首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The phylogenetic relationships between genera of the Polysphincta group of Pimplinae (Ichneumonidae) were surveyed using molecular markers, partial sequences of cytochrome c oxidase I (COI), 28S rRNA and elongation factor 1α, and maximum likelihood and Bayesian approaches to obtain a robust phylogenetic hypothesis to understand the evolution of the group. The Polysphincta group was recovered as monophyletic, although relationships between genera were different from previous hypotheses based on morphological data. Within the Polysphincta group, three major clades were recognized and phylogenetic relationships among them were well resolved as (Schizopyga subgroup + (Acrodactyla subgroup + Polysphincta subgroup)). The Schizopyga subgroup consisted of the genera Piogaster, Schizopyga, Zabrachypus and Brachyzapus. As the genus Schizopyga was found to be polyphyletic, the genus Dreisbachia, which had been synonymized under Schizopyga, was resurrected and Iania gen.n. is proposed for Dreisbachia pictifrons, to maintain monophyletic genera. Species of the Schizopyga subgroup utilize spiders constructing egg‐laying chambers or funnel webs as hosts. The genus Piogaster was not recovered as the sister to all other members of the genus group, unlike previous hypotheses, but was nested in this clade as (Zabrachypus + ((Brachyzapus + Schizopyga) + (Dreisbachia + (Iania + Piogaster)))). Members of the Acrodactyla and Polysphincta subgroups attack spiders that weave aerial webs. The host range of the former is centred on tetragnathid and linyphiid spiders, the host range of the latter seems to centre mainly on orb‐weaving araneids and partly on theridiids weaving three‐dimensional (3D) irregular webs. Based on the obtained phylogeny of the group, the evolution of larval and cocoon morphology, and the mode of parasitism are discussed. Acrodactyla varicarinata Uchida & Momoi and A. inoperta Kusigemati are transferred to the genus Megaetaira ( comb.n.). This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:0AB1086F‐9F23‐4057‐B7ED‐3A3943E19C61 .  相似文献   

2.
A remarkable new genus and two new species of Mantispidae (Neuroptera) are described from the Oriental region. Allomantispa Liu, Wu, Winterton & Ohl gen.n. , currently including A. tibetana Liu, Wu & Winterton sp.n. and A. mirimaculata Liu & Ohl sp.n. The new genus is placed in the subfamily Drepanicinae based on a series of morphological characteristics and on the results of total evidence phylogenetic analyses. Bayesian and Parsimony analyses were undertaken using three gene loci (CAD, 16S rDNA and COI) combined with 74 morphological characters from living and fossil exemplars of Mantispidae (17 genera), Rhachiberothidae (two genera) and Berothidae (five genera), with outgroup taxa from Dilaridae and Osmylidae. The resultant phylogeny presented here recovered a monophyletic Mantispidae with ?Mesomantispinae sister to the rest of the family. Relationships among Mantispidae, Rhachiberothidae and Berothidae support Rhachiberothidae as a separate family sister to Mantispidae. Within Mantispidae, Drepanicinae are a monophyletic clade sister to Calomantispinae and Mantispinae. In a combined analysis, Allomantispa gen.n. was recovered in a clade comprising Ditaxis McLachlan from Australia, and two fossil genera from the Palaearctic, ?Promantispa Panfilov (Kazakhstan; late Jurassic) and ?Liassochrysa Ansorge & Schlüter (Germany; Jurassic), suggesting a highly disjunct and relictual distribution for the family. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:464B06E8‐47E6‐482E‐8136‐83FE3B2E9D6B .  相似文献   

3.
Relative to its diversity (34 genera, 700 species), Scolopendromorpha has been undersampled in molecular phylogenetic analyses compared with the other chilopod orders. Previous analyses based on morphology have not resolved several key controversies in systematics and evolutionary morphology unambiguously. Here we apply new molecular and morphological data to scolopendromorph phylogenetics, with a focus on the evolution of blindness. The taxonomic sample includes 19 genera, many lacking previous molecular data, and diverse, cosmopolitan genera of Scolopendridae are sampled by multiple species. Phylogenetic analysis with Direct Optimization used 94 morphological characters and ca. 4.5 kb of sequence data from two nuclear (18S and 28S rRNA) and two mitochondrial (16S rRNA and COI) loci. A single most‐parsimonious cladogram selected after sensitivity analyses resolves Scolopendromorpha as monophyletic, and divides it into a blind clade of three families (Plutoniumidae, Cryptopidae, Scolopocryptopidae) and its ocellate sister group, Scolopendridae. Some species‐rich, cosmopolitan genera (Cormocephalus, Otostigmus, Scolopendra) in Scolopendridae are non‐monophyletic, and in several instances (e.g. New and Old World Scolopendra) relationships are more congruent with geographical distributions than with traditional classifications. The tribe Asanadini is particularly subject to parameter‐sensitivity, nesting in the combined analysis within Scolopendrini but as sister to all other Scolopendrinae for molecular data alone. The total‐evidence tree unambiguously optimizes trunk segmentation: a 23‐segmented trunk has a single origin in the blind clade. © The Willi Hennig Society 2011.  相似文献   

4.
A Bayesian analysis, utilizing a combined data set developed from the small subunit (SSU) and large subunit (LSU) rDNA gene sequences, was used to resolve relationships and clarify generic boundaries among 84 strains of plastid‐containing euglenophytes representing 11 genera. The analysis produced a tree with three major clades: a Phacus and Lepocinlis clade, a Discoplastis clade, and a Euglena, Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade. The majority of the species in the genus Euglena formed a well‐supported clade, but two species formed a separate clade near the base of the tree. A new genus, Discoplastis, was erected to accommodate these taxa, thus making the genus Euglena monophyletic. The analysis also supported the monophyly of Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena, which formed two subclades sister to the Euglena clade. Colacium, Trachelomonas, and Strombomonas, all of which produce copious amounts of mucilage to form loricas or mucilaginous stalks, formed a well‐supported lineage. Our analysis supported retaining Strombomonas and Trachelomonas as separate genera. Monomorphina and Cryptoglena formed two well‐supported clades that were sister to the Colacium, Trachelomonas, and Strombomonas clade. Phacus and Lepocinclis, both of which have numerous small discoid chloroplasts without pyrenoids and lack peristaltic euglenoid movement (metaboly), formed a well‐supported monophyletic lineage that was sister to the larger Euglena through Cryptoglena containing clade. This study demonstrated that increased taxon sampling, multiple genes, and combined data sets provided increased support for internal nodes on the euglenoid phylogenetic tree and resolved relationships among the major genera in the photosynthetic euglenoid lineage.  相似文献   

5.
Abstract. This study presents the first phylogenetic estimate for the pipunculid subfamily Chalarinae (genera Chalarus Walker, Jassidophaga Aczél and Verrallia Mik) based on an analysis of one mitochondrial coding (cytochrome oxidase 1) and two nuclear non‐coding genes (28s and ITS2), using parsimony under direct optimization as implemented in poy 4. It completes earlier taxonomic works on these groups. The voucher material used was primarily of Palaearctic origin. The study strongly supports the monophyletic origin of Chalarinae as well as of Chalarus and Verrallia, but failed to recover a monophyletic lineage for Jassidophaga. Whereas the taxa of Jassidophaga with predominantly black‐coloured legs clustered as a monophyletic sister to Verrallia, an Oriental Jassidophaga species with predominantly yellow/light brown‐coloured legs represents a distinct genetic lineage. The Chalarus species included were resolved into eight well‐supported genetic clades: C. angustifrons group, C. basalis group, C. clarus lineage, C. holosericeus group, C. immanis lineage, C. indistinctus group, C. latifrons group and C. spurius group. A phenetic analysis focused on intra‐ and interspecific genetic distances within the subfamily. As a consequence, the eastern Palaearctic C. rectifrons Morakote is proposed as a junior synonym of C. angustifrons Morakote ( syn.n. ). The structure of the C. basalis species group was investigated further with the intersimple sequence repeat (ISSR) primer (GACA)4.  相似文献   

6.
A phylogenetic analysis of selected oestroid taxa based on 66 morphological traits and sequences from three nuclear protein‐coding genes (CAD, MAC, MCS) resolved the composition and phylogenetic position of the former subfamily Polleniinae of the Calliphoridae – here resurrected at family rank as Polleniidae Brauer & Bergenstamm, 1889 stat. rev. Six species are transferred from the family Rhinophoridae to the Polleniidae: the Palaearctic genus Alvamaja Rognes, along with its single species Alvamaja chlorometallica Rognes, and five Afrotropical species comprising the carinata‐group formerly in the genus Phyto Robineau‐Desvoidy but here assigned to genus Morinia Robineau‐Desvoidy, i.e. M. carinata (Pape, 1987) comb.n. , M. lactineala (Pape, 1997) comb.n. , M. longirostris (Crosskey, 1977) comb.n. , M. royi (Pape, 1997) comb.n. and M. stuckenbergi (Crosskey, 1977) comb.n. The Polleniidae are monophyletic and, in agreement with most recent phylogenetic reconstructions, sister to the Tachinidae. The female of A. chlorometallica and a new species of Morinia of the carinata‐group (Morinia tsitsikamma sp.n. from South Africa) are described. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:25B0C220‐DEE4‐4B0C‐88EA‐35FDE298EBC5 .  相似文献   

7.
8.
Sialidae (alderflies) is a family of the holometabolous insect order Megaloptera, with ca. 75 extant species in eight genera distributed worldwide. Alderflies are a group of “living fossils” with a long evolutionary history. The oldest fossil attributed to Sialidae dates back to the Early Jurassic period. Further, the global distribution of modern‐day species shows a remarkably disjunctive pattern. However, due to the rareness of most species and scarcity of comprehensive taxonomic revisions, the phylogeny of Sialidae remains largely unexplored, and the present classification system is in great need of renewal. Here we reconstruct the first phylogeny for Sialidae worldwide based on the most comprehensive sampling and broadest morphological data ever presented for this group of insects. All Cenozoic alderflies belong to a monophyletic clade, which may also include the Early Jurassic genus ?Dobbertinia, and the Late Jurassic genus ?Sharasialis is their putative sister taxon. Two subfamilies of Sialidae are proposed, namely ?Sharasialinae subfam. nov. and Sialidinae. Austrosialis is the sister of all other extant genera, an assemblage which comprises three monophyletic lineages: the Stenosialis lineage, the Ilyobius lineage, and the Sialis lineage. The revised classification of Sialidae is composed of 12 valid genera and 87 valid species. Ilyobius and Protosialis are recognized as valid generic names, while Nipponosialis is treated as a synonym of Sialis. Reconstruction of the ancestral area proposes a global distribution of alderflies in Pangaea before their diversification. The generic diversification of alderflies might have occurred before the breakup of Pangaea, but the divergence of some lineages or genera was probably promoted by the splitting of this supercontinent.  相似文献   

9.
Bayesian and maximum‐likelihood (ML) analyses of the combined multigene data (nuclear SSU rDNA, and plastid SSU and LSU rDNA) were conducted to evaluate the phylogeny of photosynthetic euglenoids. The combined data set consisted of 108 strains of photosynthetic euglenoids including a colorless sister taxon. Bayesian and ML analyses recovered trees of almost identical topology. The results indicated that photosynthetic euglenoids were divided into two major clades, the Euglenaceae clade (Euglena, Euglenaria, Trachelomonas, Strombomonas, Monomorphina, Cryptoglena, Colacium) and the Phacaceae clade (Phacus, Lepocinclis, Discoplastis). The Euglenaceae clade was monophyletic with high support and subdivided into four main clades: the Colacium, the Strombomonas and Trachelomonas, the Cryptoglena and Monomorphina, and the Euglena and Euglenaria clades. The genus Colacium was positioned at the base of the Euglenaceae and was well supported as a monophyletic lineage. The loricate genera (Strombomonas and Trachelomonas) were located at the middle of the Euglenaceae clade and formed a robust monophyletic lineage. The genera Cryptoglena and Monomorphina also formed a well‐supported monophyletic clade. Euglena and the recently erected genus Euglenaria emerged as sister groups. However, Euglena proxima branched off at the base of the Euglenaceae. The Phacaceae clade was also a monophyletic group with high support values and subdivided into three clades, the Discoplastis, Phacus, and Lepocinclis clades. The genus Discoplastis branched first, and then Phacus and Lepocinclis emerged as sister groups. These genera shared a common characteristic, numerous small discoid chloroplasts without pyrenoids. These results clearly separated the Phacaceae clade from the Euglenaceae clade. Therefore, we propose to limit the family Euglenaceae to the members of the Euglena clade and erect a new family, the Phacaceae, to house the genera Phacus, Lepocinclis, and Discoplastis.  相似文献   

10.
Previous studies using the nuclear SSU rDNA and partial LSU rDNA have demonstrated that the euglenoid loricate taxa form a monophyletic clade within the photosynthetic euglenoid lineage. It was unclear, however, whether the loricate genera Trachelomonas and Strombomonas were monophyletic. In order to determine the relationships among the loricate taxa, SSU and LSU nuclear rDNA sequences were obtained for eight Strombomonas and 25 Trachelomonas strains and combined in a multigene phylogenetic analysis. Conserved regions of the aligned data set were used to generate maximum‐likelihood (ML) and Bayesian phylogenies. Both methods recovered a strongly supported monophyletic loricate clade with Strombomonas and Trachelomonas species separated into two sister clades. Taxa in the genus Strombomonas sorted into three subclades. Within the genus Trachelomonas, five strongly supported subclades were recovered in all analyses. Key morphological features could be attributed to each of the subclades, with the major separation being that all of the spine‐bearing taxa were located in two sister subclades, while the more rounded, spineless taxa formed the remaining three subclades. The separation of genera and subclades was supported by 42 distinct molecular signatures (33 in Trachelomonas and nine in Strombomonas). The morphological and molecular data supported the retention of Trachelomonas and Strombomonas as separate loricate genera.  相似文献   

11.
A phylogenetic analysis of 40 species (22 genera) of the Palaearctic millipede family Julidae was made based on partial sequences of the mitochondrial 16S rRNA (16S) gene and the nuclear 28S rRNA (28S) gene, respectively. The two data sets (16S rDNA and 28S rDNA) were analysed individually and in combination using direct optimization as implemented in POY. The 16S rDNA and the 28S rDNA sequences vary from 410 to 449 bp and from 467 to 525 bp in length, respectively. All searches were performed under six different gap opening costs, an extension gap cost of 1, and a substitution cost of 2. Incongruence length difference values were used to select the preferred tree. The order Julida was recovered as monophyletic under all weight sets. The family Julidae was recovered as monophyletic except under one weight set where the genus Nepalmatoiulus is sister to all other Julida. Within Julidae, a clade of Paectophyllini + Calyptophyllini is sister to all others on the preferred tree but this relationship is not robust. A hitherto unrecognized clade of (South) east Asian genera (Anaulaciulus and Nepalmatoiulus) was recovered under five weight sets. Another “new” robust clade (Oncoiulini + Schizophyllini) is congruent with a hitherto unrecognized complex morphological character. Further clades recovered within the Julidae partly conflict with the accepted classification, which is only to a limited extent based on phylogenetic arguments.  相似文献   

12.
Evolutionary relationships within and between the marine hydrophiine sea snake groups have been inferred primarily using morphological characters, and two major groups traditionally are recognized. The Aipysurus group comprises nine species in two genera, and the taxonomically chaotic Hydrophis group comprises as many as 40 species, of which 27 are generally allocated to the genus Hydrophis and 13 to ten additional genera. In addition to these two major groups are three putatively ‘primitive’ monotypic genera, Hydrelaps darwiniensis, Ephalophis greyi and Parahydrophis mertoni. The present study investigated the evolutionary relationships of 23 representative species of marine hydrophiines, comprising 15 species from the Hydrophis group, six species from the Aipysurus group, and H. darwiniensis and P. mertoni, to address two broad aims. First, the aim was to provide a robust phylogeny for sea snakes to test previous phylogenetic hypotheses based on morphology, and thus provide some taxonomic stability to the group. Second, there was interest in evaluating the hypothesis that the Hydrophis group might represent a rapidly diverged adaptive radiation. A large mitochondrial DNA data set based on the cytochrome b gene (1080 bp, 401 parsimony informative) and the 16S rRNA gene (510 bp, 57 parsimony informative) was assembled and these data were analysed using parsimony, maximum‐likelihood and Bayesian approaches. All analyses yielded virtually the same optimal tree, confirming that hydrophiine sea snakes comprise at least three lineages. The Aipysurus group formed a strongly supported and well‐resolved monophyletic clade. The Hydrophis group also formed a strongly supported clade; however, resolution among the genera and species was very poor. Hydrelaps darwiniensis and P. mertoni formed a sister clade to the Hydrophis lineage. Our phylogeny was used to test the validity of previous taxonomic and phylogenetic hypotheses, and to demonstrate that the genus Hydrophis is not monophyletic. Genetic diversity relative to phenotypic diversity is four to seven times greater in the Hydrophis lineage compared with the Aipysurus lineage. The topology of our phylogenetic hypothesis, combined with the levels of genetic divergence relative to morphological diversity, demonstrate that the Hydrophis lineage represents a rapidly diverged adaptive radiation. The data are consistent with the hypothesis that this adaptive radiation may be due to historical sea level fluctuations that have isolated populations and promoted speciation. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 89 , 523–539.  相似文献   

13.
Larentiinae are the second largest subfamily of Geometridae, with more than 6200 described species. Despite recent advances in molecular systematics of geometrid moths, phylogenetic relationships between the numerous subgroups of Larentiinae are poorly known. In this study we present the most comprehensive attempt to date to resolve the phylogeny of Larentiinae, having sampled at least one species from all currently recognized 23 tribes. Fragments of one mitochondrial (COI) and eight nuclear (EF‐1α, WGL, GAPDH, RPS5, IDH, MDH, CAD and 28S) genes were sequenced, for a total of 6939 bp. Maximum likelihood and Bayesian analyses resulted in identical well‐resolved phylogenetic trees, which had maximum or near‐maximum support values at most nodes. Almost all conventionally recognized tribes represented by more than one genus were found to be monophyletic. Close to the root of Larentiinae, six tribes branch off the main lineage one after another, with Dyspteridini being sister to all other members of the subfamily. The rest of larentiines are divided into two very diverse lineages, comprising eight and at least ten tribes, respectively. There were just three findings incongruent with the conventional tribal subdivision of the subfamily. First, the genera Collix Guenée and Anticollix Prout formed a separate, previously unrecognized but well‐supported clade at the tribe level. Second, the Palaearctic genus Pelurga Hübner was placed apart from Larentia Treitschke and Mesoleuca Hübner, which were the other members of Larentiini in this analysis. Third, Cataclysmini appeared together with genera belonging to Xanthorhoini, leaving the latter paraphyletic. The Neotropic genus Oligopleura Herrich‐Schäffer is shown to belong to the tribe Euphyiini ( comb.n. ) according to both molecular data and male genital morphology. The results and the tribal classification of Larentiinae are discussed with reference to the principal publications since the end of the 19th Century. We conclude that the current tribal classification of Larentiinae is not controversial from the phylogenetic point of view and that its increasing complexity has merely reflected the accumulation of information, mainly through different methods of biosystematic study having become available for researchers. Our results indicate that diurnal lifestyle, accompanied by conspicuous coloration, has evolved independently in several subgroups of Larentiinae.  相似文献   

14.
15.
Analysis of a morphological dataset containing 152 parsimony‐informative characters yielded the first phylogenetic reconstruction spanning the South American characiform family Anostomidae. The reconstruction included 46 ingroup species representing all anostomid genera and subgenera. Outgroup comparisons included members of the sister group to the Anostomidae (the Chilodontidae) as well as members of the families Curimatidae, Characidae, Citharinidae, Distichodontidae, Hemiodontidae, Parodontidae and Prochilodontidae. The results supported a clade containing Anostomus, Gnathodolus, Pseudanos, Sartor and Synaptolaemus (the subfamily Anostominae sensu Winterbottom) albeit with a somewhat different set of relationships among the species within these genera. Anostomus as previously recognized was found to be paraphyletic and is split herein into two monophyletic components, a restricted Anostomus and the new genus Petulanos gen. nov. , described herein. Laemolyta appeared as sister to the clade containing Anostomus, Gnathodolus, Petulanos, Pseudanos, Sartor and Synaptolaemus. Rhytiodus and Schizodon together formed a well‐supported clade that was, in turn, sister to the clade containing Anostomus, Gnathodolus, Laemolyta, Petulanos, Pseudanos, Sartor and Synaptolaemus. Anostomoides was sister to the clade formed by these nine genera. Leporinus as currently defined was not found to be monophyletic, although certain clades within that genus were supported, including the species with subterminal mouths in the former subgenus Hypomasticus which we recognize herein as a genus. Abramites nested in Leporinus, and Leporellus was found to be the most basal anostomid genus. The presence of cis‐ and trans‐Andean species in Abramites, Leporellus, Leporinus and Schizodon, all relatively basal genera, suggests that much of the diversification of anostomid species pre‐dates the uplift of the Andean Cordilleras circa 11.8 million years ago. Several important morphological shifts in anostomid evolution are illustrated and discussed, including instances of convergence and reversal. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 70–210.  相似文献   

16.
The phylogenetic relationships of the suprageneric groupsof the ichneumonid subfamily Pimplinae (Hymenoptera) are re‐assessedusing 166 morphological and biological characters for 162 species,representing all of the available described genera and subgenera.The cladistic analysis was repeated using abstracted genera, re‐codedfrom the ­initial set of species, as terminal taxa. Thetopology of the resulting cladograms was similar. In the first (primary) analysisseveral genera (including Neotheronia, Itoplectis, Dolichomitus, Dreisbachia, Polysphincta, Oxyrrhexis and Zonopimpla)were not retrieved as monophyletic groups; however, all except thelast were found to be monophyletic in the second analysis. Theseresults suggest that using abstracted taxa may force a ‘falsemonophyly’ on the preselected groups. Thus we reject theuse of such abstractions, preferring instead to use exemplar speciesthat together show much of the variation that occurs within a hypothesizedgenus. Within the Pimplinae three major groupings were recognized,the Delomeristini (including the Perithoini syn. nov.) , thePimplini and the Ephialtini. Within the Pimplini, two generic groupswere recovered, the Xanthopimpla and Pimpla genus‐groups,but a third postulated group, the Theronia genus‐group, wasfound to be paraphyletic. Within the Ephialtini five groups wererecognized, the Pseudopimpla, Alophosternum, Camptotypus, Ephialtes and Sericopimpla genus‐groups.The spider parasitizing complex of genera (the Polysphincta genus‐complex)was found to nest within the Sericopimpla genus‐group confirmingthe placement of Polysphinctini as a synonym of Ephialtini. Problemswith the status of some existing genera are highlighted, but formalnomenclatural changes are not proposed. The ancestral Pimplinaeare hypothesized to have been solitary ectoparasitic idiobiontson weakly concealed immature Hymenoptera. The major radiations withinthe Pimplinae are shown as: (1) a progressive exploitation of cocooned,then weakly cocooned, lepidopterous pupae in the Pimplini leadingto idiobiont endoparasitism; (2) increasing specialization to attackhosts deeply concealed in wood in the Ephialtes genus‐group,and (3) specialization on a variety of cocooned hosts, includingspider egg sacs, leading to koinobiont ectoparasitism of spiders.A brief synopsis of the distribution of the group is given, and somebiogeographical inferences drawn. The group is presumed to haveoriginated and radiated on Laurasia; no evidence for trans‐Antarcticrelationships can be found. © 2002 The LinneanSociety of London, Zoological Journal of the Linnean Society,2002, 136 , 421?485  相似文献   

17.
We present a molecular phylogeny of the family Raphidiidae including representatives of 21 of the 26 genera. Sequences from the nuclear gene for the large subunit ribosomal RNA (28S rRNA) and the mitochondrial cytochrome c oxidase subunit 3 gene (cox3) were used. For the phylogenetic reconstructions we applied automated and manual approaches for sequence alignment and different evolutionary models and tree building algorithms. The trees based on the two alignment approaches were rather similar in their overall topology. A combination of both marker sequences increased the resolution of the trees. The six clades within the raphidiid family that emerged represent either single genera or groups of genera, namely: (i) the Nearctic genus Agulla Navás, (ii) the Nearctic/Central American genus Alena Navás, (iii) the Central Asiatic and Eastern Palaearctic genus Mongoloraphidia H. Aspöck & U. Aspöck, (iv) the Palaearctic Puncha clade, (v) the western Mediterranean Ohmella clade, and (vi) the Palaearctic Phaeostigma clade. The New World taxa Agulla and Alena are placed as successive out‐groups to a monophyletic Palaearctic clade. The Mongoloraphidia clade is distributed in the eastern Palearctic while the remaining three clades are exclusively (Ohmella clade) or mainly distributed in the western Palaearctic. The early radiation of extant Raphidiidae is interpreted based on the phylogenetic tree obtained in the present study, and the geological and palaeobiological processes around the K–T boundary.  相似文献   

18.
Phylogenetic relationships among members of the family Gyrinidae (Coleoptera: Adephaga) were inferred from analysis of 42 morphological characters and DNA sequence data from the genes 12S rRNA, cytochrome c oxidase I and II, elongation factor 1 alpha (2 different copies) and histone III. Eighty‐nine species of Gyrinidae were included representing all known subfamilies, tribes and genera. Outgroups include species from Noteridae, Paelobiidae and Dytiscidae. Analyses include parsimony analysis, and partitioned time‐free and relaxed‐clock Bayesian analyses of the combined data using reversible‐jump MCMC to simultaneously integrate over all possible 4 × 4 nucleotide substitution models. Analyses resulted in conflicting topologies between the combined parsimony and Bayesian analyses on the one hand, and the relaxed‐clock analysis on the other. The marginal likelihoods of competing models were calculated with stepping‐stone sampling and used in a Bayes factor test, which, along with arguments from morphology, supported the topology generated by the relaxed‐clock analysis. This phylogenetic hypothesis is adopted to revise the higher classification of Gyrinidae. Major taxonomic conclusions include: (i) monophyletic Gyrinidae, (ii) the Nearctic Spanglerogyrinae Folkerts (with one species, Spanglerogyrus albiventris Folkerts) sister to all other Gyrinidae, (iii) the Madagascar endemic Heterogyrinae Brinck stat. n. (with one species, Heterogyrus milloti Legros) sister to all Gyrinidae except Spanglerogyrinae, (iv) monophyletic Gyrininae Latreille including three monophyletic tribes with the following relationship: Orectochilini Régimbart + (Gyrinini Latreille + Enhydrini Régimbart), (v) monophyletic Orectochilini comprising four monophyletic genera with the following relationships: (Gyretes Brullé + Patrus Aubé stat. n. ) + (Orectogyrus Régimbart + Orectochilus Dejean), (vi) monophyletic Gyrinini comprising three genera with the following relationships: Gyrinus Geoffroy + (Metagyrinus Brinck + Aulonogyrus Motschulsky), each monophyletic except Metagyrinus with only one included species and not tested for monophyly, and (vii) monophyletic Enhydrini comprising five genera with the following relationships: (Porrorhynchus Laporte + Dineutus MacLeay) + (Enhydrus Laporte + (Andogyrus Ochs + Macrogyrus Régimbart)), each monophyletic except Porrorhynchus, Enhydrus and Andogyrus each with one included species and untested for monophyly. Each subfamily, tribe and genus is diagnosed and discussed. The female reproductive tract of each group is presented, illustrated and discussed with respect to the phylogenetic conclusions.  相似文献   

19.
A phylogeny of green lacewings (Neuroptera: Chrysopidae) using anchored hybrid enrichment data is presented. Using this phylogenomic approach, we analysed 137 kb of sequence data (with < 10% missing) for 82 species in 50 genera of Chrysopidae under Bayesian and maximum likelihood criteria. We recovered a strongly supported tree topologically congruent with recently published phylogenies, especially relationships amongst higher‐level groups. The subfamily Nothochrysinae was recovered as paraphyletic, with one clade sister to the rest of Chrysopidae, and the second clade containing the nominal genus (Nothochrysa Navás) as sister to the subfamily Apochrysinae. Chrysopinae was recovered as a monophyletic with the monobasic Nothancylini tribe n. sister to the rest of the subfamily. Leucochrysini was recovered sister to Belonopterygini, and Chrysopini was rendered paraphyletic with respect to Ankylopterygini. Divergence times and diversification estimates indicate a major shift in rate in ancestral Chrysopini at the end of the Cretaceous, and the extensive radiation of Chrysopinae, the numerically dominant clade of green lacewings, began in the Mid‐Paleogene (c. 45 Ma).  相似文献   

20.
Parasitoid wasps of the subfamily Telenominae (Hymenoptera: Platygastroidea, Platygastridae) develop as immatures within the eggs of other insects (Lepidoptera, Hemiptera, Diptera and Neuroptera). Rearing records indicate that individual species are restricted to attack hosts within only one of these four main groups. We conducted a phylogenetic analysis of the group using sequence data from multiple genes (18S, 28S, COI, EF‐1α) to assess the pattern of shifts among host groups and to test the monophyly of and relationships among genera and species‐groups. Telenominae sensu Masner—that is, including only the nominate tribe Telenomini—is not monophyletic. Representatives of the Psix group of genera (Psix Kozlov & Lê and Paratelenomus Dodd) form a monophyletic group that is sister to Gryon Haliday (Scelioninae: Gryonini) and are excluded from the subfamily. The remaining telenomines are monophyletic. The genus Phanuromyia Dodd and the crassiclava group of Telenomus Haliday, both recorded as parasitoids of planthopper eggs (Hemiptera: Auchenorrhyncha, Fulgoroidea), form a monophyletic group that is sister to all other telenomines exclusive of the Psix group. Twenty‐nine species of the crassiclava and aradi groups of Telenomus are transferred to Phanuromyia as new combinations. Basal elements of the remaining species are all in groups reared from the eggs of true bugs (Heteroptera), primarily the stink bugs (Pentatomoidea) and seed bugs (Lygaeoidea). A shift to parasitism of lepidopteran eggs evolved within a single clade, occurring either one or two times. From this clade a small group of species, the Telenomus tabanivorus group, subsequently shifted to parasitism of egg masses of true flies (Tabanidae and Stratiomyiidae). Aholcus Kieffer and Platytelenomus Dodd both belong to the clade of lepidopteran parasitoids and are considered as junior synonyms of Telenomus (new synonymy for Aholcus). The monophyletic status of the two core genera, Telenomus and Trissolcus could not be resolved using these data. The phylogenetic pattern of host shifts suggests comparisons among taxa that may be fruitful in elucidating mechanisms by which parasitoids locate their hosts, the proximate factors that determine the host range, and the changes in these factors that influence host changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号