首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Southern blot analyses of germ-line DNA obtained from rabbits expressing lambda chains of C7 and/or C21 allotypes were performed with a rabbit C lambda region-specific probe; a 12-kbp EcoRI- and a 2-kbp BamHI-hybridizing fragment were detected only in the DNA from rabbits expressing the C21 allotype. The 12-kbp EcoRI fragment was cloned and shown to contain two C lambda region-encoding genes in the same orientation. Each is preceded by a J lambda gene segment. Nonamer-12-bp spacer-heptamer recombination signal sequences were found 5' of each J lambda segment, and splicing signals were identified at the 3' ends of the J lambda segments and the 5' ends of the corresponding C lambda genes. The C lambda 5 gene, which exhibits a sequence identical with that found in several cDNA clones, is carried by the 2-kbp BamHI fragment missing from the genomic DNA of rabbits which do not express the C21 allotype. The second C lambda gene, C lambda 6, lies 3' of C lambda 5, in a 1.6-kbp BamHI fragment which is present in genomic DNAs of all tested rabbits, irrespective of their phenotype. Its sequence is identical with that found in one cDNA clone and differs from that of C lambda 5 in 17 base positions resulting in four amino acid substitutions. A fragment of a cDNA, with a J-C region sequence identical with that encoded by the J lambda 5-C lambda 5 gene pair, was subcloned into a plasmid expression vector. The resulting polypeptide product could be specifically immunoprecipitated by anti-C21 but not anti-C7 alloantisera, showing that some, if not all, C21 allotopes are encoded by the C lambda 5 gene. In contrast, the C lambda 6 gene product was not precipitable, either by anti-C7 or by anti-C21 alloantisera, although it was readily immunoprecipitated by a goat anti-rabbit lambda chain antiserum.  相似文献   

2.
The sucrose operon from pUR400, a 78-kbp conjugative Salmonella plasmid, was cloned in Escherichia coli K12. The operon was located in a 5.7-kbp SalI restriction fragment and was subcloned, in each of two possible orientations, using the expression vector pUC18. The insert DNA was restriction mapped and duplicate restriction sites in the insert and in the polylinker of the vector were used to create various deletions promoter distal in the operon sequence. Additional deletions were made with the restriction exonuclease Bal31. Cells containing hybrid plasmids with specified deletions lacked the ability to transport sucrose or were constitutive for hydrolase and/or uptake activities. The scrA (enzyme IIScr) and scrR (regulatory) genes resided within 2900-bp SmaI-SalI DNA fragment and were assigned the order scrB, scrA, scrR. An amplified sucrose-inducible gene product, Mr 68,000, was detected only in the membrane fraction from recombinant cells that contained plasmid with the intact operon sequence. This protein represented 11% of the total membrane protein and was resistant to extraction with 0.5 M sodium chloride, 2% Triton X-100, and 0.5% sodium deoxycholate. The protein did not appear to be the product of either the scrA, scrB, or scrR gene and may therefore represent a previously unidentified membrane-bound sucrose protein. A new gene, scrC, is proposed. In addition, the cloned 5.7-kbp SalI and 2.5-kbp SmaI-SalI DNA fragments failed to hybridize to chromosomal DNA from Bacillus subtilis, Streptococcus lactis, Streptococcus mutans, and Lactobacillus acidophilus as well as to DNA from a sucrose plasmid from Salmonella tennessee. However, the probes showed weak homology with a 20-kbp EcoRI restriction fragment from Klebsiella pneumoniae.  相似文献   

3.
The gene for spiralin, the major membrane protein of the helical mollicute Spiroplasma citri, was cloned in Escherichia coli as a 5-kilobase-pair (kbp) DNA fragment. The complete nucleotide sequence of the 5.0-kbp spiroplasmal DNA fragment was determined (GenBank accession no. M31161). The spiralin gene was identified by the size and amino acid composition of its translational product. Besides the spiralin gene, the spiroplasmal DNA fragment was found to contain five additional open reading frames (ORFs). The translational products of four of these ORFs were identified by their amino acid sequence homologies with known proteins: ribosomal protein S2, elongation factor Ts, phosphofructokinase, and pyruvate kinase, respectively encoded by the genes rpsB, tsf, pfk, and pyk. The product of the fifth ORF remains to be identified and was named protein X (X gene). The order of the above genes was tsf--X--spiralin gene--pfk--pyk. These genes were transcribed in one direction, while the gene for ribosomal protein S2 (rpsB) was transcribed in the opposite direction.  相似文献   

4.
The cloning of 7.2- and 9.6-kbp fragments of the methylotrophic yeast Hansenula polymorpha DNA restored the wild-type phenotype Gsh+ in the glutathione-dependent gsh1 and gsh2 mutants of this yeast defective in glutathione (GSH) synthesis because of a failure of the gamma-glutamylcysteine synthetase reaction. The 9.6-kbp DNA fragment was found to contain a 4.3-kbp subfragment, which complemented the Gsh- phenotype of the gsh2 mutant. The Gsh+ transformants of the gsh1 and gsh2 mutants, which bear plasmids pG1 and pG24 with the 7.2- and 4.3-kbp DNA fragments, respectively, had a completely restored wild-type phenotype with the ability to synthesize GSH and to grow in GSH-deficient synthetic media on various carbon sources, including methanol, and with acquired tolerance to cadmium ions. In addition, the 4.3-kbp DNA fragment borne by plasmid pG24 eliminated pleiotropic changes in the gsh2 mutants associated with methylotrophic growth in a semisynthetic (GSH-supplemented) medium (poor growth and alterations in the activity of the GSH-catabolizing enzyme gamma-glutamyltransferase and the methanol-oxidizing enzyme alcohol oxidase).  相似文献   

5.
Isolation of the ARO1 cluster gene of Saccharomyces cerevisiae.   总被引:10,自引:0,他引:10       下载免费PDF全文
The AROl cluster gene was isolated by complementation in Saccharomyces cerevisiae after transformation with a comprehensive yeast DNA library of BamHI restriction fragments inserted into the shuttle vector YEp13. Most of the transformants exhibited the expected episomal inheritance of the ARO+ phenotype; however, one stable transformant has been shown to be an integration of the AROl fragment and the vector YEp13 at the arol locus. The insert containing AROl is a 17.2-kilobase pair (kbp) BamHI fragment which complements both nonsense and missense alleles of arol. Subcloning by Sau3AI partial digestion further locates the AROl segment to a 6.2-kbp region. An autonomously replicating sequence (ars) was found on the 17.2-kbp fragment. Yeast arol mutants transformed with the AROl episome express 5 to 12 times the normal level of the five AROl enzyme activities and possess elevated amounts of the AROl protein. The yeast AROl fragment also complemented aroA, aroB, aroD, and aroE mutants of Escherichia coli. The expression of AROl in both S. cerevisiae and E. coli was independent of the orientation of the fragment with respect to the vector.  相似文献   

6.
In cloning in Escherichia coli C600 of a 4.5-kbp HindIII DNA fragment with the tetracycline-resistance determinant (tetBS908) from Bacillus subtilis GSY908 chromosome using a plasmid vector, a 5.2-kbp HindIII DNA fragment was also isolated at a ratio of 2 to 89. The two independently obtained 5.2-kbp fragments were an insertion derivative of the 4.5-kbp fragment and carried E. coli transposable element ISlK, which was inserted at the same site immediately before tetBS908 in the same direction. For the ISlK insertions, the 8-bp sequence CAAATTTT was used as a target, this having no similarity to any published sequences.  相似文献   

7.
A contiguous region of about 30 kbp of DNA putatively encoding reactions in daunomycin biosynthesis was isolated from Streptomyces sp. strain C5 DNA. The DNA sequence of an 8.1-kbp EcoRI fragment, which hybridized with actI polyketide synthase (PKS) and actIII polyketide reductase (PKR) gene probes, was determined, revealing seven complete open reading frames (ORFs), two in one cluster and five in a divergently transcribed cluster. The former two genes are likely to encode PKR and a bifunctional cyclase/dehydrase. The five latter genes encode: (i) a homolog of TcmH, an oxygenase of the tetracenomycin biosynthesis pathway; (ii) a PKS Orf1 homolog; (iii) a PKS Orf2 homolog (chain length factor); (iv) a product having moderate sequence identity with Escherichia coli beta-ketoacyl acyl carrier protein synthase III but lacking the conserved active site; and (v) a protein highly similar to several acyltransferases. The DNA within the 8.1-kbp EcoRI fragment restored daunomycin production to two dauA non-daunomycin-producing mutants of Streptomyces sp. strain C5 and restored wild-type antibiotic production to Streptomyces coelicolor B40 (act VII; nonfunctional cyclase/dehydrase), and to S. coelicolor B41 (actIII) and Streptomyces galilaeus ATCC 31671, strains defective in PKR activity.  相似文献   

8.
9.
Nucleotide sequence of the sucrase gene of Bacillus subtilis   总被引:17,自引:0,他引:17  
A Fouet  A Klier  G Rapoport 《Gene》1986,45(2):221-225
The sucrase gene (sacA) and part of the sacP locus, which corresponds to a membrane component of the phosphotransferase system (PTS) of sucrose transport of Bacillus subtilis, were previously cloned on a 2.1-kb EcoRI DNA fragment. Genes sacA and sacP were localized on this DNA fragment and the nucleotide sequence of the 2.1-kb DNA fragment was determined. A 1440-bp open reading frame (480 codons) was identified coding for a deduced polypeptide of Mr54827, which corresponds to that of purified sucrase. The amino acid sequence shares homology with that of yeast invertase (SUC2 gene product). The sacA gene and the preceding sacP gene seem to belong to the same operon.  相似文献   

10.
Streptomyces setonii (ATCC 39116) degrades various single aromatic compounds such as phenol or benzoate via an ortho-cleavage pathway using catechol 1,2-dioxygenase (C12O). A PCR using degenerate primers based on the conserved regions of known C12O-encoding genes amplified a 0.45-kbp DNA fragment from S. setonii total DNA. A Southern hybridization analysis and size-selected DNA library screening using the 0.45-kbp PCR product as a probe led to the isolation of a 6.4-kbp S. setonii DNA fragment, from which the C12O-encoding genetic locus was found to be located within a 1.4-kbp DNA fragment. A complete nucleotide sequencing analysis of the 1.4-kbp DNA fragment revealed a 0.84-kbp open reading frame, which showed a strong overall amino acid similarity to the known high-G+C Gram-positive (but significantly less to the Gram-negative) bacterial mesophilic C12Os. The heterologous expression of the cloned 1.4-kbp DNA fragment in Escherichia coli demonstrated that this C12O possessed a thermophilic activity within a broad temperature range (up to 65 degrees C) and showed a higher activity against 3-methylcatechol than catechol or 4-methylcatechol, but no activity against protocatechuate.  相似文献   

11.
Meiotic Recombination on Artificial Chromosomes in Yeast   总被引:5,自引:0,他引:5       下载免费PDF全文
We have examined the meiotic recombination characteristics of artificial chromosomes in Saccharomyces cerevisiae. Our experiments were carried out using minichromosome derivatives of yeast chromosome III and yeast artificial chromosomes composed primarily of bacteriophage lambda DNA. Tetrad analysis revealed that the artificial chromosomes exhibit very low levels of meiotic recombination. However, when a 12.5-kbp fragment from yeast chromosome VIII was inserted into the right arm of the artificial chromosome, recombination within that arm mimicked the recombination characteristics of the fragment in its natural context including the ability of crossovers to ensure meiotic disjunction. Both crossing over and gene conversion (within the ARG4 gene contained within the fragment) were measured in the experiments. Similarly, a 55-kbp region from chromosome III carried on a minichromosome showed crossover behavior indistinguishable from that seen when it is carried on chromosome III. We discuss the notion that, in yeast, meiotic recombination behavior is determined locally by small chromosomal regions that function free of the influence of the chromosome as a whole.  相似文献   

12.
During shotgun cloning of an amylase gene, we found a transform ant of Escherichia coli with a reddish color. The transform ant produced highly water-soluble red pigments the molecular masses of which were less than 3000. The plasmid harbored by the transform ant contained a DNA fragment derived from a strain of Bacillus stearothermophilus. Truncation of the insert DNA showed that an 1.1-kbp Sau 3A–SalI fragment was responsible for the reddish colony. An open reading frame was found in the nucleotide sequence of the 1.1-kbp DNA fragment. The production of the red pigment was accompanied by a colorless 28-kDa protein. The sequence of the 28-kDa protein was highly homologous to bacterial uroporphyrinogen III methylases participating in corrinoid biosynthesis. The 28-kDa protein was found to be a thermostable uroporphyrinogen III methylase.  相似文献   

13.
14.
Gamma-glutamylmethylamide synthetase (GMAS), found in an obligate methylotroph, Methylovorus mays No. 9, can form theanine from glutamic acid and ethylamine in a mixture in which yeast sugar fermentation is coupled for ATP regeneration. The internal and N-terminal amino acid sequences of GMAS had certain similarities to putative glutamine synthetase type III (GS III) of Methylobacillus flagellatus KT. From the M. mays No. 9 genomic DNA library, a clone containing a 6.5-kbp insertional DNA fragment was selected by the PCR screening technique with oligonucleotide primers specific for the GMAS gene. The fragment had an open reading frame of the GMAS gene encoding a protein of 444 amino acids (molecular mass, 49 kDa). The deduced amino acid sequence showed significant identity with that of Met. flagellatus KT GS III (78%). The isolated gene was ligated into an expression vector (pET21a) and expressed in Escherichia coli AD494 (DE3). Enzyme productivity in the expression system was about 23-fold higher than that in M. mays No. 9. Recombinant GMAS had the same properties as intrinsic GMAS, and it formed theanine by coupling the reaction with the ATP-regeneration system of yeast sugar fermentation.  相似文献   

15.
J Kreike  M Schulze  F Ahne    B F Lang 《The EMBO journal》1987,6(7):2123-2129
We have cloned a 1.6-kb fragment of yeast nuclear DNA, which complements pet- mutant MK3 (mrs1). This mutant was shown to be defective in mitochondrial RNA splicing: the excision of intron 3 from the mitochondrial COB pre-RNA is blocked. The DNA sequence of the nuclear DNA fragment revealed two open reading frames (ORF1 with 1092 bp; ORF2 with 735 bp) on opposite strands, which overlap by 656 bp. As shown by in vitro mutagenesis, ORF1, but not ORF2, is responsible for complementation of the splice defect. Hence, ORF1 represents the nuclear MRS1 gene. Disruption of the gene (both ORFs) in the chromosomal DNA of the respiratory competent yeast strain DBY747 (long form COB gene) leads to a stable pet- phenotype and to the accumulation of the same mitochondrial RNA precursors as in strain MK3. The amino acid sequence of the putative ORF1 product does not exhibit any homology with other known proteins, except for a small region of homology with the gene product of another nuclear yeast gene involved in mitochondrial RNA splicing, CBP2. The function of the MRS1 (ORF1) gene in mitochondrial RNA splicing and the significance of the overlapping ORFs in this gene are discussed.  相似文献   

16.
A 14-kilobase-pair (kbp) EcoRI DNA fragment that encodes an enzyme capable of rapid hydrolysis of N-methylcarbamate insecticides (carbofuran hydrolase) was cloned from carbofuran-degrading Achromobacter sp. strain WM111. When used to probe Southern blots containing plasmid and total DNAs from WM111, this 14-kbp fragment hybridized strongly to a 14-kbp EcoRI fragment from the greater than 100-kbp plasmid harbored by this strain but weakly to EcoRI-digested total DNA from Achromobacter sp. strain WM111, indicating that the gene for N-methylcarbamate degradation (mcd) is plasmid encoded. Further subcloning localized the mcd gene on a 3-kbp ScaI-ClaI fragment. There was little or no expression of this gene in the alternative gram-negative hosts Pseudomonas putida, Alcaligenes eutrophus, Acinetobacter calcoaceticus, and Achromobacter pestifer. Western blotting (immunoblotting) of the protein products produced by low-level expression in P. putida confirmed that this 3-kbp fragment encodes the two 70+-kilodalton protein products seen in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified carbofuran hydrolase.  相似文献   

17.
Catechol 1,2-dioxygenase (EC 1.13.1.1), the product of the catA gene, catalyzes the first step in catechol utilization via the beta-ketoadipate pathway. Enzymes mediating subsequent steps in the pathway are encoded by the catBCDE genes which are carried on a 5-kilobase-pair (kbp) EcoRI restriction fragment isolated from Acinetobacter calcoaceticus. This DNA was used as a probe to identify Escherichia coli colonies carrying recombinant pUC19 plasmids with overlapping sequences. Repetition of the procedure yielded an A. calcoaceticus 6.7-kbp EcoRI restriction fragment which contained the catA gene and bordered the original 5-kbp EcoRI restriction fragment. When the catA-containing fragment was placed under the control of the lac promoter on pUC19 and induced with isopropylthiogalactopyranoside, catechol dioxygenase was formed in E. coli at twice the level found in fully induced cultures of A. calcoaceticus. A. calcoaceticus strains with mutations in the catA gene were transformed to wild type by DNA from lysates of E. coli strains carrying the catA gene on recombinant plasmids. Thus, A. calcoaceticus strains with a mutated gene can be used in a transformation assay to identify E. coli clones in which at least part of the wild-type gene is present but not necessarily expressed.  相似文献   

18.
Non-self-recognition during asexual growth of Neurospora crassa involves restriction of heterokaryon formation via genetic differences at 11 het loci, including mating type. The het-6 locus maps to a 250-kbp region of LGIIL. We used restriction fragment length polymorphisms in progeny with crossovers in the het-6 region and a DNA transformation assay to identify two genes in a 25-kbp region that have vegetative incompatibility activity. The predicted product of one of these genes, which we designate het-6(OR), has three regions of amino acid sequence similarity to the predicted product of the het-e vegetative incompatibility gene in Podospora anserina and to the predicted product of tol, which mediates mating-type vegetative incompatibility in N. crassa. The predicted product of the alternative het-6 allele, HET-6(PA), shares only 68% amino acid identity with HET-6(OR). The second incompatibility gene, un-24(OR), encodes the large subunit of ribonucleotide reductase, which is essential for de novo synthesis of DNA. A region in the carboxyl-terminal portion of UN-24 is associated with incompatibility and is variable between un-24(OR) and the alternative allele un-24(PA). Linkage analysis indicates that the 25-kbp un-24-het-6 region is inherited as a block, suggesting that a nonallelic interaction may occur between un-24 and het-6 and possibly other loci within this region to mediate vegetative incompatibility in the het-6 region of N. crassa.  相似文献   

19.
Ubiivovk  V. M.  Nazarko  T. Yu.  Stasyk  E. G.  Sibirnyi  A. A. 《Microbiology》2002,71(6):717-722
The cloning of 7.2- and 9.6-kbp fragments of the methylotrophic yeast Hansenula polymorpha DNA restored the wild-type phenotype Gsh+ in the glutathione-dependent gsh1 and gsh2 mutants of this yeast defective in glutathione (GSH) synthesis because of a failure of the -glutamylcysteine synthetase reaction. The 9.6-kbp DNA fragment was found to contain a 4.3-kbp subfragment, which complemented the Gsh phenotype of the gsh2 mutant. The Gsh+ transformants of the gsh1 and gsh2 mutants, which bear plasmids pG1 and pG24, having the 7.2- and 4.3-kbp DNA fragments, respectively, had a completely restored wild-type phenotype with the ability to synthesize GSH and to grow in GSH-deficient synthetic media on various carbon sources, including methanol, and with acquired tolerance to cadmium ions. In addition, the 4.3-kbp DNA fragment borne by plasmid pG24 eliminated pleiotropic changes in the gsh2 mutants associated with methylotrophic growth in a semisynthetic (GSH-supplemented) medium (poor growth and alterations in the activity of the GSH-catabolizing enzyme -glutamyltransferase and the methanol-oxidizing enzyme alcohol oxidase).  相似文献   

20.
Pseudomonas testosteroni ATCC 17410 is able to grow on testosterone. This strain was mutagenized by Tn5, and 41 mutants defective in the utilization of testosterone were isolated. One of them, called mutant 06, expressed 3-oxosteroid delta 1- and 3-oxosteroid delta 4-5 alpha-dehydrogenases only at low levels. The DNA region around the Tn5 insertion in mutant 06 was cloned into pUC19, and the 1-kbp EcoRI-BamHI segment neighbor to the Tn5 insertion was used to probe DNA from the wild-type strain. The probe hybridized to a 7.8-kbp SalI fragment. Plasmid pTES5, which is a pUC19 derivative containing this 7.8-kbp SalI fragment, was isolated after the screening by the 1-kbp EcoRI-BamHI probe. This plasmid expressed delta 1-dehydrogenase in Escherichia coli cells. The 2.2-kbp KpnI-KpnI segment of pTES5 was subcloned into pUC18, and pTEK21 was constructed. In E. coli containing the lacIq plasmid pRG1 and pTEK21, the expression of delta 1-dehydrogenase was induced by isopropyl-beta-D-thiogalactopyranoside (IPTG). The induced level was about 40 times higher than the induced level in P. testosteroni. Delta 1-Dehydrogenase synthesized in E. coli was localized in the inner membrane fraction. The minicell experiments showed that a 59-kDa polypeptide was synthesized from pTEK21, and this polypeptide was located in the inner membrane fraction. The complete nucleotide sequence of the 2.2-kbp KpnI-KpnI segment of pTEK21 was determined. An open reading frame which encodes a 62.4-kDa polypeptide and which is preceded by a Shine-Dalgarno-like sequence was identified. The first 44 amino acids of the putative product exhibited significant sequence similarity to the N-terminal sequences of lipoamide dehydrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号