首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract Plants protect themselves against aphid attacks by species‐specific defense mechanisms. Previously, we have shown that Solanum stoloniferum Schlechtd has resistance factors to Myzus persicae Sulzer (Homoptera: Aphididae) at the epidermal/mesophyll level that are not effective against Macrosiphum euphorbiae Thomas (Homoptera: Aphididae). Here, we compare the nymphal mortality, the pre‐reproductive development time, and the probing behavior of M. persicae and M. euphorbiae on S. stoloniferum and Solanum tuberosum L. Furthermore, we analyze the changes in gene expression in S. stoloniferum 96 hours post infestation by either aphid species. Although the M. euphorbiae probing behavior shows that aphids encounter more probing constrains on phloem activities–longer probing and salivation time– on S. stoloniferum than on S. tuberosum, the aphids succeeded in reaching a sustained ingestion of phloem sap on both plants. Probing by M. persicae on S. stoloniferum plants resulted in limited feeding only. Survival of M. euphorbiae and M. persicae was affected on young leaves, but not on senescent leaves of S. stoloniferum. Infestation by M. euphorbiae changed the expression of more genes than M. persicae did. At the systemic level both aphids elicited a weak response. Infestation of S. stoloniferum plants with a large number of M. persicae induced morphological changes in the leaves, leading to the development of pustules that were caused by disrupted vascular parenchyma and surrounding tissue. In contrast, an infestation by M. euphorbiae had no morphological effects. Both plant species can be regarded as good host for M. euphorbiae, whereas only S. tuberosum is a good host for M. persicae and S. stoloniferum is not. Infestation of S. stoloniferum by M. persicae or M. euphorbiae changed the expression of a set of plant genes specific for each of the aphids as well as a set of common genes.  相似文献   

2.
Young leaves of the potato Solanum tuberosum L. cultivar Kardal contain resistance factors to the green peach aphid Myzuspersicae (Sulzer) (Hemiptera: Aphididae) and normal probing behavior is impeded. However, M. persicae can survive and reproduce on mature and senescent leaves of the cv. Kardal plant without problems. We compared the settling ofM. persicae on young and old leaves and analyzed the impact of aphids settling on the plant in terms of gene expression. Settling, as measured by aphid numbers staying on young or old leaves, showed that after 21 h significantly fewer aphids were found on the young leaves. At earlier time points there were no difference between young and old leaves, suggesting that the young leaf resistance factors are not located at the surface level but deeper in the tissue. Gene expression was measured in plants at 96 h postinfestation, which is at a late stage in the interaction and in compatible interactions this is long enough for host plant acceptance to occur. In old leaves of cv. Kardal (compatible interaction), M. persicae infestation elicited a higher number of differentially regulated genes than in young leaves. The plant response to aphid infestation included a larger number of genes induced than repressed, and the proportion of induced versus repressed genes was larger in young than in old leaves. Several genes changing expression seem to be involved in changing the metabolic state of the leaf from source to sink.  相似文献   

3.
The aphids Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer) (Homoptera: Aphididae) are serious pests of potato (Solanum tuberosum L.) (Solanaceae), notably in transmitting several plant viruses. Heterospecific interactions may occur between these two species as they are often seen at the same time on the same potato plant in the field. As aphid infestation is known to induce both local and systemic changes, we conducted experiments to determine the effect of previous infestation on probing behaviour and feeding‐related parameters. We used the DC electrical penetration graph technique to characterize the influence of previous infestation by conspecific M. persicae or by heterospecific Ma. euphorbiae on M. persicae feeding behaviour at both local and systemic levels, i.e., on previously infested leaves and on non‐previously infested leaves of infested plants, respectively. Conspecific and heterospecific infestation led to similar modification of M. persicae feeding activities. However, the effects of previous infestation occurring at the local level were opposite to those observed at the systemic level. Myzus persicae food acceptance was slightly enhanced on previously infested leaves, whereas it was inhibited on non‐infested leaves of infested plants, which indicated an induced resistance mechanism. Our results advance the understanding of the mechanisms involved in aphid–host plant acceptance and colonization processes on potato plants in conspecific and heterospecific situations.  相似文献   

4.
The effect of a previous infestation by the green peach aphid Myzus persicae (Sulzer) on the settling behaviour and reproduction of the same aphid species was investigated in the resistant peach cultivar Rubira, and compared with that observed in the susceptible control cultivar GF305. A previous infestation of 48 h triggered induced resistance in Rubira. There were significantly fewer aphids settling on preinfested than on uninfested plants, indicating an increased rejection of Rubira as a host plant. The level of induced resistance in preinfested plants was positively related to the duration of the first infestation. In GF305, previous infestation had no detrimental effect on aphid settlement and even slightly enhanced larviposition by adult females. The aphid probing behaviour after a 48-h preinfestation was also monitored for 8 h with the electrical peneration graph (EPG) technique. On preinfested GF305, most EPG parameters indicated an enhanced host plant acceptance. On preinfested GF305, aphids produced less sieve element salivation and more continuous sap ingestion than on uninfested GF305, indicating that the previous aphids provoked changes in plant properties beneficial to the test aphids. In Rubira, a major induced factor of resistance was thought to be expressed in the sieve element as phloem sap ingestion was 4-fold shorter on preinfested than on uninfested plants. The time taken by the aphid stylets to reach a sieve element was also significantly increased on preinfested Rubira, suggesting the induction of resistance factors outside the phloem. The originality of the Rubira/M. persicae interaction is discussed in the perspective of a better understanding of plant induced responses to aphids.  相似文献   

5.
1. The concept of plant defence syndrome states that plant species growing in similar biotic or abiotic constraints should have convergent defensive traits. This article is a first step to test the prediction of this concept, by conducting experiments on wild Solanum species (or accessions) that originated from the Andes. The nature and the tissue localisation of the resistance of five wild Solanum species known to be resistant against the aphids Myzus persicae and Macrosiphum euphorbiae were determined by olfactometry and electrical penetration graph experiments. 2. Volatile organic compounds may contribute to wild Solanum resistance, depending on Solanum accessions and aphid species. Volatiles of S. bukasovii and S. stoloniferum PI 275248 were not attractive to M. persicae, whereas S. bukasovii was repulsive to M. euphorbiae. In contrast, volatiles of S. stoloniferum PI 275248 were attractive for M. euphorbiae. 3. Some wild Solanum species presented a generalised resistance in all plant tissues, so as for S. bukasovii and S. stoloniferum PI 275248 against M. persicae. However, except for S. bukasovii which was susceptible to M. euphorbiae, all tested Solanum species presented a phloem‐based antixenosis resistance against the two aphid species. 4. A review of articles focused on the nature of resistance of wild Solanum species against aphids corroborated with our results, i.e. a phloem‐based antixenosis resistance against aphids is the rule concerning the system aphids–wild Solanum species.  相似文献   

6.
A study was made of the resistance of three wild potato species, Solanum chacoense, S. stoloniferum and S. demissum, to three aphid species, namely Myzus persicae (Sulz.), Aulacorthum solani (Kalt.) and Macrosiphum euphorbiae (Thomas), which all commonly infest the cultivated potato, S. tuberosum. The resistance of each Solanum species differed with the species of aphid, with the part of the plant and with the physiological condition of the leaf. As a result, it may be difficult to utilize such resistance, since it is ineffective against some of the pest aphid species and may break down as the physiological condition of the plant changes.  相似文献   

7.
Analysis of electrically recorded feeding behaviour of aphids was combined with colony‐development tests to search for sources of resistance to Myzus persicae (Sulzer) (Homoptera: Aphididae) in tuber‐bearing Solanum species (Solanaceae), aiming at a reduction of potato leaf roll virus (PLRV) transmission. Twenty genotypes, originating from 14 gene bank accessions, representing 13 wild tuber‐bearing Solanum spp., three Solanum tuberosum L. (potato) cultivars, and one S. tuberosum breeding line, were selected. Colony‐development tests were carried out in no‐choice experiments by placing adult aphids on plants of each genotype and counting numbers of nymphs and adults on young plants after 8 and 15 days, and on flowering plants after 14 and 30 days. Large differences were observed among genotypes: some developed small colonies and others developed large ones. Also, in a few genotypes, resistance in mature plants was different for leaves of different ages; young leaves were resistant to aphids whereas old senescent leaves were susceptible. The electrical penetration graph (DC‐EPG system) technique was used to study aphid feeding behaviour on each Solanum genotype for 6 h. Electrical penetration graph (EPG) results also showed large differences among the genotypes, indicating resistance at the leaf surface and at three different levels of plant tissue (epidermis, mesophyll, and phloem). Therefore, it was concluded that different mechanisms of resistance to M. persicae exist among the genotypes analysed. EPGs recorded from aphids on Solanum berthaultii Hawkes and Solanum tarijense Hawkes with and without glandular trichomes showed that strong surface resistance can bias EPG parameters associated with resistance located in deeper tissues. Experimental evidence is presented that the resistance to aphids in the genotypes with glandular trichomes strongly depends on these morphological structures.  相似文献   

8.
Host plant selection and acceptance by aphids involves four consecutive steps: (1) prealighting behaviour, (2) leaf surface exploration and probing of subepidermal tissues, (3) deep probing of plant tissues, and (4) evaluation of the phloem sap. Host specialisation in aphids may involve not only different performances on potential hosts, but also different strategies for host selection and acceptance. Myzus persicae s.s. (Sulzer) (Homoptera: Aphididae) is one of the most polyphagous aphid species, although a tobacco‐adapted subspecies, M. persicae nicotianae, has been described. These two taxa constitute a good system for studying the effect of host range on host selection strategies. We studied the first two steps in the host selection process by alate virginoparae of M. persicae s.s. and M. persicae nicotianae on host and non‐host plants, using three types of behavioural assays: wind tunnel, olfactometry, and video‐recording. Alate virginoparae of M. persicae nicotianae recognised and chose their host plant more efficiently than M. persicae s.s., on the basis of olfactory and visual cues, and factors residing at cuticular and subcuticular levels. Host recognition was evident before phloem tissues were contacted. Olfactory cues were apparently not involved in host selection by M. persicae s.s.  相似文献   

9.
10.
The study of aphid host selection and feeding behavior is difficult because aphids have to penetrate the plant to reach their feeding site, phloem tissue. The activity of the stylets, salivation or food intake, can not be observed externally and requires an indirect visualization technique such as the Electric Penetration Graph (EPG). The plant selection behavior of Sitobion avenae on potato varied depending on whether an ethological or EPG method was used to study it. A similar variation did not occur with Myzus persicae or Rhopalosiphum padi. The application of water-based silver conductive paint onto the thorax, as normally used for EPG, or onto the abdomen of Sitobion avenae alates resulted in increased duration and frequency of probing compared to results from ethological observations. Our results indicated that EPG manipulations might have different effects on different species of aphids and that a comparison of EPG and ethological data is required to confirm that the EPG method does not bias aphid feeding behavior.  相似文献   

11.
In response to herbivore damage or stress, plants may express physiological or morphological changes known as induced responses. We tested whether previous herbivory by the aphid Myzus persicae differentially altered the expression of resistance and susceptibility among five genotypes of peach that differ in their resistance phenotype (avoidance resistance, antibiosis resistance or susceptibility). We measured behavioural and performance parameters of aphid success on plants previously infested by conspecifics as compared to uninfested controls. Significant variation was found both among genotypes and among resistance phenotype, including between genotypes showing a same resistance phenotype. Genotypes with avoidance resistance showed either induced resistance to aphid settling or no response. Genotypes with antibiosis resistance showed induced susceptibility to aphid settling, but the effects of previous herbivory on aphid development were either positive or negative depending on the genotype. In the susceptible genotype, most parameters of aphid settlement and performance, including reproduction, were positively influenced by previous herbivory. Using electronic recording, the aphid probing behaviour was examined to tentatively identify host plant tissues most likely to play a role in induced defenses. Probing behaviour was significantly affected by plant genotype, previous herbivory, and their interaction, indicating complex relations between the two factors. In the genotypes with avoidance resistance, aphids were deterred before they reach the phloem. In the genotypes expressing susceptibility or antibiosis resistance, previous herbivory triggered instead the induction of a phloem‐mediated response, that however diverged depending on the resistance status (facilitation or reduction of phloem sap uptake respectively). Genotypic variation in induction found in the peach‐M. persicae system establishes a useful framework to improve our knowledge of the ecological role of induced plant responses to aphids.  相似文献   

12.
13.
Phloem sieve elements have shut‐off mechanisms that prevent loss of nutrient‐rich phloem sap when the phloem is damaged. Some phloem proteins such as the proteins that form forisomes in legume sieve elements are one such mechanism and in response to damage, they instantly form occlusions that stop the flow of sap. It has long been hypothesized that one function of phloem proteins is defence against phloem sap‐feeding insects such as aphids. This study provides the first experimental evidence that aphid feeding can induce phloem protein occlusion and that the aphid‐induced occlusions inhibit phloem sap ingestion. The great majority of phloem penetrations in Vicia faba by the generalist aphids Myzus persicae and Macrosiphum euphorbiae triggered forisome occlusion and the aphids eventually withdrew their stylets without ingesting phloem sap. This contrasts starkly with a previous study on the legume‐specialist aphid, Acyrthosiphon pisum, where penetration of faba bean sieve elements did not trigger forisome occlusion and the aphids readily ingested phloem sap. Next, forisome occlusion was demonstrated to be the cause of failed phloem ingestion attempts by M. persicae: when occlusion was inhibited by the calcium channel blocker lanthanum, M. persicae readily ingested faba bean phloem sap.  相似文献   

14.
Trehalose is a disaccharide sugar that is now considered to be widely distributed among higher plants. Trehalose has been attributed a number of roles, including control of basic plant processes, such as photosynthesis, and conferring tolerance to abiotic stresses, such as desiccation and high salinity. Trehalose is also a common storage sugar used by insects. In this study, we used laboratory investigations to examine various aspects of trehalose dynamics in an aphid–host plant system (Arabidopsis and the peach potato aphid, Myzus persicae). Trehalose concentrations were measured by [1-H]-NMR. Myzus persicae reared on Arabidopsis, but not on black mustard or spring cabbage, contained considerable quantities of trehalose (5 % w/w dry matter). In Arabidopsis foliage, feeding by aphids induced a density-dependent accumulation of trehalose up to 5 mg g?1 dry weight. Leaves that were not challenged directly by aphids also exhibited increased trehalose concentrations, indicating that this accumulation was systemic. Trehalose was measured at high concentrations in the phloem sap of plants challenged by aphids, suggesting that aphid feeding induced the plant to produce significant quantities of trehalose, which moved through the plant and into the aphids via the phloem sap. Trehalose was also excreted in the aphid honeydew. Further work is required to clarify whether this trehalose accumulation in Arabidopsis has a direct role or a signalling function in plant tolerance of, or resistance to, aphid feeding, and if a similar accumulation of this sugar occurs when other species or genotypes of aphids are reared on this host plant.  相似文献   

15.
Since the beginning of breeding narrow‐leafed lupins [Lupinus angustifolius L. (Fabaceae)] with a low alkaloid content, susceptibility to several aphid species has increased. Therefore, the probing and feeding behavior of Aphis fabae Scopoli, Aphis craccivora Koch, Acyrthosiphon pisum (Harris), Myzus persicae (Sulzer), and the well‐adapted Macrosiphum albifrons Essig (all Hemiptera: Aphididae) was studied over 12 h on narrow‐leafed lupin genotypes containing varying amounts and compositions of alkaloids. We used the electrical penetration graph (EPG) technique to obtain information on the influence of alkaloid content and composition on the susceptibility to various aphid species. Results indicated that the total time of probing of A. fabae, A. craccivora, A. pisum, and M. persicae increased with a reduced alkaloid content, whereas the alkaloid content had no influence on M. albifrons. Almost all of the individuals (>93%) conducted sieve element phases on the highly susceptible genotype Bo083521AR (low alkaloid content). A reduced occurrence of phloem phases was observed during the 12‐h recording on the alkaloid‐rich cultivar Azuro, especially for A. pisum (37.5%) and A. fabae (55.0%). Furthermore, aphids feeding on genotypes with low alkaloid content had in most cases significantly longer sieve element phases than when feeding on resistant genotypes (Kalya: low alkaloid content, yet resistant; Azuro: high alkaloid content, resistant), whereas M. albifrons showed the longest phloem phase on the alkaloid‐rich cultivar Azuro. As most significant differences were found in phloem‐related parameters, it is likely that the most important plant factors influencing aphid probing and feeding behavior are localized in the sieve elements. The aphids’ feeding behavior on the cultivar Kalya, with a low alkaloid content but reduced susceptibility, indicates that not only the total alkaloid content influences the feeding behavior but additional plant factors have an impact.  相似文献   

16.
Potato leafroll virus (PLRV; genus Polerovirus, family Luteoviridae) is a persistently transmitted circulative virus that depends on aphids for spreading. The primary vector of PLRV is the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Solanum tuberosum L. potato cv. Kardal (Solanaceae) has a certain degree of resistance to M. persicae: young leaves seem to be resistant, whereas senescent leaves are susceptible. In this study, we investigated whether PLRV‐infection of potato plants affected aphid behaviour. We found that M. persicae's ability to differentiate headspace volatiles emitted from PLRV‐infected and non‐infected potato plants depends on the age of the leaf. In young apical leaves, no difference in aphid attraction was found between PLRV‐infected and non‐infected leaves. In fact, hardly any aphids were attracted. On the contrary, in mature leaves, headspace volatiles from virus infected leaves attracted the aphids. We also studied the effect of PLRV‐infection on probing and feeding behaviour (plant penetration) of M. persicae using the electrical penetration graph technique (DC system). Several differences were observed between plant penetration in PLRV‐infected and non‐infected plants, but only after infected plants showed visual symptoms of PLRV infection. The effects of PLRV‐infection in plants on the behaviour of M. persicae, the vector of the virus, and the implications of these effects on the transmission of the virus are thoroughly discussed.  相似文献   

17.
Many plant viruses depend on aphids and other phloem‐feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus‐infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over‐expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a‐protease domain (NIa‐Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa‐Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa‐Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant–aphid interactions to promote its own transmission.  相似文献   

18.
Many aphid-vectored viruses are transmitted nonpersistently via transient attachment of virus particles to aphid mouthparts and are most effectively acquired or transmitted during brief stylet punctures of epidermal cells. In Arabidopsis thaliana, the aphid-transmitted virus cucumber mosaic virus (CMV) induces feeding deterrence against the polyphagous aphid Myzus persicae. This form of resistance inhibits prolonged phloem feeding but promotes virus acquisition by aphids because it encourages probing of plant epidermal cells. When aphids are confined on CMV-infected plants, feeding deterrence reduces their growth and reproduction. We found that CMV-induced inhibition of growth as well as CMV-induced inhibition of reproduction of Mpersicae are dependent upon jasmonate-mediated signalling. BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) is a co-receptor enabling detection of microbe-associated molecular patterns and induction of pattern-triggered immunity (PTI). In plants carrying the mutant bak1-5 allele, CMV induced inhibition of Mpersicae reproduction but not inhibition of aphid growth. We conclude that in wildtype plants CMV induces two mechanisms that diminish performance of Mpersicae: a jasmonate-dependent and PTI-dependent mechanism that inhibits aphid growth, and a jasmonate-dependent, PTI-independent mechanism that inhibits reproduction. The growth of two crucifer specialist aphids, Lipaphis erysimi and Brevicoryne brassicae, was not affected when confined on CMV-infected A. thaliana. However, Bbrassicae reproduction was inhibited on CMV-infected plants. This suggests that in A. thaliana CMV-induced resistance to aphids, which is thought to incentivize virus vectoring, has greater effects on polyphagous than on crucifer specialist aphids.  相似文献   

19.
Plants face various abiotic and biotic environmental factors and therefore need to adjust their phenotypic traits on several levels. UV‐B radiation is believed to impact herbivorous insects via host plant changes. Plant responses to abiotic challenges (UV‐B radiation) and their interaction with two aphid species were explored in a multifactor approach. Broccoli plants [Brassica oleracea L. convar. botrytis (L.), Brassicaceae] were grown in two differently covered greenhouses, transmitting either 80% (high UV‐B) or 4% (low UV‐B) of ambient UV‐B. Three‐week‐old plants were infested with either specialist cabbage aphids [Brevicoryne brassicae (L.), Sternorrhyncha, Aphididae] or generalist green peach aphids [Myzus persicae (Sulzer), Sternorrhyncha, Aphididae]. Plants grown under high‐UV‐B intensities were smaller and had higher flavonoid concentrations. Furthermore, these plants had reduced cuticular wax coverage, whereas amino acid concentrations of the phloem sap were little influenced by different UV‐B intensities. Cabbage aphids reproduced less on plants grown under high UV‐B than on plants grown under low UV‐B, whereas reproduction of green peach aphids in both plant light sources was equally poor. These results are likely related to the different specialisation‐dependent sensitivities of the two species. The aphids also affected plant chemistry. High numbers of cabbage aphid progeny on low‐UV‐B plants led to decreased indolyl glucosinolate concentrations. The induced change in these glucosinolates may depend on an infestation threshold. UV‐B radiation considerably impacts plant traits and subsequently affects specialist phloem‐feeding aphids, whereas aphid growth forces broccoli to generate specific defence responses.  相似文献   

20.
Resistance level of seven accessions of wild Solanum species (Solanaceae) to Myzus persicae and Macrosiphum euphorbiae (Homoptera: Aphididae) was evaluated by measuring survival and fecundity during sleeve cage experiments and population growth on whole plants in a controlled environment. The survival was lowest on the Solanum circaeifolium spp. capsicibaccatum, Solanum pinnatisectum and Solanum trifidum accessions for M. persicae and on the S. circaeifolium spp. capsicibaccatum, Solanum okadae and S. trifidum, accessions with M. euphorbiae. Plant species significantly influenced the fecundity of both aphid species. Aphid population growth on whole plants was negatively affected by the age of the plant, but generally followed the levels of net reproductive rate on different plant species observed during the sleeve cage experiment. The population of M. persicae varied among the seven wild potato accessions with the lowest growth rates on S. circaeifolium spp. capsicibaccatum, Solanum polyadenium, Solanum tarijense and S. trifidum. The number of M. euphorbiae also varied among accessions but the smallest population was collected from S. polyadenium. The results can be used to identify sources of resistance to aphids within those accessions already known to be resistant to the Colorado potato beetle. This study highlights the difficulties involved in developing a high-throughput screening test for aphid resistance compatible with a potato breeding programme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号