首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
The European Medicines Agency received recently the first marketing authorization application for a biosimilar monoclonal antibody (mAb) and adopted the final guidelines on biosimilar mAbs and Fc-fusion proteins. The agency requires high similarity between biosimilar and reference products for approval. Specifically, the amino acid sequences must be identical. The glycosylation pattern of the antibody is also often considered to be a very important quality attribute due to its strong effect on quality, safety, immunogenicity, pharmacokinetics and potency. Here, we describe a case study of cetuximab, which has been marketed since 2004. Biosimilar versions of the product are now in the pipelines of numerous therapeutic antibody biosimilar developers. We applied a combination of intact, middle-down, middle-up and bottom-up electrospray ionization and matrix assisted laser desorption ionization mass spectrometry techniques to characterize the amino acid sequence and major post-translational modifications of the marketed cetuximab product, with special emphasis on glycosylation. Our results revealed a sequence error in the reported sequence of the light chain in databases and in publications, thus highlighting the potency of mass spectrometry to establish correct antibody sequences. We were also able to achieve a comprehensive identification of cetuximab’s glycoforms and glycosylation profile assessment on both Fab and Fc domains. Taken together, the reported approaches and data form a solid framework for the comparability of antibodies and their biosimilar candidates that could be further applied to routine structural assessments of these and other antibody-based products.  相似文献   

2.
The pharmaceutical industry’s interest in monoclonal antibodies (mAbs) and their derivatives has spurred rapid growth in the commercial and clinical pipeline of these effective therapeutics. The complex micro-heterogeneity of mAbs requires in-depth structural characterization for critical quality attribute assessment and quality assurance. Currently, mass spectrometry (MS)-based methods are the gold standard in mAb analysis, primarily with a bottom-up approach in which immunoglobulins G (IgGs) and their variants are digested into peptides to facilitate the analysis. Comprehensive characterization of IgGs and the micro-variants remains challenging at the proteoform level. Here, we used both top-down and middle-down MS for in-depth characterization of a human IgG1 using ultra-high resolution Fourier transform MS. Our top-down MS analysis provided characteristic fingerprinting of the IgG1 proteoforms at unit mass resolution. Subsequently, the tandem MS analysis of intact IgG1 enabled the detailed sequence characterization of a representative IgG1 proteoform at the intact protein level. Moreover, we used the middle-down MS analysis to characterize the primary glycoforms and micro-variants. Micro-variants such as low-abundance glycoforms, C-terminal glycine clipping, and C-terminal proline amidation were characterized with bond cleavages higher than 44% at the subunit level. By combining top-down and middle-down analysis, 76% of bond cleavage (509/666 amino acid bond cleaved) of IgG1 was achieved. Taken together, we demonstrated the combination of top-down and middle-down MS as powerful tools in the comprehensive characterization of mAbs.  相似文献   

3.
《MABS-AUSTIN》2013,5(8):1351-1357
ABSTRACT

The analysis of monoclonal antibodies (mAbs) by a middle-down mass spectrometry (MS) approach is a growing field that attracts the attention of many researchers and biopharmaceutical companies. Usually, liquid fractionation techniques are used to separate mAbs polypeptides chains before MS analysis. Gas-phase fractionation techniques such as high-field asymmetric waveform ion mobility spectrometry (FAIMS) can replace liquid-based separations and reduce both analysis time and cost. Here, we present a rapid FAIMS tandem MS method capable of characterizing the polypeptide sequence of mAbs light and heavy chains in an unprecedented, easy, and fast fashion. This new method uses commercially available instruments and takes ~24 min, which is 40-60% faster than regular liquid chromatography-MS/MS analysis, to acquire fragmentation data using different dissociation methods.  相似文献   

4.
Susceptibility of methionine to oxidation is an important concern for chemical stability during the development of a monoclonal antibody (mAb) therapeutic. To minimize downstream risks, leading candidates are usually screened under forced oxidation conditions to identify oxidation-labile molecules. Here we report results of forced oxidation on a large set of in-house expressed and purified mAbs with variable region sequences corresponding to 121 clinical stage mAbs. These mAb samples were treated with 0.1% H2O2 for 24 hours before enzymatic cleavage below the hinge, followed by reduction of inter-chain disulfide bonds for the detection of the light chain, Fab portion of heavy chain (Fd) and Fc by liquid chromatography-mass spectrometry. This high-throughput, middle-down approach allows detection of oxidation site(s) at the resolution of 3 distinct segments. The experimental oxidation data correlates well with theoretical predictions based on the solvent-accessible surface area of the methionine side-chains within these segments. These results validate the use of upstream computational modeling to predict mAb oxidation susceptibility at the sequence level.  相似文献   

5.
For therapeutic monoclonal antibodies (mAbs), detailed analysis of the structural integrity and heterogeneity, which results from multiple types of post-translational modifications (PTMs), is relevant to various processes, including product characterization, storage stability and quality control. Despite the recent rapid development of new bioanalytical techniques, it is still challenging to completely characterize the proteoform profile of a mAb. As a nearly indispensable tool in mAb analysis, mass spectrometry (MS) provides unique structural information at multiple levels. Here, we tested a hybrid strategy for the comprehensive characterization of micro-heterogeneity by integrating 2 state-of-the-art MS-based approaches, high-resolution native MS and targeted glycan profiling, to perform complementary analysis at the intact protein level and released glycan level, respectively. We compared the performance of these methods using samples of engineered half-body IgG4s and a panel of mAbs approved for human use. The glycosylation characterization data derived from these approaches were found to be mutually consistent in composition profiling, and complementary in identification and relative-quantitation of low-abundant uncommon glycoforms. In addition, multiple other sources of micro-heterogeneity, such as glycation, lack of glycosylation, and loss of light chains, could be detected by this approach, and the contribution of multiple types of modifications to the overall micro-heterogeneity could be assessed using our superposition algorithm. Our data demonstrate that the hybrid strategy allows reliable and thorough characterization of mAbs, revealing product characteristics that would easily be missed if only a single approach were used.  相似文献   

6.
As research, development, and manufacturing of biosimilar protein therapeutics proliferates, there is great interest in the continued development of a portfolio of complementary analytical methods that can be used to efficiently and effectively characterize biosimilar candidate materials relative to the respective reference (i.e., originator) molecule. Liquid phase separation techniques such as liquid chromatography and capillary electrophoresis are powerful tools that can provide both qualitative and quantitative information about similarities and differences between reference and biosimilar materials, especially when coupled with mass spectrometry. However, the inherent complexity of these protein materials challenges even the most modern one-dimensional (1D) separation methods. Two-dimensional (2D) separations present a number of potential advantages over 1D methods, including increased peak capacity, 2D peak patterns that can facilitate unknown identification, and improvement in the compatibility of some separation methods with mass spectrometry. In this study, we demonstrate the use of comprehensive 2D-LC separations involving cation-exchange (CEX) and reversed-phase (RP) separations in the first and second dimensions to compare 3 reference/biosimilar pairs of monoclonal antibodies (cetuximab, trastuzumab and infliximab) that cover a range of similarity/disimilarity in a middle-up approach. The second dimension RP separations are coupled to time-of-flight mass spectrometry, which enables direct identification of features in the chromatograms obtained from mAbs digested with the IdeS enzyme, or digestion with IdeS followed by reduction with dithiothreitol. As many as 23 chemically unique mAb fragments were detected in a single sample. Our results demonstrate that these rich datasets enable facile assesment of the degree of similarity between reference and biosimilar materials.  相似文献   

7.
Monoclonal antibodies (mAbs) are highly complex proteins that display a wide range of microheterogeneity that requires multiple analytical methods for full structure assessment and quality control. As a consequence, the characterization of mAbs on different levels is particularly product - and time - consuming. This work presents the characterization of trastuzumab sequence using sheathless capillary electrophoresis (referred as CESI) – tandem mass spectrometry (CESI-MS/MS). Using this bottom-up proteomic-like approach, CESI-MS/MS provided 100% sequence coverage for both heavy and light chain via peptide fragment fingerprinting (PFF) identification. The result was accomplished in a single shot, corresponding to the analysis of 100 fmoles of digest. The same analysis also enabled precise characterization of the post-translational hot spots of trastuzumab, used as a representative widely marketed therapeutic mAb, including the structural confirmation of the five major N-glycoforms.  相似文献   

8.
Olovnikova et al. (“Impact on N-glycosylation profile of monoclonal anti-D antibodies as a way to control their immunoregulatory and cytotoxic properties” (2012) Biochemistry (Moscow), 77, 925–933) mentioned the presence of “alien sugars” on monoclonal antibodies (mAbs) produced by YB2/0 cell line. We summarize in this paper our previous findings on the glycosylation profile of two anti-D mAbs produced in this cell line (LFB-R297 and LFB-R593, so-called Roledumab). Our results show the absence of any immunogenic glycotopes, and furthermore neither immunogenicity nor other serious adverse reactions were observed during clinical trials.  相似文献   

9.
The late 1970s brought opportunities to create proteins with new properties and, in particular, various derivatives of mouse monoclonal antibodies (mAbs) owing to the discoveries in molecular and cell biology and the development of bioengineering. Studies of mouse/human “chimeric” antibodies, miniantibodies to be synthesized in bacterial cells, full-size single-chain antibodies, complexes of miniantibodies with intramolecular chaperones, and other approaches made it possible to create a multitude of multifunctional biopreparations with predefined properties. The review describes, with the example of one research team, how studies in the field began and what the basis for their progress was.  相似文献   

10.
Human antibodies from transgenic animals   总被引:12,自引:0,他引:12  
Laboratory mice provide a ready source of diverse, high-affinity and high-specificity monoclonal antibodies (mAbs). However, development of rodent antibodies as therapeutic agents has been impaired by the inherent immunogenicity of these molecules. One technology that has been explored to generate low immunogenicity mAbs for in vivo therapy involves the use of transgenic mice expressing repertoires of human antibody gene sequences. This technology has now been exploited by over a dozen different pharmaceutical and biotechnology companies toward developing new therapeutic mAbs, and currently at least 33 different drugs in clinical testing--including several in pivotal trials--contain variable regions encoded by human sequences from transgenic mice. The emerging data from these trials provide an early glimpse of the safety and efficacy issues for these molecules. Nevertheless, actual product approval, the biggest challenge so far, is required to fully validate this technology as a drug discovery tool. In the future, it may be possible to extend this technology beyond rodents and use transgenic farm animals to directly generate and produce human sequence polyclonal sera.  相似文献   

11.
对湖库湿地进行生态健康评价,可为湖库湿地生态系统修复和管理提供决策依据。本文以天津市为例,选取20个典型的湖库湿地采样点,基于2018年8—9月期间调查获取的物理、化学和生物群落指标(浮游动物、浮游植物、底栖动物、鱼类、水生大型植物、河岸带植物)数据,构建包含物理完整性、化学完整性和生物完整性在内的生态完整性指数(IEI)对采样点生态健康状况进行评价。根据栖息地环境质量(QHEI)、水质状况和人类活动干扰3方面选取参照点,采用标准化方法筛选候选指标,应用层次分析法计算各指标权重,最终得出天津市典型湖库湿地生态完整性评价结果。结果表明: 1)所有样点中,“健康”点位占5.0%,“较好”点位占20.0%,“一般”点位占35.0%,“较差”点位占30.0%,“差”点位占10.0%。天津市典型湖库湿地生态健康状况整体处于一般水平,呈现出西部优于东部的趋势,空间差异显著;2)基于栖息地评分、水质状况与人类活动干扰相结合选取参照点是可行的,依据水质指标可降低选择参照点时的主观性;3)适用性验证结果表明,IEI可较好表征各点位的健康状况,区分效率明显,适用于评价研究区湖库湿地生态健康状况。  相似文献   

12.
Biomonitoring surveys make use of metabarcoding tools to describe the community composition. These studies match their sequencing results against public genomic databases to identify the species. However, mitochondrial genomic reference data are yet incomplete, only a few genes may be available, or the suitability of existing sequence data is suboptimal for species level resolution. Here, we present a dedicated and cost-effective workflow with no DNA amplification for generating complete fish mitogenomes for the purpose of strengthening fish mitochondrial databases. Two different strategies using long fragment sequencing with Oxford Nanopore technology coupled with mitochondrial DNA enrichment were used. One where the enrichment is achieved by preferential isolation of mitochondria followed by DNA extraction and nuclear DNA depletion (“mitoenrichment”). A second enrichment approach takes advantage of the CRISPR Cas9 targeted scission on previously dephosphorylated DNA (“targeted mitosequencing”). The sequencing results varied between tissue, species, and integrity of the DNA. The mitoenrichment method yielded 0.17%–12.33% of sequences on target and a mean coverage ranging from 74.9 to 805-fold. The targeted mitosequencing experiment from native genomic DNA yielded 1.83%–55% of sequences on target and a 38 to 2123-fold mean coverage. These produced complete mitogenomes of species with homopolymeric regions, tandem repeats, and gene rearrangements. We demonstrate that deep sequencing of long fragments of native fish DNA can be achieved with low computational resources in a cost-effective manner, opening the discovery of mitogenomes of nonmodel or understudied fish taxa to a broad range of laboratories worldwide.  相似文献   

13.
Out of all categories, monoclonal antibody (mAb) therapeutics attract the most interest due to their strong therapeutic potency and specificity. Six of the 10 top-selling drugs are antibody-based therapeutics that will lose patent protection soon. The European Medicines Agency has pioneered the regulatory framework for approval of biosimilar products and approved the first biosimilar antibodies by the end of 2013. As highly complex glycoproteins with a wide range of micro-variants, mAbs require extensive characterization through multiple analytical methods for structure assessment rendering manufacturing control and biosimilarity studies particularly product and time-consuming. Here, capillary zone electrophoresis coupled to mass spectrometry by a sheathless interface (CESI-MS) was used to characterize marketed reference mAbs and their respective biosimilar candidate simultaneously over different facets of their primary structure. CESI-MS/MS data were compared between approved mAbs and their biosimilar candidates to prove/disconfirm biosimilarity regarding recent regulation directives. Using only a single sample injection of 200 fmol, CESI-MS/MS data enabled 100% amino acids (AA) sequence characterization, which allows a difference of even one AA between 2 samples to be distinguished precisely. Simultaneously glycoforms were characterized regarding their structures and position through fragmentation spectra and glycoforms semiquantitative analysis was established, showing the capacity of the developed methodology to detect up to 16 different glycans. Other posttranslational modifications hotspots were characterized while their relative occurrence levels were estimated and compared to biosimilars. These results proved the value of using CESI-MS because the separation selectivity and ionization efficiency provided by the system allowed substantial improvement in the characterization workflow robustness and accuracy. Biosimilarity assessment could be performed routinely with a single injection of each candidate enabling improvements in the biosimilar development pipeline.  相似文献   

14.
《MABS-AUSTIN》2013,5(6):1464-1473
Out of all categories, monoclonal antibody (mAb) therapeutics attract the most interest due to their strong therapeutic potency and specificity. Six of the 10 top-selling drugs are antibody-based therapeutics that will lose patent protection soon. The European Medicines Agency has pioneered the regulatory framework for approval of biosimilar products and approved the first biosimilar antibodies by the end of 2013. As highly complex glycoproteins with a wide range of micro-variants, mAbs require extensive characterization through multiple analytical methods for structure assessment rendering manufacturing control and biosimilarity studies particularly product and time-consuming. Here, capillary zone electrophoresis coupled to mass spectrometry by a sheathless interface (CESI-MS) was used to characterize marketed reference mAbs and their respective biosimilar candidate simultaneously over different facets of their primary structure. CESI-MS/MS data were compared between approved mAbs and their biosimilar candidates to prove/disconfirm biosimilarity regarding recent regulation directives. Using only a single sample injection of 200 fmol, CESI-MS/MS data enabled 100% amino acids (AA) sequence characterization, which allows a difference of even one AA between 2 samples to be distinguished precisely. Simultaneously glycoforms were characterized regarding their structures and position through fragmentation spectra and glycoforms semiquantitative analysis was established, showing the capacity of the developed methodology to detect up to 16 different glycans. Other posttranslational modifications hotspots were characterized while their relative occurrence levels were estimated and compared to biosimilars. These results proved the value of using CESI-MS because the separation selectivity and ionization efficiency provided by the system allowed substantial improvement in the characterization workflow robustness and accuracy. Biosimilarity assessment could be performed routinely with a single injection of each candidate enabling improvements in the biosimilar development pipeline.  相似文献   

15.
16.
Glycation, the nonenzymatic reaction between the reducing sugar glucose and the primary amine residues on amino acid side chains, commonly occurs in the cell culture supernatant during production of therapeutic monoclonal antibodies (mAbs). While glycation has the potential to impact efficacy and pharmacokinetic properties for mAbs, the most common undesirable impact of glycation is on the distribution of charged species, often a release specification for commercial processes. Existing empirical approaches are usually insufficient to rationalize the effects of cell line and process changes on glycation. To address this gap, we developed a kinetic model for estimating mAb glycation levels during the cell culture process. The rate constant for glycation, including temperature and pH dependence, was estimated by fitting the kinetic model to time-course glycation data from bioreactors operated at different process settings that yielded a wide range of glycation values. The parameter values were further validated by independently estimating glycation rate constants using cell-free incubation studies at various temperatures. The model was applied to another mAb, by re-estimating the activation energy to account for effect of a glycation “hotspot”. The model was further utilized to study the role of temperature shift as an approach to reduce glycation levels in the manufacturing process for mAb2. While a downshift in temperature resulted in lowering of glycation levels for mAb2, the model helped elucidate that this effect was caused due to contribution from changes in glucose consumption, mAb secretion and temperature, instead of a direct impact of temperature alone on the kinetic rate of glycation.  相似文献   

17.
Therapeutic monoclonal antibodies (mAbs) are biologics produced using mammalian cells and represent an important class of biotherapeutics. Aggregation in mAbs is a major challenge that can be mitigated by rigorous and reproducible upstream and downstream approaches. The impact of frequently used surfactants, like polysorbate 20, polysorbate 80, poloxamer 188, and 2-hydroxypropyl-beta-cyclodextrin, on aggregation of mAbs during cell culture was investigated in this study. Their impact on cell proliferation, viability, and mAb titer was also investigated. Polysorbate 20 and polysorbate 80 at the concentration of 0.01 g/L and poloxamer 188 at the concentration of 5 g/L were found to be effective in reducing aggregate formation in cell culture medium, without affecting the cell growth or viability. Furthermore, their presence in culture media resulted in increased cell proliferation as compared to the control group. Addition of these surfactants at the specified concentrations increased monomer production while decreasing high molecular weight species in the medium. After mAbs were separated, using protein “A” chromatography, flasks with surfactant exhibited improved antibody stability, when analyzed by DLS. Thus, while producing aggregation-prone mAbs via mammalian cell culture, these excipients may be employed as cell culture medium supplements to enhance the quality and yield of functional mAbs.  相似文献   

18.
In view of the explosion of the present clinical use of monoclonal antibodies (mAbs), not only in the treatment of cancer, but also of autoimmune diseases, I was asked to review the development of mAbs in tumor diagnosis and therapy, with some illustrations of our own contribution in the field. The initial use of radiolabeled mAbs for tumor targeting and radioimmunotherapy led to the extensive clinical application of unlabeled, “humanized” mAbs for cancer therapy, which I describe with a critical perspective. The introduction of recombinant bispecific antibodies, capable of bridging T lymphocytes with tumor cells and inducing killing of the cancer cells, was found to be mostly active in the treatment of hematological malignancies. Most interestingly, the use of mAbs not directed to the tumor cells, but to inhibitory receptors expressed by cytotoxic T lymphocytes, which trigger them to kill the cancer cells, represents a new form of active cancer immunotherapy. My motivation in writing this review was related to my long-term interactions with several Russian scientists, mentioned at the end of this article.  相似文献   

19.
The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3–5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material.  相似文献   

20.
Prediction of protein subcellular localization   总被引:6,自引:0,他引:6  
Yu CS  Chen YC  Lu CH  Hwang JK 《Proteins》2006,64(3):643-651
Because the protein's function is usually related to its subcellular localization, the ability to predict subcellular localization directly from protein sequences will be useful for inferring protein functions. Recent years have seen a surging interest in the development of novel computational tools to predict subcellular localization. At present, these approaches, based on a wide range of algorithms, have achieved varying degrees of success for specific organisms and for certain localization categories. A number of authors have noticed that sequence similarity is useful in predicting subcellular localization. For example, Nair and Rost (Protein Sci 2002;11:2836-2847) have carried out extensive analysis of the relation between sequence similarity and identity in subcellular localization, and have found a close relationship between them above a certain similarity threshold. However, many existing benchmark data sets used for the prediction accuracy assessment contain highly homologous sequences-some data sets comprising sequences up to 80-90% sequence identity. Using these benchmark test data will surely lead to overestimation of the performance of the methods considered. Here, we develop an approach based on a two-level support vector machine (SVM) system: the first level comprises a number of SVM classifiers, each based on a specific type of feature vectors derived from sequences; the second level SVM classifier functions as the jury machine to generate the probability distribution of decisions for possible localizations. We compare our approach with a global sequence alignment approach and other existing approaches for two benchmark data sets-one comprising prokaryotic sequences and the other eukaryotic sequences. Furthermore, we carried out all-against-all sequence alignment for several data sets to investigate the relationship between sequence homology and subcellular localization. Our results, which are consistent with previous studies, indicate that the homology search approach performs well down to 30% sequence identity, although its performance deteriorates considerably for sequences sharing lower sequence identity. A data set of high homology levels will undoubtedly lead to biased assessment of the performances of the predictive approaches-especially those relying on homology search or sequence annotations. Our two-level classification system based on SVM does not rely on homology search; therefore, its performance remains relatively unaffected by sequence homology. When compared with other approaches, our approach performed significantly better. Furthermore, we also develop a practical hybrid method, which combines the two-level SVM classifier and the homology search method, as a general tool for the sequence annotation of subcellular localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号