首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Molecular basis of the effects of shear stress on vascular endothelial cells   总被引:18,自引:0,他引:18  
Li YS  Haga JH  Chien S 《Journal of biomechanics》2005,38(10):1949-1971
Blood vessels are constantly exposed to hemodynamic forces in the form of cyclic stretch and shear stress due to the pulsatile nature of blood pressure and flow. Endothelial cells (ECs) are subjected to the shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular functions, e.g., proliferation, apoptosis, migration, permeability, and remodeling, as well as gene expression. The ECs use multiple sensing mechanisms to detect changes in mechanical forces, leading to the activation of signaling networks. The cytoskeleton provides a structural framework for the EC to transmit mechanical forces between its luminal, abluminal and junctional surfaces and its interior, including the cytoplasm, the nucleus, and focal adhesion sites. Endothelial cells also respond differently to different modes of shear forces, e.g., laminar, disturbed, or oscillatory flows. In vitro studies on cultured ECs in flow channels have been conducted to investigate the molecular mechanisms by which cells convert the mechanical input into biochemical events, which eventually lead to functional responses. The knowledge gained on mechano-transduction, with verifications under in vivo conditions, will advance our understanding of the physiological and pathological processes in vascular remodeling and adaptation in health and disease.  相似文献   

2.
Fluid shear stress due to blood flow can modulate functions of endothelial cells (ECs) in blood vessels by activating mechano-sensors, signaling pathways, and gene and protein expressions. Laminar shear stress with a definite forward direction causes transient activations of many genes that are atherogenic, followed by their down-regulation; laminar shear stress also up-regulates genes that inhibit EC growth. In contrast, disturbed flow patterns with little forward direction cause sustained activations of these atherogenic genes and enhancements of EC mitosis and apoptosis. In straight parts of the arterial tree, laminar shear stress with a definite forward direction has anti-atherogenic effects. At branch points, the complex flow patterns with little net direction are atherogenic. Thus, the direction of shear stress has important physiological and pathophysiological effects on vascular ECs.  相似文献   

3.
In the circulation, flow-responsive endothelial cells (ECs) lining the lumen of blood vessels are continuously exposed to complex hemodynamic forces. To increase our understanding of EC response to these dynamic shearing forces, a novel in vitro flow model was developed to simulate pulsatile shear stress waveforms encountered by the endothelium in the arterial circulation. A modified waveform modeled after flow patterns in the human abdominal aorta was used to evaluate the biological responsiveness of human umbilical vein ECs to this new type of stimulus. Arterial pulsatile flow for 24 hours was compared to an equivalent time-average steady laminar shear stress, using no flow (static) culture conditions as a baseline. While both flow stimuli induced comparable changes in cell shape and alignment, distinct patterns of responses were observed in the distribution of actin stress fibers and vinculin-associated adhesion complexes, intrinsic migratory characteristics, and the expression of eNOS mRNA and protein. These results thus reveal a unique responsiveness of ECs to an arterial waveform and begin to elucidate the complex sensing capabilities of the endothelium to the dynamic characteristics of flows throughout the human vascular tree.  相似文献   

4.
Early atherosclerotic lesions localize preferentially, in arterial regions exposed to low flow, oscillatory flow, or both; however, the cellular basis of this observation remains to be determined. Atherogenesis involves dysfunction of the vascular endothelium, the cellular monolayer lining the inner surfaces of blood vessels. How low flow, oscillatory flow, or both may lead to endothelial dysfunction remains unknown. Over the past two decades, fluid mechanical shear (or frictional) stress has been shown to intricately regulate the structure and function of vascular endothelial cells (ECs). Furthermore, recent data indicate that beyond being merely responsive to shear stress, ECs are able to distinguish among and respond differently to different types of shear stress. This review focuses on EC differential responses to different types of steady and unsteady shear stress and discusses the implications of these responses for the localization of early atherosclerotic lesions. The mechanisms by which endothelial differential responsiveness to different types of flow may occur are also discussed.  相似文献   

5.
Vascular endothelial cells (ECs) play significant roles in regulating circulatory functions. Mechanical stimuli, including the stretch and shear stress resulting from circulatory pressure and flow, modulate EC functions by activating mechanosensors, signaling pathways, and gene and protein expressions. Mechanical forces with a clear direction (e.g., the pulsatile shear stress and the uniaxial circumferential stretch existing in the straight part of the arterial tree) cause only transient molecular signaling of pro-inflammatory and proliferative pathways, which become downregulated when such directed mechanical forces are sustained. In contrast, mechanical forces without a definitive direction (e.g., disturbed flow and relatively undirected stretch seen at branch points and other regions of complex geometry) cause sustained molecular signaling of pro-inflammatory and proliferative pathways. The EC responses to directed mechanical stimuli involve the remodeling of EC structure to minimize alterations in intracellular stress/strain and elicit adaptive changes in EC signaling in the face of sustained stimuli; these cellular events constitute a feedback control mechanism to maintain vascular homeostasis and are atheroprotective. Such a feedback mechanism does not operate effectively in regions of complex geometry, where the mechanical stimuli do not have clear directions, thus placing these areas at risk for atherogenesis. The mechanotransduction-induced EC adaptive processes in the straight part of the aorta represent a case of the "Wisdom of the Cell," as a part of the more general concept of the "Wisdom of the Body" promulgated by Cannon, to maintain cellular homeostasis in the face of external perturbations.  相似文献   

6.
Vascular endothelial cells (ECs) in vivo are subject to different flow conditions due to the variation in vessel geometry. The aim of this study is to elucidate the effects of different flow conditions on EC monolayer migration into a mechanically denuded zone and their underlying mechanisms. Both laminar and disturbed flows significantly enhanced EC migration. EC migration speed was the fastest under laminar flow, which preferentially promoted directional EC migration from the upstream side of the wounded monolayer. C3 exoenzyme (a Rho inhibitor) inhibited EC migration under static and flow conditions, and markedly reduced the effects of flow on EC migration. These results indicate that flow promotes EC migration through the Rho signaling pathway. Genistein (a tyrosine kinase inhibitor) selectively retarded EC migration under disturbed flow, suggesting that tyrosine phosphorylation may play a role in EC migration under disturbed flow. This study has demonstrated that different flow patterns differentially affect EC monolayer migration into the denuded zone involving multiple mechanisms.  相似文献   

7.
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. ECs are constantly subjected to shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular behaviors and functions. The aim of this study is to elucidate the effects of Rac1, which is the member of small G protein family, on EC migration under different laminar shear stress (5.56, 10.02, and 15.27 dyn/cm2). The cell migration distance under laminar shear stress increased significantly than that under the static culture condition. Especially, under relative high shear stress (15.27 dyn/cm2) there was a higher difference at 8 h (P < 0.01) and 2 h (P < 0.05) compared with static controls. RT-PCR results further showed increasing mRNA expression of Rac1 in ECs exposed to laminar shear stress than that exposed to static culture. Using plasmids encoding the wild-type (WT), an activated mutant (Q61L), and a dominant-negative mutant (T17N), plasmids encoding Rac1 were transfected into EA.hy 926 cells. The average net migration distance of Rac1Q61L group increased significantly, while Rac1T17N group decreased significantly in comparison with the static controls. These results indicated that Rac1 mediated shear stress-induced EC migration. Our findings conduce to elucidate the molecular mechanisms of EC migration induced by shear stress, which is expected to understand the pathophysiological basis of wound healing in health and diseases.  相似文献   

8.
Stem cells have shown great potential in vascular repair. Numerous evidence indicates that mechanical forces such as shear stress and cyclic strain can regulate the adhesion, proliferation, migration, and differentiation of stem cells via serious signaling pathways. The enrichment and differentiation of stem cells play an important role in the angiogenesis and maintenance of vascular homeostasis. In normal tissues, blood flow directly affects the microenvironment of vascular endothelial cells (ECs); in pathological status, the abnormal interactions between blood flow and vessels contribute to the injury of vessels. Next, the altered mechanical forces are transduced into cells by mechanosensors to trigger the reformation of vessels. This process occurs when signaling pathways related to EC differentiation are initiated. Hence, a deep understanding of the responses of stem cells to mechanical stresses and the underlying mechanisms involved in this process is essential for clinical translation. In this the review, we provide an overview of the role of stem cells in vascular repair, outline the performance of stem cells under the mechanical stress stimulation, and describe the related signaling pathways.  相似文献   

9.
Hemodynamic shear stress, the frictional force acting on vascular endothelial cells, is crucial for endothelial homeostasis under normal physiological conditions. When discussing blood flow effects on various forms of endothelial (dys)function, one considers two flow patterns: steady laminar flow and disturbed flow because endothelial cells respond differently to these flow types both in vivo and in vitro. Laminar flow which exerts steady laminar shear stress is atheroprotective while disturbed flow creates an atheroprone environment. Emerging evidence has provided new insights into the cellular mechanisms of flow-dependent regulation of vascular function that leads to cardiovascular events such as atherosclerosis, atherothrombosis, and myocardial infarction. In order to study effects of shear stress and different types of flow, various models have been used. In this review, we will summarize our current views on how disturbed flow-mediated signaling pathways are involved in the development of atherosclerosis.  相似文献   

10.
Flow patterns in blood vessels contribute to focal distribution of atherosclerosis; the underlying mechanotransduction pathways remain to be investigated. We demonstrate that different flow patterns elicit distinct responses of Krüppel-like factor-2 (KLF2) in endothelial cells (ECs) in vitro and in vivo. While pulsatile flow with a significant forward direction induced sustained expression of KLF2 in cultured ECs, oscillatory flow with little forward direction caused prolonged suppression after a transient induction. The suppressive effect of oscillatory flow was Src-dependent. Immunohistochemical studies on ECs at arterial branch points revealed that KLF2 protein levels were related to local hemodynamics. Such flow-associated expression patterns were also demonstrated in a rat aortic restenosis model. Inhibition of KLF2 with siRNA sensitized ECs to oxidized LDL-induced apoptosis, indicating a protective role of KLF2. In conclusion, differential regulation of KLF2 may mediate the distinct vascular effects induced by various patterns of shear stress.  相似文献   

11.
Arterial hemodynamic shear stress and blood vessel stiffening both significantly influence the arterial endothelial cell (EC) phenotype and atherosclerosis progression, and both have been shown to signal through cell-matrix adhesions. However, the cooperative effects of fluid shear stress and matrix stiffness on ECs remain unknown. To investigate these cooperative effects, we cultured bovine aortic ECs on hydrogels matching the elasticity of the intima of compliant, young, or stiff, aging arteries. The cells were then exposed to laminar fluid shear stress of 12 dyn/cm2. Cells grown on more compliant matrices displayed increased elongation and tighter EC-cell junctions. Notably, cells cultured on more compliant substrates also showed decreased RhoA activation under laminar shear stress. Additionally, endothelial nitric oxide synthase and extracellular signal-regulated kinase phosphorylation in response to fluid shear stress occurred more rapidly in ECs cultured on more compliant substrates, and nitric oxide production was enhanced. Together, our results demonstrate that a signaling cross talk between stiffness and fluid shear stress exists within the vascular microenvironment, and, importantly, matrices mimicking young and healthy blood vessels can promote and augment the atheroprotective signals induced by fluid shear stress. These data suggest that targeting intimal stiffening and/or the EC response to intima stiffening clinically may improve vascular health.  相似文献   

12.
13.
The response of endothelial cells (ECs) to their hemodynamic environment strongly influences normal vascular physiology and the pathogenesis of atherosclerosis. Unique responses to the complex flow patterns in lesion-prone regions imply that the temporal and spatial features of the mechanical stimuli modulate the cellular response to flow. We report the first systematic study of the effects of temporal gradients of shear stress on ECs. Flow was applied to cultured ECs using a novel cone-and-plate device allowing precise and independent control of the shear stress magnitude and the onset rate. Intracellular free calcium concentration ([Ca2+]i) increased rapidly following the onset of flow, and the characteristics of the transient were modulated by both the shear stress magnitude and onset rate. ECs were most sensitive to shear stress applied at physiological onset rates. Furthermore, the relative contribution of extracellular calcium and IP3-mediated release were dependent upon the specific flow regime.  相似文献   

14.
15.

Background

Endothelial cells (ECs) are continuously exposed to hemodynamic forces imparted by blood flow. While it is known that endothelial behavior can be influenced by cytokine activation or fluid shear, the combined effects of these two independent agonists have yet to be fully elucidated.

Methodology

We investigated EC response to long-term inflammatory cues under physiologically relevant shear conditions via E-selectin expression where monolayers of human umbilical vein ECs were simultaneously exposed to laminar fluid shear and interleukin-1ß (shear-cytokine activation) in a parallel plate flow chamber.

Results and Conclusion

Naïve ECs exposed to shear-cytokine activation display significantly higher E-selectin expression for up to 24 hr relative to ECs activated in static (static-cytokine). Peak E-selectin expression occurred after 8–12 hr of continuous shear-cytokine activation contrary to the commonly observed 4–6 hr peak expression in ECs exposed to static-cytokine activation. Cells with some history of high shear conditioning exhibited either high or muted E-selectin expression depending on the durations of the shear pre-conditioning and the ensuing shear-cytokine activation. Overall, the presented data suggest that a high laminar shear enhances acute EC response to interleukin-1ß in naïve or shear-conditioned ECs as may be found in the pathological setting of ischemia/reperfusion injury while conferring rapid E-selectin downregulation to protect against chronic inflammation.  相似文献   

16.
17.
Reendothelialization involves endothelial progenitor cell (EPC) homing, proliferation, and differentiation, which may be influenced by fluid shear stress and local flow pattern. This study aims to elucidate the role of laminar flow on embryonic stem (ES) cell differentiation and the underlying mechanism. We demonstrated that laminar flow enhanced ES cell-derived progenitor cell proliferation and differentiation into endothelial cells (ECs). Laminar flow stabilized and activated histone deacetylase 3 (HDAC3) through the Flk-1-PI3K-Akt pathway, which in turn deacetylated p53, leading to p21 activation. A similar signal pathway was detected in vascular endothelial growth factor-induced EC differentiation. HDAC3 and p21 were detected in blood vessels during embryogenesis. Local transfer of ES cell-derived EPC incorporated into injured femoral artery and reduced neointima formation in a mouse model. These data suggest that shear stress is a key regulator for stem cell differentiation into EC, especially in EPC differentiation, which can be used for vascular repair, and that the Flk-1-PI3K-Akt-HDAC3-p53-p21 pathway is crucial in such a process.  相似文献   

18.
Endothelial cells (ECs) that line the inner surface of blood vessels are continuously exposed to fluid frictional force (shear stress) induced by blood flow, and shear stress affects the intracellular calcium ([Ca2+]i), which initiates cellular responses. Here, we studied the effect of long-term exposure of shear stress on [Ca2+]i responses in cultured ECs by using a confocal laser microscope and calcium indicator. At the initiation of shear stress of 20 dyn/cm2 (0 hr), 27% of the cells exhibited [Ca2+]i responses. This percentage gradually decreased with increasing exposure time, reaching about 4% after 24 hr of exposure. These data indicate that long-term shear-stress exposure affects [Ca2+]i responses in cultured ECs. Furthermore, we studied the effect of magnitude of shear stress on macromolecule uptake. For the low shear-stress, the uptake was enhanced, whereas the uptake was inhibited for higher shear-stress.  相似文献   

19.
Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a member of the immunoglobulin superfamily and is expressed by hematopoietic and endothelial cells (ECs). Recent studies have shown that PECAM-1 plays a crucial role in promoting the development of the EC inflammatory response in the context of disturbed flow. However, the mechanistic pathways that control PECAM-1 protein stability remain largely unclear. Here, we identified PECAM-1 as a novel substrate of the APC/Cdh1 E3 ubiquitin ligase. Specifically, lentivirus-mediated Cdh1 depletion stabilized PECAM-1 in ECs. Conversely, overexpression of Cdh1 destabilized PECAM-1. The proteasome inhibitor MG132 blocked Cdh1-mediated PECAM-1 degradation. In addition, Cdh1 promoted K48-linked polyubiquitination of PECAM-1 in a destruction box-dependent manner. Furthermore, we demonstrated that compared with pulsatile shear stress (PS), oscillatory shear stress decreased the expression of Cdh1 and the ubiquitination of PECAM-1, therefore stabilizing PECAM-1 to promote inflammation in ECs. Hence, our study revealed a novel mechanism by which fluid flow patterns regulate EC homeostasis via Cdh1-dependent ubiquitination and subsequent degradation of PECAM-1.  相似文献   

20.
Shear stress, a major hemodynamic force acting on the vessel wall, plays an important role in physiological processes such as cell growth, differentiation, remodelling, metabolism, morphology, and gene expression. We investigated the effect of shear stress on gene expression profiles in co-cultured vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Human aortic ECs were cultured as a confluent monolayer on top of confluent human aortic SMCs, and the EC side of the co-culture was exposed to a laminar shear stress of 12 dyn/cm2 for 4 or 24 h. After shearing, the ECs and SMCs were separated and RNA was extracted from the cells. The RNA samples were labelled and hybridized with cDNA array slides that contained 8694 genes. Statistical analysis showed that shear stress caused the differential expression (p ≤ 0.05) of a total of 1151 genes in ECs and SMCs. In the co-cultured ECs, shear stress caused the up-regulation of 403 genes and down-regulation of 470. In the co-cultured SMCs, shear stress caused the up-regulation of 152 genes and down-regulation of 126 genes. These results provide new information on the gene expression profile and its potential functional consequences in co-cultured ECs and SMCs exposed to a physiological level of laminar shear stress. Although the effects of shear stress on gene expression in monocultured and co-cultured EC are generally similar, the response of some genes to shear stress is opposite between these two types of culture (e.g., ICAM-1 is up-regulated in monoculture and down-regulated in co-culture), which strongly indicates that EC–SMC interactions affect EC responses to shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号