by the yeast under the optimized growth conditions was found to be 544 mg astaxanthin/kg dry cell biomass.  相似文献   

10.
The economics of a process for the production of ethanol employing a hollow fiber extractive fermentor have been investigated. A computer simulation of the process incorporating a mathematical model of the fermentor was used to calculate the mass and energy balances. The results of the process simulation were read into a computer spreadsheet programmed with the economic calculations from which a final ethanol product cost was obtained. The process was found to be as competitive as conventional fermentation processes even at the currently high cost--$4/sq ft--of hollow fibers. It was determined that the 1986 price of 46.2 cents/L of ethanol produced by the process would be reduced by 1.8 cents/L for every $1/sq foot drop in the price of hollow fibers. A comparison of this process with conventional fermentation processes indicates that its potential savings lie in its ability to use a concentrated sugar feed, and the fermentor's increased productivity and ability to produce a concentrated ethanol stream which is removed by the extracting solvent.  相似文献   

11.
为了评价虾青素高产菌株-法夫酵母JMU-MVP14的生产性能及建立虾青素高产发酵技术,通过测定糖、生物量、虾青素产量、总类胡萝卜素产量等发酵参数,用摇瓶试验对比了法夫酵母JMU-MVP14和出发菌株的差异,用7 L罐试验对比了pH值调控方式及补料培养基成分对发酵的影响,用1 m3罐试验评估了法夫酵母JMU-MVP14高密度发酵虾青素的产量水平。摇瓶发酵结果表明,法夫酵母JMU-MVP14虾青素及总类胡萝卜素的细胞产率分别达到6.01 mg/g及10.38 mg/g;7 L罐分批发酵试验结果表明,自动流加调  相似文献   

12.
The physiology of lactate production by Lactobacillus delbreuckii NRRL B-445 in a continuous fermenter with partial cell recycle has been studied and compared with that observed in a conventional chemostat. Partial cell recycle was achieved using a hollow-fiber ultrafiltration cartridge. The biomass growth yield was reduced in the recycle fermenter while culture viability and the cellular content of polysaccharide, protein, carbon, and nitrogen remained constant, suggesting an enlarged specific rate of glucose consumption for nonanabolic (e.g., maintenance) functions. The volumetric productivity of lactate was enhanced in the recycle fermenter due to the complete utilization of glucose. The yield of lactate from biomass and the molar product ratio, lactate: ethanol plus acetate, decreased with increasing recycle ratio. Enhanced formation of ethanol and acetate occurred in the recycle fermenter although lactate remained the major product. The change in product profile was due to glucose limitation. The specific activity of lactate dehydrogenase remained constant during recycle fermentation. These physiological observations have implications for the future application of cell recycle to production processes.  相似文献   

13.
The kinetics of microbial growth and product formation are described as applied to the high cell concentration scheme of the rotorfermentor. A bench scale pilot plant was designed and built in order to demonstrate the operational feasibility of the rotorfermentor. The fermentation of glucose to ethanol by Saccharomyces cerevisiae ATCC 4126 was used. When the rotorfermentor was used with a glucose feed concentration of 104 g/liter almost 100% glucose utilization was obtained and the ethanol productivity rate was 27.3 g ethanol/liter hr which was found to be about 10 times greater than the ethanol productivity obtained from an ordinary continuous stirred tank (CST) fermentor. The ethanol experimental results obtained from the rotorfermentor and an ordinary CST fermentor were used as a basis to assess the economic feasibility of the rotorfermentor. The economics of an industrial scale ordinary CST fermentor with and without cell recycle is compared with a rotorfermentor unit for the same ethanol production throughput. For the process conditions considered in this case, calculations showed that the rotorfermentor may replace both a CST fermentor and cell centrifuge resulting in lower capital equipment costs and lower power consumption requirements.  相似文献   

14.
It is shown that the performance evaluation using a vector-valued objection function whose components are the product productivity, the product concentration, and the substrate conversion is quite useful in getting deeper insight into the development of new processes and in determining the operating point. Particular attention is focused on the ethanol fermentation using variety of systems such as the conventional chemostat system, multiple fermentor system, cell recycle system, extractive fermentor system, cell recycle system, extractive fermentor system, and immobilized cell system. The contour map and the projection of the noninferior set are used in investigating the performance improvement and the trade-offs among performance indexes.  相似文献   

15.
The steady-state performance of a bubble column combined with a membrane filter module for cell separation and recycle is investigated numerically in the case of vinegar fermentation. The one-dimensional dispersion model for describing the longitudinal mixing of the liquid phase is employed. Kinetic expressions and their parameter values are taken from the available literature. Several characteristics of this fermentor system namely the concentration profiles of cells, substrate and product, the viability of viable cells relative to total cells, the washout condition for cells and the productivity of acetic acid are discussed. The average cell viability in the whole column and the critical dilution rate for washout are presented as equations. Low levels of the axial mixing are found to enhance the vinegar productivity. The optimum dilution rate giving the maximum productivity is determined and both are shown as figures with the Peclet number, the recycle ratio and the bleed ratio as parameters.  相似文献   

16.
Summary A new approach for continuous production of ethanol was developed using a Hollow fiber fermentor (HFF). Saccharomyces cerevisiae cells were packed into the shell-side of a hollow fiber module. Using 100 g/l glucose in the feed gave an optimum ethanol productivity, based on total HFF volume, of 40 g ethanol/l/h at a dilution rate of 3.0 h-1. Under these conditions, glucose utilization was 30%. However, at 85% glucose utilization the productivity was 10 g ethanol/l/h. This compares to batch fermentor productivity of 2.1 g ethanol/l/h at 100% glucose utilization.  相似文献   

17.
The direct microbial conversion (DMC) process for the production of ethanol from lignocellulosic biomass is limited by low volumetric ethanol production rates due to the low cell densities of Clostridium thermosaccharolyticum which is a key organism for ethanol production in this process. Hence, this study focuses on the use of a continuous- culture cell recycle system to improve the volumetric ethanol productivity and yield of the fermentation of xylose by C. thermosaccharolyticum. Early experiments with the continuous-culture cell recycle system showed a two-fold improvement in volumetric ethanol productivity. However, the ethanol yield at the higher dilution rates suffered because of the large amount of lactate produced. The manipulation of two environmental parameters-iron concentration in the nutrient medium and the N(2) purge rate of the fermentor headspace-allowed a dramatic reduction in the lactate production and a simultaneous improvement in the ethanol titer and yield. Under the improved conditions of increased iron concentration (12.5 mg/L FeSO(4) . 7H(2)O) and decreased N(2) purge rate (0.1 L/min), a continuous culture of C. thermosaccharolyticum operating at a dilution rate of 0.24 h(-1) and 50% cell recycle produced 8.6 g/L ethanol and less than 1 g/L each of acetate and lactate. The volumetric ethanol productivity was 2.2 g/L/h, which is 8 times larger than obtained for a continuous culture operated with no cell recycle and the same specific growth rate.  相似文献   

18.
Summary A method for the continuous production of extracellular alpha amylase by surface immobilized cells of Bacillus amyloliquefaciens NRC 2147 has been developed. A large-pore, macroreticular anionic exchange resin was capable of initially immobilizing an effective cell concentration of 17.5 g DW/1 (based on a total reactor volume of 160 ml). The reactor was operated continuously with a nutrient medium containing 15 g/l soluble starch, as well as yeast extract and salts. Aeration was achieved by sparging oxygen enriched air into the column inlet. Fermentor plugging by cells was avoided by periodically substituting the nutrient medium with medium lacking in both soluble starch and yeast extract. This fermentor was operated for over 200 h and obtained a steady state enzyme concentration of 18700 amylase activity units per litre (18.7 kU/l), and an enzyme volumetric productivity of 9700 amylase activity units per litre per hour (9.7 kU/l-h). Parallel fermentations were performed using a 2 l stirred vessel fermentor capable of operation in batch and continuous mode. All fermentation conditions employed were identical to those of the immobilized cell experiments in order to assess the performance of the immobilized cell reactor. Batch stirred tank operation yielded a maximum amylase activity of 150 kU/l and a volumetric productivity of 2.45 kU/l-h. The maximum cell concentration obtained was 5.85 g DW/l. Continuous stirred tank fermentation obtained a maximum effluent amylase activity of 6.9 kU/l and a maximum enzyme volumetric productivity of 2.73 kU/l-h. Both of these maximum values were observed at a dilution rate of 0.345 l/h. The immobilized cell reactor was observed to achieve larger volumetric productivities than either mode of stirred tank fermentation, but achieved an enzyme activity concentration lower than that of the batch stirred tank fermentor.  相似文献   

19.
Computer modeling of antibiotic fermentation with on-line product removal   总被引:1,自引:0,他引:1  
The fermentation of Streptomyces griseus for the production of cycloheximide is similar to other antibiotic fermentations in that product synthesis is subject to feedback regulation and the desired product is degraded in the fermentation broth. The productivity of this fermentation can thus be dramatically increased by removing the antibiotic from the whole broth as it is produced. One means for effecting this on-line product removal is to contact the whole fermentation broth with neutral polymeric resin immobilized in hydrogel beads. The antibiotic adsorbs to the immobilized resin via hydrophobic interactions. In this work, the adsorption of the antibiotic onto the immobilized resin was characterized. A biochemical model of the fermentation was then used to describe the time profiles of biomass, substrate, and antibiotic in a fermentation system in which whole broth is circulated from the fermentor through a continuously stirred extractor containing the adsorbent beads. Various operating conditions were examined to optimize the productivity of the fermentation.  相似文献   

20.
Gasification followed by syngas fermentation is a unique hybrid process for converting lignocellulosic biomass into fuels and chemicals. Current syngas fermentation faces several challenges with low gas–liquid mass transfer being one of the major bottlenecks. The aim of this work is to evaluate the performance of hollow fiber membrane biofilm reactor (HFM-BR) as a reactor configuration for syngas fermentation. The volumetric mass transfer coefficient (KLa) of the HFM-BR was determined at abiotic conditions within a wide range of gas velocity/flowrate passing through the hollow fiber lumen and liquid velocity/flowrate passing through the membrane module shell. The KLa values of the HFM-BR were higher than most reactor configurations such as stir tank reactors and bubble columns. A continuous syngas fermentation of Clostridium carboxidivorans P7 was implemented in the HFM-BR system at different operational conditions, including the syngas flow rate, liquid recirculation between the module and reservoir, and the dilution rate. It was found that the syngas fermentation performance such as syngas utilization efficiency, ethanol concentration and productivity, and ratio of ethanol to acetic acid depended not only on the mass transfer efficiency but also the characteristics of biofilm attached on the membrane module (biofouling or abrading of the biofilm). The HFM-BR results in a highest ethanol concentration of 23.93 g/L with an ethanol to acetic acid ratio of 4.79. Collectively, the research shows the HFM-BR is an efficient reactor system for syngas fermentation with high mass transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号