首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Malpighian tubules of insects are a functional analog of mammalian kidneys and serve as a classical model for studying the structure and functions of transport epithelium. The review contains the data on structural organization, functioning, and formation of the Malpighian tubules during embryogenesis in Drosophila melanogaster. Various systems of genes are described that control the program of development of the renal (Malpighian) tubules in D. melanogaster. A special attention is paid to the ways of signal transduction and factors involved in cell differentiation, proliferation, and morphological transformation during development of the Malpighian tubules. Evolutionarily conservative genetic systems are considered that are involved in the control of development of both the renal epithelium ofDrosophila and mammalian kidneys. A relationship was noted between the disturbed balance of genetic material and congenital defects of the human excretory system.  相似文献   

3.
The effects of dietary exposure to organic anions on the physiology of isolated Malpighian tubules and on tubule gene expression were examined using larvae of Drosophila melanogaster. Acute (24 h) or chronic (7 d) exposure to type I organic anions (fluorescein or salicylate) was associated with increased fluid secretion rates and increased fluxes of both salicylate and the type II organic anion methotrexate. By contrast, chronic exposure to dietary methotrexate was associated with increased fluid secretion rate and increased flux of methotrexate, but not salicylate. Exposure to methotrexate in the diet resulted in increases in the expression of a multidrug efflux transporter gene (MET; CG30344) in the Malpighian tubules. There were also increases in expression of genes for either a Drosophila multidrug resistance–associated protein (dMRP; CG6214) or an organic anion transporting polypeptide (OATP; CG3380), depending on the concentration of methotrexate in the diet. Exposure to salicylate in the diet was associated with an increase in expression of dMRP and with decreases of MET and OATP. Exposure to dietary salicylate or methotrexate was also associated with different patterns of expression of heat shock protein genes. The results suggest that exposure to specific type I or type II organic anions has multiple effects and results not only in increased organic anion transport but also in increased rates of inorganic ion transport, which drives osmotically‐obliged fluid secretion. Increased fluid secretion may enhance secretion of organic anions by eliminating diffusive backflux from the tubule lumen to the hemolymph. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
At least four enzymes contribute to histochemically, electrophoretically, or spectrophotometrically detectable aldehyde oxidase (AO) activity in Drosophila melanogaster. The one we designate AO-1 contributes the majority of activity measured in extracts of whole flies. Pyridoxal oxidase (PO) is also a broad range AO. It is prominent only in midgut and Malpighian tubules, where it apparently accounts for a substantial fraction of total AO activity. The tissue distributions of these enzymes are clearly disparate despite close linkage of their structural loci and parallel dependence on the mal, lxd, and cin loci. A similarly related enzyme, xanthine dehydrogenase (XDH), is detected as an AO only in electrophoretic gels. A fourth broad range AO, not dependent on mal, lxd, and cin, is confined to the ejaculatory bulb. A similar array of AO isozymes is present in phylogenetically distant Drosophila species.This work was supported by NIH Grant 2 RO1 HD 10723.  相似文献   

5.
Methods of transmission and the effects of temperature and mites on ageledeme development of Herpetomonas were examined in populations of Drosophila melanogaster maintained in the laboratory. Herpetomonas was observed in feces of infected adults taken from population cages and in the vomitus of clean flies shortly after feeding on a saline suspension of flagellates. Free-swimming flagellates were found in the moist areas of food cups. Adult D. melanogaster became infected when they fed on flagellates taken from the endoperitrophic space, the ectoperitrophic space or the Malpighian tubules. At 25°C the flagellates infected approximately 90% of the host population within 20 days. The high transmission rate was prematurely disrupted if host populations were subjected to changes in temperature. Free-swimming flagellates did not appear to be affected at these temperature changes. Food mites (Tyrophagus) established in the growth media of the fly nearly eliminated the Herpetomonas from Drosophila populations.  相似文献   

6.
The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as sampling of fly feces, could be a means to assess fly-associated communities over time on the same cohort of flies, we compared the microbial communities of fly feces, dissected fly intestines, and whole flies across three different Drosophila strains. Bacterial species identified in either whole flies or isolated intestines were reproducibly found in feces samples. Although the bacterial communities of feces and intestinal samples were not identical, they shared similarities and obviously the same origin. In contrast to material from whole flies and intestines, feces samples were not compromised by Wolbachia spp. infections, which are widespread in laboratory and wild strains. In a proof-of-principle experiment, we showed that simple nutritional interventions, such as a high-fat diet or short-term starvation, had drastic and long-lasting effects on the micobiome. Thus, the analysis of feces can supplement the toolbox for microbiome studies in Drosophila, unleashing the full potential of such studies in time course experiments where multiple samples from single populations are obtained during aging, development, or experimental manipulations.  相似文献   

7.
Destruxins have been implicated in the infection process by entomopathogenic fungi and have been also found to be highly toxic when applied topically or ingested by different insect species. To gain insight into the mechanism of action of this toxin on insect internal organs, we have evaluated the effects of destruxin A on Drosophila melanogaster Malpighian tubules and gut tissues. Destruxin A was toxic when injected into adults; the calculated EC50 was 0.11 mM. Destruxin A significantly inhibited fluid secretion rate by Malpighian tubules as well; the calculated IC50 was 0.25 μM. The Na+ concentration in the secreted fluid increased significantly when tubules were exposed to 0.25 μM destruxin A, whereas pH and the concentrations of Ca2+ and K+ did not change. In gut, there was no effect of destruxin on H+ flux, but there was a significant decrease in K+ and Ca2+ absorption. The concentration of Ca2+ and K+ in the hemolymph of destruxin A‐injected flies was not significantly different from those of control flies after 3 h. Taken together, these results show that destruxin A produces differential effects on ion transport by renal and gut tissues. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The expression of most Drosophila segmentation genes is not limited to the early blastoderm stage, when the segmental anlagen are determined. Rather, these genes are often expressed in a variety of organs and tissues at later stages of development. In contrast to the early expression, little is known about the regulatory interactions that govern the later expression patterns. Among other tissues, the central gap gene Krüppel is expressed and required in the anlage of the Malpighian tubules at the posterior terminus of the embryo. We have studied the interaction of Krüppel with other terminal genes. The gap genes tailles and huckebein, which repress Krüppel in the central segmentation domain, activate Krüppel expression in the posterior Malpighian tubule domain. The opposite effect on the posterior Krüppel expression is achieved by the interposition of another factor, the homeotic gene fork head, which is not involved in the control of the central domain. In addition, Krüppel activates different genes in the Malpighian tubules than in the central domain. Thus, both the regulation and the function of Krüppel in the Malpighian tubules differ strikingly from its role in segmentation.  相似文献   

9.
10.
The number of Malpighian tubules in larvae and adults of bees is variable. Larvae of Apis mellifera L. have four Malpighian tubules, while adults have 100 tubules. In stingless bees, this number varies from four to eight. The objectives of this study were to provide characteristics of the Malpighian tubules as well as to quantify their number in larvae and adults of six species of Meliponinae, Melipona seminigra merrillae Cockerell, Melipona compressipes manaosensis Schwarz, Melipona rufiventris Lepeletier, Scaptotrigona Moure, Frieseomelitta Ihering, and Trigona williana Friese. Malpighian tubules were dissected from larvae and adults, measured, quantified, and maintained in microtubes with Dietrich??s solution. The numbers of Malpighian tubules were constant only for larvae of M. rufiventris (four and eight) and Scaptotrigona sp. (four). The most frequent number of tubules in the Melipona group was seven and eight in larvae, and 70 and 90 in adults. In the Trigona group were four and 20 to 40, for larvae and adults, respectively. The results showed differences in the number of Malpighian tubules among the species analyzed and also between the larvae and adults of the same species. Despite the variation observed, species of the group Melipona always have a larger number and longer Malpighian tubules in both larvae and adults as compared to the Trigona group, which may indicate an evolutionary trend of differentiation between these groups.  相似文献   

11.
Uptakes of guanine into Malpighian tubules of wild-type Drosophila and the eye color mutants white (w), brown (bw), and pink-peach (p p) have been compared. Tubules for each of these mutants are unable to concentrate guanine intracellularly. The transport of xanthine and riboflavin is also deficient in w tubules. The transport of guanosine, adenine, hypoxanthine, and guanosine monophosphate is similar in wild-type and white Malpighian tubules. These data and other information about these mutants make it likely that these pteridine-deficient eye color mutants do not produce pigments because of the inability to transport a pteridine precursor. This view supports the hypothesis that mutants which lack both pteridine and ommochromes do so because precursors to both classes of pigments share a common transport system.This work was supported by Grant GM22366 from NIH.  相似文献   

12.
The ultrastructure of scalariform junctions in the Malpighian tubules of the hemipteran Rhodnius prolixus and the dipteran Aedes taeniorhynchus is described. Both autocellular and intercellular scalariform junctions are illustrated. This is the first report of scalariform junctions in the Malpighian tubules of a dipteran. When combined with previous observations by other authors, the presence of scalariform junctions has now been reported in the Malpighian tubules of insects from five orders, including ametabolous, hemimetabolous, and holometabolous forms. The cell types in which scalariform junctions were found in R. prolixus and A. taeniorhynchus differ in the direction of ion and fluid transport. The cells share the capacity to transport KCl. These same cells also possess morphological features promoting close associations of mitochondria and plasma membranes in the apical region of the cell. The possible role of scalariform junctions is discussed in light of these observations.  相似文献   

13.
The aim of this work was the functional and proteomic analysis of a mutant, W3110 Bgl+/10, isolated from a batch culture of an Escherichia coli K‐12 strain maintained at room temperature without addition of nutrients for 10 years. When the mutant was evaluated in competition experiments in co‐culture with the wild‐type, it exhibited the growth advantage in stationary phase (GASP) phenotype. Proteomes of the GASP mutant and its parental strain were compared by using a 2DE coupled with MS approach. Several differentially expressed proteins were detected and many of them were successful identified by mass spectrometry. Identified expression‐changing proteins were grouped into three functional categories: metabolism, protein synthesis, chaperone and stress responsive proteins. Among them, the prevalence was ascribable to the “metabolism” group (72%) for the GASP mutant, and to “chaperones and stress responsive proteins” group for the parental strain (48%).  相似文献   

14.
Calcium homeostasis in Drosophila melanogaster was examined in response to the challenges imposed by growth, reproduction and variations in dietary calcium content. Turnover time for calcium, calculated as the time for (45)Ca(2+)to accumulate to half the steady state value of 3.46 nmol/fly, was 3.3 days. Although larvae weighed 2x as much as adults, they contained 3-4x as much calcium. Anterior Malpighian tubules (Mts) contain much more calcium than posterior Mts, accounting for 25-30% of the calcium content of the whole fly. In response to a 6.2-fold increase in dietary calcium level, calcium content of whole flies increased only 10%. Hemolymph calcium concentration ( approximately 0.5 mM) was similar in males and females and in animals raised on diets differing in calcium content. Fluid secretion rate, secreted fluid calcium concentration, and transepithelial calcium flux in tubules isolated from flies raised on high and low calcium diets did not differ significantly. Malpighian tubules secrete calcium at rates sufficient to eliminate whole body calcium content in 0.5 and 3 days for tubules secreting fluid at basal and maximal rates, respectively. It is suggested that flies absorb high quantities of calcium from the diet and maintain homeostasis through the combined effects of elimination of calcium in fluid secreted by the Malpighian tubules and the sequestration of calcium in granules, especially within the distal segment of the anterior pair of Malpighian tubules.  相似文献   

15.
In an experimental model of obesity and hyperglycemia in Drosophila melanogaster we studied the effect of diet modification and administration of metformin on systemic infection with Rhizopus, a common cause of mucormycosis in diabetic patients. Female Wt-type Drosophila flies were fed regular (RF) or high-fat diet (HFD; 30% coconut oil) food with or without metformin for 48 h and then injected with R. oryzae. Survival rates, glucose and triglyceride levels were compared between 1) normal-weight flies (RF), 2) obese flies (HFD), 3) obese flies fed with RF, 4) flies continuously on HFD + metformin, 5) flies fed on HFD + metformin, then transferred to RF, and 6) obese flies administered metformin after infection. Glucose levels were compared across groups of non-infected flies and across groups of infected flies. Survival was significantly decreased (P = 0.003) in obese flies, while post-infection glucose levels were significantly increased (P = 0.0001), compared to normal-weight flies. Diet and administration of metformin led to weight loss, normalized glucose levels during infection, and were associated with decreased mortality and tissue fungal burden. In conclusion, diet and metformin help control infection-associated hyperglycemia and improve survival in Drosophila flies with mucormycosis. Fly models of obesity bear intriguing similarities to the pathophysiology of insulin resistance and diabetes in humans, and can provide new insights into the pathogenesis and treatment of infections in obese and diabetic patients.  相似文献   

16.
17.
Modulation of renal epithelial ion transport allows organisms to maintain ionic and osmotic homeostasis in the face of varying external conditions. The Drosophila melanogaster Malpighian (renal) tubule offers an unparalleled opportunity to study the molecular mechanisms of epithelial ion transport, due to the powerful genetics of this organism and the accessibility of its renal tubules to physiological study. Here, we describe the use of the Ramsay assay to measure fluid secretion rates from isolated fly renal tubules, with the use of ion-specific electrodes to measure sodium and potassium concentrations in the secreted fluid. This assay allows study of transepithelial fluid and ion fluxes of ~20 tubules at a time, without the need to transfer the secreted fluid to a separate apparatus to measure ion concentrations. Genetically distinct tubules can be analyzed to assess the role of specific genes in transport processes. Additionally, the bathing saline can be modified to examine the effects of its chemical characteristics, or drugs or hormones added. In summary, this technique allows the molecular characterization of basic mechanisms of epithelial ion transport in the Drosophila tubule, as well as regulation of these transport mechanisms.  相似文献   

18.
Cinnabarinic acid was formed from 3-hydroxyanthranilic acid during incubation with a soluble fraction from Malpighian tubules of the silkworm, Bombyx mori, in the presence of manganese ion. The enzyme having this activity was purified to homogeneity by ammonium sulfate fractionation, gel filtration and ion exchange chromatography. Enzyme activity was accompanied by parallel catalase activity at all steps of purification; the two activities could not be separated from each other. The purified protein was concluded to be catalase. Manganese was shown to be present in 0.1 mM concentration in Malpighian tubules of Bombyx mori. These findings suggest that in Malpighian tubules catalase participates in the formation of cinnabarinic acid. A possible mechanism for the formation of cinnabarinic acid from 3-hydroxyanthranilic acid by catalase in the presence of manganese ion is proposed.  相似文献   

19.
20.
Two environmental parameters, feeding status and salinity, are expected to affect water and ion balance of the aquatic larvae of Aedes aegypti. Evidence was obtained for regulation of Malpighian tubule fluid secretion rates in response to changes in each of these parameters. Exposure to increased salinity induces release into the hemolymph of material with diuretic effects on Malpighian tubules. Diuretic material is present in hemolymph of larvae raised in higher salinities, rapidly appears in the hemolymph of larvae following transfer from dilute water to higher salinity, and rapidly disappears from the hemolymph following transfer from higher salinity to dilute water. Feeding status affects diuretic properties of both hemolymph and Malpighian tubules. Feeding causes hemolymph to become diuretic relative to hemolymph from nonfeeding larvae. Malpighian tubules removed from feeding larvae have greater basal fluid secretion rates and also appear to have greater maximal fluid secretion capacity than do tubules removed from nonfeeding larvae. Larval hemolymph [5-HT] was found to increase fivefold in response to elevated salinity but was unaffected by feeding status. Methiothepin, a 5-HT receptor antagonist, inhibited stimulation of fluid secretion by 5-HT and blocked the diuretic effects of hemolymph from larvae exposed to higher salinity but was without effect on stimulation of fluid secretion by diuretic peptide. During the course of this investigation, a preliminary pharmacological characterization of the 5-HT receptor on Aedes Malpighian tubules, suggesting that this receptor may be pharmacologically distinct from other described insect 5-HT receptors, was obtained. Arch. Insect Biochem. Physiol. 34:123–141, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号