首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
3.
Peanut (Arachis hypogaea L.), can elicit type I allergy becoming the most common cause of fatal food-induced anaphylactic reactions. Strict avoidance is the only effective means of dealing with this allergy. Ara h 2, a peanut seed storage protein, has been identified as the most potent peanut allergen and is recognized by approximately 90% of peanut hypersensitive individuals in the US. Because peanut has limited genetic variation, wild relatives are a good source of genetic diversity. After screening 30 Arachis duranensis accessions by EcoTILLing, we characterized five different missense mutations in ara d 2.01. None of these polymorphisms induced major conformational modifications. Nevertheless, a polymorphism in the immunodominant epitope #7 (S73T) showed a 56–99% reduction in IgE-binding activity and did not affect T cell epitopes, which must be retained for effective immunotherapy. The identification of natural hypoallergenic isoforms positively contributes to future immunological and therapeutic studies and peanut cultivar development. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Peanut allergy is one of the most life-threatening food allergies and one of the serious challenges facing the peanut and food industries. Current proposed solutions focus primarily on ways to alter the immune system of patients allergic to peanut. However, with the advent of genetic engineering novel strategies can be proposed to solve the problem of peanut allergy from the source. The objectives of this study were to eliminate the immunodominant Ara h 2 protein from transgenic peanut using RNA interference (RNAi), and to evaluate the allergenicity of resulting transgenic peanut seeds. A 265-bp-long PCR product was generated from the coding region of Ara h 2 genomic DNA, and cloned as inverted repeats in pHANNIBAL, an RNAi-inducing plant transformation vector. The Ara h 2-specific RNAi transformation cassette was subcloned into a binary pART27 vector to construct plasmid pDK28. Transgenic peanuts were produced by infecting peanut hypocotyl explants with Agrobacterium tumefaciens EHA 105 harbouring the pDK28 construct. A total of 59 kanamycin-resistant peanut plants were regenerated with phenotype and growth rates comparable to wild type. PCR and Southern analyses revealed that 44% of plants stably integrated the transgene. Sandwich ELISA performed using Ara h 2-mAbs revealed a significant ( P <  0.05) reduction in Ara h 2 content in several transgenic seeds. Western immunobloting performed with Ara h 2-mAb corroborated the results obtained with ELISA and showed absence of the Ara h 2 protein from crude extracts of several transgenic seeds of the T0 plants. The allergenicity of transgenic peanut seeds expressed as IgE binding capacity was evaluated by ELISA using sera of patients allergic to peanut. The data showed a significant decrease in the IgE binding capacity of selected transgenic seeds compared to wild type, hence, demonstrating the feasibility of alleviating peanut allergy using the RNAi technology.  相似文献   

5.
Cultivated peanut, Arachis hypogaea L., is a tetraploid (2n = 4x = 40) species thought to be of allopolyploid origin. Its closest relatives are the diploid (2n = 2x = 20) annual and perennial species included with it in Arachis sect. Arachis. Species in section Arachis represent an important source of novel alleles for improvement of cultivated peanut. A better understanding of the level of speciation and taxonomic relationships between taxa within section Arachis is a prerequisite to the effective use of this secondary gene pool in peanut breeding programs. The AFLP technique was used to determine intra- and interspecific relationships among and within 108 accessions of 26 species of this section. A total of 1328 fragments were generated with 8 primer combinations. From those, 239 bands ranging in size from 65 to 760 bp were scored as binary data. Genetic distances among accessions ranged from 0 to 0.50. Average distances among diploid species (0.30) were much higher than that detected between tetraploid species (0.05). Cluster analysis using different methods and principal component analysis were performed. The resulting grouping of accessions and species supports previous taxonomic classifications and genome designations. Based on genetic distances and cluster analysis, A-genome accessions KG 30029 (Arachis helodes) and KSSc 36009 (Arachis simpsonii) and B-genome accession KGBSPSc 30076 (A. ipaensis) were the most closely related to both Arachis hypogaea and Arachis monticola. This finding suggests their involvement in the evolution of the tetraploid peanut species.  相似文献   

6.
采用Touchdown PCR技术从花生cDNA中克隆到花生的过敏原iso-Ara h 3基因,并进行重组蛋白表达,再用Western blot技术鉴定重组蛋白过敏原性。结果显示,构建的pET44a-iso—Ara h 3重组菌能表达iso—Ara h 3蛋白。用8例花生过敏的阳性血清鉴定表明,重组的iso—Ara h 3蛋白血清IgE识别率为12.5%,是一种低过敏原性的过敏原蛋白。  相似文献   

7.
Reaction to peanut, as one of the major food allergens, has become an increasingly common life-threatening disorder. Although peanut allergens have been extensively identified, Ara h 1 is still too expensive to be applied in food safety or clinical utility. In this study, the purification, expression, and immunological analyses of Ara h 1 are investigated. It was shown that a high purity (>95%) of Ara h 1 could be prepared by either purification or expression. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blot, and mass spectroscopy were used to identify the Ara h 1, and it was found that natural Ara h 1 (nAra h 1) and expressed Ara h 1 (rAra h 1) have the same properties, including amino acid sequence. In particular, rAra h 1 reacted positively with anti-nAra h 1 serum, showing their similar immunological property. Thus, by either purification or expression, Ara h 1 could be prepared with low cost, as performed in the present work. SDS-PAGE, mag trix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS), and immunological analysis confirmed that both forms of Ara h 1 had the same properties.  相似文献   

8.
Arachis hypogaea is a natural, well-established allotetraploid (AABB) with 2n = 40. However, researchers disagree on the diploid genome donor species and on whether peanut originated by a single or multiple events of polyploidization. Here we provide evidence on the genetic origin of peanut and on the involved wild relatives using double GISH (genomic in situ hybridization). Seven wild diploid species (2n = 20), harboring either the A or B genome, were tested. Of all genomic DNA probe combinations assayed, A. duranensis (A genome) and A. ipaensis (B genome) appeared to be the best candidates for the genome donors because they yielded the most intense and uniform hybridization pattern when tested against the corresponding chromosome subsets of A. hypogaea. A similar GISH pattern was observed for all varieties of the cultigen and also for A. monticola. These results suggest that all presently known subspecies and varieties of A. hypogaea have arisen from a unique allotetraploid plant population, or alternatively, from different allotetraploid populations that originated from the same two diploid species. Furthermore, the bulk of the data demonstrated a close genomic relationship between both tetraploids and strongly supports the hypothesis that A. monticola is the immediate wild antecessor of A. hypogaea.  相似文献   

9.
Resistance to proteolytic enzymes and heat is thought to be a prerequisite property of food allergens. Allergens from peanut (Arachis hypogaea) are the most frequent cause of fatal food allergic reactions. The allergenic 2S albumin Ara h 2 and the homologous minor allergen Ara h 6 were studied at the molecular level with regard to allergenic potency of native and protease-treated allergen. A high-resolution solution structure of the protease-resistant core of Ara h 6 was determined by NMR spectroscopy, and homology modelling was applied to generate an Ara h 2 structure. Ara h 2 appeared to be the more potent allergen, even though the two peanut allergens share substantial cross-reactivity. Both allergens contain cores that are highly resistant to proteolytic digestion and to temperatures of up to 100 degrees C. Even though IgE antibody-binding capacity was reduced by protease treatment, the mediator release from a functional equivalent of a mast cell or basophil, the humanized RBL (rat basophilic leukaemia) cell, demonstrated that this reduction in IgE antibody-binding capacity does not necessarily translate into reduced allergenic potency. Native Ara h 2 and Ara h 6 have virtually identical allergenic potency as compared with the allergens that were treated with digestive enzymes. The folds of the allergenic cores are virtually identical with each other and with the fold of the corresponding regions in the undigested proteins. The extreme immunological stability of the core structures of Ara h 2 and Ara h 6 provides an explanation for the persistence of the allergenic potency even after food processing.  相似文献   

10.
利用伴花生球蛋白多克隆抗体,免疫筛选花生品种汕油523成熟子叶中期cDNA文库得到6个阳性克隆.经过DNA序列测定和同源性分析确定为2组(Ahyα和Ahyβ) ,2组序列之间的同源性为97%.Ahyβ与花生过敏原Ara h1 p17以及Ahyα与花生过敏原Ara h1p41b的核苷酸相同性达到99%以上.以Ahy-βcDNA为探针的Northern blot分析结果表明,伴花生球蛋白基因在发育的花生种子中大量表达,而在幼苗的叶片中不表达.对成熟中期花生子叶表达序列标签(EST)分析,获得了包括5种花生球蛋白、2种伴花生球蛋白、6种conglutin蛋白的EST共70条,占总转录本的17%.  相似文献   

11.
The goals of this research were to develop a rapid single-walled carbon nanotube (SWCNT)-based biosensor and to employ it to commercial food products for Ara h1 detection. The SWCNT-based biosensor was fabricated with SWCNTs immobilized with antibody (pAb) through hybridization of 1-pyrenebutanoic acid succinimidyl ester (1-PBASE) as a linker. The resistance difference (ΔR) was calculated by measuring linear sweep voltammetry (LSV) using a potentiostat. Resistance values increased as the concentration of Ara h1 increased over the range of 1 to 105 ng/L. The specific binding of anti-Ara h1 pAb to antigen including Ara h1 was confirmed by both indirect ELISA kit and biosensor assay. The biosensor was exposed to extracts prepared from commercial processed food containing peanuts, or no peanuts, and could successfully distinguish the peanut containing foods. In addition, the application of present biosensor approach documented the precise detection of Ara h1 concentrations in commercially available peanut containing foods.  相似文献   

12.
Peanuts (Arachis hypogaea) contain some of the most potent food allergens. In recent years an increasing prevalence of peanut allergies both in children and adults has been observed in the USA and in Europe. In vitro identification and characterization of allergens including those from peanut have been frequently performed by Western blotting. However this method may alter the immunoglobulin E (IgE) antibody reactivity since the proteins are denatured by detergent treatment and/or reduction of disulfide bonds by reducing reagents and does not answer the question how peanut allergens interact with the human digestive apparatus and immune system. Size exclusion chromatography of peanut extract shows that approximately 90% of the total protein content is eluted as one peak in the exclusion volume with a molecular mass of over 200 kDa. The proteins of this fraction were analyzed by blue-native polyacrylamide gel electrophoresis (PAGE), immunoblotting, two-dimensional PAGE and Western blotting. A complex of Ara h 1 (Acc. no. P43237), Ara h 3/4 (AAM46958), Ara h 3 (AAC63045), Ara h 4 (AF086821), Gly 1 (AAG01363) and iso-Ara h 3 (AAT39430) was identified using patients' IgE and allergen-specific monoclonal antibodies; N-terminal sequencing and matrix-assisted laser desorption/ionisation-time of flight analysis verified these findings. A comparison of the peanut allergen sequences of Ara h 3/4, Ara h 3, Ara h 4 and peanut trypsin inhibitor (AF487543) and the proteins Gly 1 and iso-Ara h 3, not yet described as allergens, leads to the conclusion that these proteins are isoallergens of each other. It was shown that these isoallergens are post-translationally cleaved and held together by disulfide bonds in accordance to the 11S plant seed storage proteins signature.  相似文献   

13.
Quantification of certain protein contents in the matrix is essential in protein analyses. The amount of total protein in the matrix can be determined by the Kjeldahl method. However, few methods can quantify certain protein contents in the matrix without extracting all of them in solution. Extracting all of the contents is difficult for proteins, especially relatively insoluble ones. A five-step sequential extraction method was developed for the quantification of certain proteins in defatted peanut flour based on the relationship between the extracted protein contents and the extraction times. The extracted proteins (i.e., total protein, Ara h 1, and Ara h 2) were quantitatively analyzed in each extraction of the same condition. An exponential equation was obtained between the extraction times and the respective amount of extracted protein as well as both the total protein and a particular protein. In particular, the amount of protein extracted each time can be a geometric sequence. If all proteins can be extracted with sufficient extraction times, the protein contents in the peanut matrix can be calculated using a mathematical summation formula. This sum should be all proteins in the matrix. The five-step sequential extraction method can provide a means to quantify certain proteins in the matrix.  相似文献   

14.
Conglutins, the major peanut allergens, Ara h 2 and Ara h 6, are highly structured proteins stabilized by multiple disulfide bridges and are stable towards heat-denaturation and digestion. We sought a way to reduce their potent allergenicity in view of the development of immunotherapy for peanut allergy. Isoforms of conglutin were purified, reduced with dithiothreitol and subsequently alkylated with iodoacetamide. The effect of this modification was assessed on protein folding and IgE-binding. We found that all disulfide bridges were reduced and alkylated. As a result, the secondary structure lost α-helix and gained some β-structure content, and the tertiary structure stability was reduced. On a functional level, the modification led to a strongly decreased IgE-binding. Using conditions for limited reduction and alkylation, partially reduced and alkylated proteins were found with rearranged disulfide bridges and, in some cases, intermolecular cross-links were found. Peptide mass finger printing was applied to control progress of the modification reaction and to map novel disulfide bonds. There was no preference for the order in which disulfides were reduced, and disulfide rearrangement occurred in a non-specific way. Only minor differences in kinetics of reduction and alkylation were found between the different conglutin isoforms. We conclude that the peanut conglutins Ara h 2 and Ara h 6 can be chemically modified by reduction and alkylation, such that they substantially unfold and that their allergenic potency decreases.  相似文献   

15.
Peanut (Arachis hypogaea) allergy is a major cause of food-induced anaphylaxis, with increasing prevalence worldwide. To date, there is no cure for peanut allergy, and, unlike many other food allergies, it usually persists through to adulthood. Prevention of exposure to peanuts is managed through strict avoidance, which can be compromised by the frequent use of peanuts and peanut products in food preparations. Conventional subcutaneous-injection allergen immunotherapy using crude peanut extract is not a recommended treatment because of the risk of severe side effects, largely as a result of specific IgE antibodies. Consequently, there is an urgent need to develop a suitable peanut allergen preparation that can induce specific clinical and immunological tolerance to peanuts in allergic individuals without adverse side effects. This requires detailed molecular and immunological characterisation of the allergenic components of peanut. This article reviews current knowledge on clinically relevant peanut allergens, in particular Ara h 1, Ara h 2 and Ara h 3, together with options for T-cell-reactive but non-IgE-binding allergen variants for specific immunotherapeutic strategies. These include T-cell-epitope peptide and hypoallergenic mutant vaccines. Alternative routes of administration such as sublingual are also considered, and appropriate adjuvants for delivering effective treatments at these sites examined.  相似文献   

16.
目的:构建经序列重组的Ara h 2表达载体,表达并纯化该蛋白,鉴定其低致敏原性.方法:根据已鉴定的Ara h 2 IgE抗原表位,利用基因工程技术将Ara h 2基因进行合理的组合,并将其序列进行合成,再将合成后的基因连入原核表达载体pET-32a(+)上,然后转入Origami宿主表达菌中;IPTG诱导表达;通过N...  相似文献   

17.
The 5S and the 18S-25S rRNA genes were physically mapped by fluorescent in situ hybridization (FISH) in all botanical varieties of cultivated peanut Arachis hypogaea (2n = 4x = 40), in the wild tetraploid A. monticola, and in seven wild diploid species considered as putative ancestors of the tetraploids. A detailed karyotype analysis including the FISH signals and the heterochromatic bands was carried out. Molecular cytogenetic landmarks are provided for the construction of a FISH-based karyotype in Arachis species. The size, number, and chromosome position of FISH signals and heterochromatic bands are similar in all A. hypogaea varieties and A. monticola, but vary among the diploid species. Genome constitution of the species is discussed and several chromosome homeologies are established. The bulk of the chromosome markers mapped, together with data on geographical distribution of the taxa, suggest that peanut originated upon domestication of A. monticola and evidence that the diploids A. duranensis and A. ipaensis are the most probable ancestors of both tetraploid species. Allopolyploidy could have arisen by a single event or, if by multiple events, always from the same diploid species.  相似文献   

18.
19.
用rep—PCR技术研究中国花生根瘤菌的多样性   总被引:2,自引:0,他引:2  
李俊  杨苏声 《微生物学报》1999,39(4):296-304
采用细菌基因组重复序列PCR技术(简称repPCR)中常用的REPPCR和ERICPCR,对从中国11个省、市的23个点、24个花生品种采集的根瘤中分离的59株花生根瘤菌Bradyrhizobiumsp.(Arachis)进行多样性研究,同时对来自国外的6株花生根瘤菌及14株参比慢生根瘤菌也进行了比较。得到的低相似性结果表明中国花生根瘤菌基因组存在显著的多样性。REPPCR揭示,在相似性50%上分为11个群,而ERICPCR却得到24个分群。这两种结果对菌株的分群有差异,暗示这两种短重复序列在慢生根瘤菌基因组中的分布的不同。没有发现菌株间基因组的多样性分布与花生品种、地理来源之间的必然联系。将两者电泳图谱结合并分析,得到介于上述两者间的结果。此结果进一步反映了菌株基因组间存在的多样性。同时还表明repPCR不仅是研究生物多样性的快速简便方法,还可应用于菌株的鉴别和生态学研究。  相似文献   

20.
The cultivated peanut (Arachis hypogaea L.) is an allotetraploid composed of A and B genomes. The phylogenetic relationship among the cultivated peanut, wild diploid, and tetraploid species in the section Arachis was studied based on sequence comparison of stearoyl-ACP desaturase and oleoyl-PC desaturase. The topology of the trees for both fatty acid desaturases displayed two clusters; one cluster with A genome diploid species and the other with B genome diploid species. The two homeologous genes obtained for each of the two fatty acid desaturases from the tetraploid species A. hypogaea and A. monticola were separated into the A and B genome clusters, respectively. The gene phylogenetic trees showed that A. hypogaea is more closely related to the diploid species A. duranensis and A. ipaensis than to the wild tetraploid species A. monticola, suggesting that A. monticola is not a progenitor of the cultivated peanut. In addition, for the stearoyl-ACP desaturase, the A. duranensis sequence was identical with one of the sequences of A. hypogaea and the A. ipaensis sequence was identical with the other. These results support the hypothesis that A. duranensis and A. ipaensis are the most likely diploid progenitors of the cultivated tetraploid A. hypogaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号