首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
Ecological specialization often requires tight coevolution of several traits, which may constrain future evolutionary pathways and make species more prone to extinction. Aposematism and crypsis represent two specialized adaptations to avoid predation. We tested whether the combined effects of color and pattern on prey conspicuousness functionally constrain or facilitate shifts between these two adaptations. We combined data from 17 natural populations of strawberry poison frogs, Oophaga pumilio with an experimental approach using digitalized images of frogs and chickens as predators. We show that bright coloration often co‐occurs with coarse patterning among the natural populations. Dull green frogs with coarse patterning are rare in nature but in the experiment they were as easily detected as bright red frogs suggesting that this trait combination represents a transient evolutionary state toward aposematism. Hence, a gain of either bright color or coarse patterning leads to conspicuousness, but a transition back to crypsis would be functionally constrained in populations with both bright color and coarse patterning by requiring simultaneous changes in two traits. Thus, populations (or species) signaling aposematism by conspicuous color should be less likely to face an evolutionary dead end and more likely to radiate than populations with both conspicuous color and coarse patterning.  相似文献   

2.
Many taxa use conspicuous colouration to attract mates, signal chemical defences (aposematism) or for thermoregulation. Conspicuousness is a key feature of aposematic signals, and experimental evidence suggests that predators avoid conspicuous prey more readily when they exhibit larger body size and/or pattern elements. Aposematic prey species may therefore evolve a larger body size due to predatory selection pressures, or alternatively, larger prey species may be more likely to evolve aposematic colouration. Therefore, a positive correlation between conspicuousness and body size should exist. Here, we investigated whether there was a phylogenetic correlation between the conspicuousness of animal patterns and body size using an intriguing, understudied model system to examine questions on the evolution of animal signals, namely nudibranchs (opisthobranch molluscs). We also used new ways to compare animal patterns quantitatively with their background habitat in terms of intensity variance and spatial frequency power spectra. In studies of aposematism, conspicuousness is usually quantified using the spectral contrast of animal colour patches against its background; however, other components of visual signals, such as pattern, luminance and spectral sensitivities of potential observers, are largely ignored. Contrary to our prediction, we found that the conspicuousness of body patterns in over 70 nudibranch species decreased as body size increased, indicating that crypsis was not limited to a smaller body size. Therefore, alternative selective pressures on body size and development of colour patterns, other than those inflicted by visual hunting predators, may act more strongly on the evolution of aposematism in nudibranch molluscs.  相似文献   

3.
Colour is an important component of many different defensive strategies, but signal efficacy and detectability will also depend on the size of the coloured structures, and how pattern size interacts with the background. Consequently, size-dependent changes in colouration are common among many different species as juveniles and adults frequently use colour for different purposes in different environmental contexts. A widespread strategy in many species is switching from crypsis to conspicuous aposematic signalling as increasing body size can reduce the efficacy of camouflage, while other antipredator defences may strengthen. Curiously, despite being chemically defended, the gold-striped frog (Lithodytes lineatus, Leptodactylidae) appears to do the opposite, with bright yellow stripes found in smaller individuals, whereas larger frogs exhibit dull brown stripes. Here, we investigated whether size-dependent differences in colour support distinct defensive strategies. We first used visual modelling of potential predators to assess how colour contrast varied among frogs of different sizes. We found that contrast peaked in mid-sized individuals while the largest individuals had the least contrasting patterns. We then used two detection experiments with human participants to evaluate how colour and body size affected overall detectability. These experiments revealed that larger body sizes were easier to detect, but that the colours of smaller frogs were more detectable than those of larger frogs. Taken together our data support the hypothesis that the primary defensive strategy changes from conspicuous aposematism to camouflage with increasing size, implying size-dependent differences in the efficacy of defensive colouration. We discuss our data in relation to theories of size-dependent aposematism and evaluate the evidence for and against a possible size-dependent mimicry complex with sympatric poison frogs (Dendrobatidae).  相似文献   

4.
1. Aposematism is a widely used antipredator strategy in which an organism possesses both warning coloration and unprofitable characters. Theoretical evidence suggests that aposematic colour should develop when high opportunity costs imposed by crypsis force an organism to engage in conspicuous behaviours. Hence, it is expected that ontogenetic colour change (OCC) in larval insects should include aposematism when foraging needs compel behavioural modifications that preclude a continued state of crypsis. 2. To test this idea, I first investigated whether OCC in caterpillars of the panic moth Saucrobotys futilalis was indicative of a switch from cryptic to aposematic coloration. I then examined the context of panic moth OCC as it related to foraging patterns and behavioural conspicuousness. 3. Early Saucrobotys instars are a cryptic green, but later instars become progressively more orange and develop black spots. Early instar larvae forage cryptically on the inner parenchyma of silked-together host plant leaves to avoid predation, but are rapidly forced to engage in conspicuous foraging behaviours as they outgrow the resources afforded by their shelters. Both coloration and behaviour reach maximal conspicuousness in final instar larvae. 4. As predicted, OCC encompassed a change from crypsis to aposematism in Saucrobotys. Aposematic function was demonstrated by changes in both antipredator behaviour patterns and effectiveness of predator deterrence in early and late instars. Moreover, increased opportunity costs of crypsis and behavioural conspicuousness coincided with the onset of aposematic coloration. 5. This pattern of OCC suggests that aposematic coloration in Saucrobotys develops as a response to constraints imposed by crypsis. Moreover, my study illustrates the importance of the study of ontogenetic patterns in determining how behaviour, morphology, and predator responses interact to influence the initial evolution of phenomena such as aposematism.  相似文献   

5.
Chemically defended species often have conspicuous signals that warn potential predators of these defences. Recent evidence suggests that some such aposematic prey are not as conspicuous as possible, even though increased conspicuousness would bring additional anti-predator benefits. Here we present a simple model to explore the generality of these observations. Our model predicts that optimal fitness will often be achieved at an intermediate level of conspicuousness and not simply by maximising conspicuousness. This comes about because of the ubiquitous trade-off that increased conspicuousness has an ecological cost in increasing the encounter rate with predators, as well as a benefit in terms of enhancing learned aversion by predators of defended prey. However, importantly, we also predict that a small deviation away from maximal crypsis generally causes a decrease in fitness, even if a larger deviation would lead to an intermediate level of conspicuousness that maximises fitness. Hence, further consideration of whether intermediate levels of aposematism are as common in nature as predicted in this model will require consideration of the underlying evolution of appearance, and the plausibility of evolution across the fitness trough, from maximal crypsis to an intermediate level of aposematism.  相似文献   

6.
Protective colouration in animals includes camouflage (i.e., crypsis), that decreases the risk of detection, and conspicuous colouration, which is often used in combination with chemical defences to deter predators from attacking. Experiments have shown that the efficacy of conspicuous colouration increases with increasing size of pattern elements and larger body size. Prey species that have acquired avoidance inducing colouration therefore may be exposed to selection for larger body size, and such colouration may more easily evolve in large than in small prey species. Here we test for a difference in body size between species with different colouration modes and perform a comparative analysis based on phylogenetically independent contrasts to examine if evolutionary shifts in colour pattern have been associated with evolutionary changes in body size, using data for 578 species of moths. Larval body size did not differ between species with signalling and non-signalling larvae, and results from the comparative analysis suggest that these two traits have not evolved in parallel. The lack of association between evolutionary changes in colouration and body size may reflect a confounding influence of lifestyle, because evolutionary shifts from solitary to group-living larvae were associated with decreased larval body length and adult wing span. Because evolutionary changes in larval body size were associated with evolutionary changes in adult wing span the predicted association between colouration and size may have been confounded also by conflicting selection on body size in larvae and adults.  相似文献   

7.
The evolution of striking phenotypes on islands is a well‐known phenomenon, and there has been a long‐standing debate on the patterns of body size evolution on islands. The ecological causes driving divergence in insular populations are, however, poorly understood. Reduced predator fauna is expected to lower escape propensity, increase body size and relax selection for crypsis in small‐bodied, insular prey species. Here, we investigated whether escape behaviour, body size and dorsal coloration have diverged as predicted under predation release in spatially replicated islet and mainland populations of the lizard species Podarcis gaigeae. We show that islet lizards escape approaching observers at shorter distances and are larger than mainland lizards. Additionally, we found evidence for larger between‐population variation in body size among the islet populations than mainland populations. Moreover, islet populations are significantly more divergent in dorsal coloration and match their respective habitats poorer than mainland lizards. These results strongly suggest that predation release on islets has driven population divergence in phenotypic and behavioural traits and that selective release has affected both trait means and variances. Relaxed predation pressure is therefore likely to be one of the major ecological factors driving body size divergence on these islands.  相似文献   

8.
Abstract Many animal species display striking color differences with respect to geographic location, sex, and body region. Traditional adaptive explanations for such complex patterns invoke an interaction between selection for conspicuous signals and natural selection for crypsis. Although there is now a substantial body of evidence supporting the role of sexual selection for signaling functions, quantitative studies of crypsis remain comparatively rare. Here, we combine objective measures of coloration with information on predator visual sensitivities to study the role of crypsis in the evolution of color variation in an Australian lizard species complex (Ctenophorus decresii). We apply a model that allows us to quantify crypsis in terms of the visual contrast of the lizards against their natural backgrounds, as perceived by potential avian predators. We then use these quantitative estimates of crypsis to answer the following questions. Are there significant differences in crypsis conspicuousness among populations? Are there significant differences in crypsis conspicuousness between the sexes? Are body regions “exposed” to visual predators more cryptic than “hidden” body regions? Is there evidence for local adaptation with respect to crypsis against different substrates? In general, our results confirmed that there are real differences in crypsis conspicuousness both between populations and between sexes; that exposed body regions were significantly more cryptic than hidden ones, particularly in females; and that females, but not males, are more cryptic against their own local background than against the background of other populations. Body regions that varied most in contrast between the sexes and between populations were also most conspicuous and are emphasized by males during social and sexual signaling. However, results varied with respect to the aspect of coloration studied. Results based on chromatic contrast (“hue’ of color) provided better support for the crypsis hypothesis than did results based on achromatic contrast (“brightness’ of color). Taken together, these results support the view that crypsis plays a substantial role in the evolution of color variation and that color patterns represent a balance between the need for conspicuousness for signaling and the need for crypsis to avoid predation.  相似文献   

9.

Background

Speckled rattlesnakes (Crotalus mitchellii) inhabit multiple islands off the coast of Baja California, Mexico. Two of the 14 known insular populations have been recognized as subspecies based primarily on body size divergence from putative mainland ancestral populations; however, a survey of body size variation from other islands occupied by these snakes has not been previously reported. We examined body size variation between island and mainland speckled rattlesnakes, and the relationship between body size and various island physical variables among 12 island populations. We also examined relative head size among giant, dwarfed, and mainland speckled rattlesnakes to determine whether allometric differences conformed to predictions of gape size (and indirectly body size) evolving in response to shifts in prey size.

Methodology/Principal Findings

Insular speckled rattlesnakes show considerable variation in body size when compared to mainland source subspecies. In addition to previously known instances of gigantism on Ángel de la Guarda and dwarfism on El Muerto, various degrees of body size decrease have occurred frequently in this taxon, with dwarfed rattlesnakes occurring mostly on small, recently isolated, land-bridge islands. Regression models using the Akaike information criterion (AIC) showed that mean SVL of insular populations was most strongly correlated with island area, suggesting the influence of selection for different body size optima for islands of different size. Allometric differences in head size of giant and dwarf rattlesnakes revealed patterns consistent with shifts to larger and smaller prey, respectively.

Conclusions/Significance

Our data provide the first example of a clear relationship between body size and island area in a squamate reptile species; among vertebrates this pattern has been previously documented in few insular mammals. This finding suggests that selection for body size is influenced by changes in community dynamics that are related to graded differences in area over what are otherwise similar bioclimatic conditions. We hypothesize that in this system shifts to larger prey, episodic saturation and depression of primary prey density, and predator release may have led to insular gigantism, and that shifts to smaller prey and increased reproductive efficiency in the presence of intense intraspecific competition may have led to insular dwarfism.  相似文献   

10.
The evolution of aposematism is considered to be a major evolutionary problem because if new aposematic forms emerged in defended cryptic populations, they would face the dual problems of rarity and conspicuousness. We argue that this commonly assumed starting point might not have wide validity. We describe a novel evolutionary computer model in which prey evolve secondary defences and become conspicuous by moving widely over a visually heterogeneous habitat. Unless crypsis imposes high opportunity costs (for instance, preventing prey from efficient foraging, thermoregulation and communication), costly secondary defences are not predicted to evolve at all. However, when crypsis imposes opportunity costs, prey evolve secondary defences that facilitate raised behavioural conspicuousness as prey exploit opportunities within their environment. Optimal levels of secondary defence and of behavioural conspicuousness increase with population sizes and the costs imposed by crypsis. When prey are already conspicuous by virtue of their behaviours, the evolution of aposematic appearances (bright coloration, etc.) is much easier to explain because aposematic traits add little further costs of conspicuousness, but can bring large benefits.  相似文献   

11.
The idea that an aposematic prey combines crypsis at a distance with conspicuousness close up was tested in an experiment using human subjects. We estimated detectability of the aposematic larva of the swallowtail butterfly, Papilio machaon, in two habitats, by presenting, on a touch screen, photographs taken at four different distances and measuring the time elapsed to discovery. The detectability of larvae in these images was compared with images that were manipulated, using existing colours either to increase or decrease conspicuousness. Detection time increased with distance for all colourations. However, at the closest distance, detection time was longer for the larvae manipulated to be more cryptic than for the natural and more conspicuous forms. This indicates that the natural colouration is not maximally cryptic at a short distance. Further, smaller increments in distance were needed to increase detection time for the natural than for the conspicuous larva. This indicates that the natural colouration is not maximally conspicuous at longer distances. Taken together, we present the first empirical support for the idea that some colour patterns may combine warning colouration at a close range with crypsis at a longer range. The implications of this result for the evolution of aposematism are discussed.  相似文献   

12.
Conspicuous female coloration can evolve through male mate choice or via female-female competition thereby increasing female mating success. However, when mating is not beneficial, such as in pre-reproductive females, selection should favor cryptic rather than conspicuous coloration to avoid male detection and the associated harassment. Nevertheless, conspicuous female coloration occurs in many prereproductive animals, and its evolution remains an enigma. Here, I studied conspicuous female coloration in Agriocnemis femina damselflies, in which the conspicuous red color of the immature females changes to a less conspicuous green approximately a week after their emergence. I measured body size, weight, and egg numbers of the female morphs and found that red females are smaller and lighter and do not carry developed eggs. Finally, I calculated the occurrence frequency and mating frequency of red and green females in several populations over a three-year period. The results demonstrate that red females mated less frequently than green females even when red females were the abundant morph in the populations. I concluded that conspicuous female coloration is likely to function as a warning signal of sexual unprofitability, thereby reducing sexual harassment for females and unprofitable mating for males.  相似文献   

13.
We examined whether sex, reproductive status, body size, or body temperature of prairie rattlesnakes (Crotalus viridis viridis) was related to when snakes rattled in response to an approaching observer. We found that gravid females allowed significantly closer approaches than males, suggesting that females relied on crypsis to avoid predation, possibly because pregnancy constrained their locomotive ability. Smaller snakes allowed significantly closer approaches than did larger snakes. Smaller snakes may be more cryptic or slower, which may influence their waiting to rattle until the observer was close. Overall, we found no consistent relationship between the distance from the observer that a snake rattled and its body temperature. However, cooler gravid females allowed closer approaches by the observer than did warmer gravid females. In summary, reproductive status, body size, and body temperature appear to influence the costs and benefits of crypsis vs. active defense of rattlesnakes.  相似文献   

14.
The distinctive black and red wing pattern of six‐spot burnet moths (Zygaena filipendulae, L.) is a classic example of aposematism, advertising their potent cyanide‐based defences. While such warning signals provide a qualitatively honest signal of unprofitability, the evidence for quantitative honesty, whereby variation in visual traits could provide accurate estimates of individual toxicity, is more equivocal. Combining measures of cyanogenic glucoside content and wing color from the perspective of avian predators, we investigate the relationship between coloration and defences in Z. filipendulae, to test signal honesty both within and across populations. There were no significant relationships between mean cyanogenic glucoside concentration and metrics of wing coloration across populations in males, yet in females higher cyanogenic glucoside levels were associated with smaller and lighter red forewing markings. Trends within populations were similarly inconsistent with quantitative honesty, and persistent differences between the sexes were apparent: larger females, carrying a greater total cyanogenic glucoside load, displayed larger but less conspicuous markings than smaller males, according to several color metrics. The overall high aversiveness of cyanogenic glucosides and fluctuations in color and toxin levels during an individual's lifetime may contribute to these results, highlighting generally important reasons why signal honesty should not always be expected in aposematic species.  相似文献   

15.
Adult body size (size at maturity) is one of the key life history traits and is well known to sometimes correlate with latitude in anadromous salmonids. However, it is poorly understood whether geographic size patterns except for latitudinal trends occur or why such patterns have been shaped. The present paper briefly reviewed body size variation between anadromous returns of masu salmon Oncorhynchus masou in the Okhotsk group (10 populations along the Sea of Okhotsk coast), the Pacific group (2 populations along the Pacific Ocean coast) and the Sea of Japan group (24 populations along the Sea of Japan coast). The Okhotsk group was smaller than the Sea of Japan group. Although the statistical analysis detected no differences among the remaining combinations, the Okhotsk group was possibly smaller than the other groups because the size of the Pacific group seemed to be within range of the Sea of Japan group but tended to be larger than that of the Okhotsk group. Future research should first test whether size at maturity genetically differs between the Okhotsk group and the other two groups to explore further evolutionary factors shaping geographic size variation.  相似文献   

16.
I analyzed observations from a yearlong study of the positional behavior of Pan troglodytesat the Mahale Mountains National Park to determine whether there are detectable differences in behavior between large and small individuals. Analysis was complicated by a weak correlation between body size and social rank. To factor out rank effects, I performed two types of analyses, depending on the type of data: (1) multiple regressions or (2) comparisons of similarly ranked animals of different body size. With social rank effects accounted for, larger males fed lower in the canopy, fed on the ground more often, fed preferentially among food tree species with smaller adult heights, and climbed significantly less often than smaller males did. Contrary to expectation, large males utilized smaller weight-bearing structures than small males did. These results suggest that large males minimized climbing versus optimizing support diameters, perhaps because vertical climbing is disproportionally expensive for larger animals. The large body weight of chimpanzees compared with other primates suggests that minimizing altitude changes, and therefore vertical climbing, is an important consideration in budgeting daily energy expenditures.  相似文献   

17.
Defensive coloration that reduces the risk of predation is considered to be widespread in animals. Many closely related species adopt differing coloration strategies during the life cycle, including crypsis, conspicuousness, and ontogenic change between the two coloration types. Here, we use a dynamic state-dependent approach to use ecological and intrinsic factors to predict the proportion of the developmental period of immature animals that should be spent as cryptic or conspicuous, and when conspicuous coloration should be reliably associated with investment in defenses. The model predicts that animals should change color more than once during development only in specific circumstances. In contrast, change from crypsis to conspicuous can occur over a range of conditions related to the frequency of detection by predators, but may also depend on the opportunity costs of crypsis and the effect of size on the deterrent effect of conspicuous coloration. We also report the results of a survey of coloration strategies in lepidopteron larvae, and note a qualitative agreement with the predictions of our model in the relationship between body size and coloration strategy. Our results provide explanations for several widespread antipredator coloration phenomena in prey animals, and provide a comprehensive predictive framework for the types of coloration strategies that are employed in nature.  相似文献   

18.
Flight initiation distance describes the distance at which an animal flees during the approach of a predator. This distance presumably reflects the tradeoff between the benefits of fleeing versus the benefits of remaining stationary. Throughout ontogeny, the costs and benefits of flight may change substantially due to growth-related changes in sprint speed; thus ontogenetic variation in flight initiation distance may be substantial. If escape velocity is essential for surviving predator encounters, then juveniles should either tolerate short flight initiation distances and rely on crypsis, or should have high flight initiation distances to remain far away from their predators. We examined this hypothesis in a small, short-lived lizard (Sceloporus woodi). Flight initiation distance and escape velocity were recorded on an ontogenetic series of lizards in the field. Maximal running velocity was also quantified in a laboratory raceway to establish if escape velocities in the field compared with maximal velocities as measured in the lab. Finally a subset of individuals was used to quantify how muscle and limb size scale with body size throughout ontogeny. Flight initiation distance increased with body size; larger animals had higher flight initiation distances. Small lizards had short flight initiation distances and remained immobile longer, thus relying on crypsis for concealment. Escape velocity in the field did not vary with body size, yet maximum velocity in the lab did increase with size. Hind limb morphology scaled isometrically with body size. Isometric scaling of the hind limb elements and its musculature, coupled with similarities in sprint and escape velocity across ontogeny, demonstrate that smaller S. woodi must rely on crypsis to avoid predator encounters, whereas adults alter their behavior via larger flight initiation distance and lower (presumably less expensive) escape velocities.  相似文献   

19.
The predator–prey relationship is a strong agent of natural selection on phenotype, and two evolutionary strategies derived from this antagonistic interaction are crypsis and aposematism. Although usually considered as opposites, both strategies could be ascribed to the dark zigzag pattern of European vipers (Vipera). Experiments using plasticine models demonstrated its aposematic role, and no evidence had been found regarding a possible cryptic function. We examined the possibility of a cryptic role by measuring five characters related to the zigzag size and shape in 465 Vipera latastei specimens from the Iberian Peninsula to assess geographic variation in these characters. This species shows genetic substructuring resulting from population isolation and occurs in strong environmental gradients, which allows testing whether historic and/or environmental (adaptive) factors explain this variation. Spatial interpolation of zigzag characters identified two major Iberian groups: the Western and the Eastern. The Western group was characterised by a larger zigzag extension and higher number of dorsal marks; specimens within this group were in granitic grounds and areas with higher rainfall and lower solar radiation than those of the Eastern group. The correlation of the zigzag shape and size with lithology and climatic variables suggested that dorsal pattern variation is driven by: (1) its cryptic role, as detectability might be influenced by the degree of contrast between the target and background lithology, or (2) its thermal role, as the larger zigzag may allow for faster heating in Western Iberian regions with limited thermal opportunities. A log-linear analysis using dorsal pattern groups, genetic lineages and lithological classes, showed significant interactions among the three variables. These results suggest that dorsal pattern variation of V. latastei resulted from genetic (i.e. historic) as well as environmental (i.e. adaptive) factors, first by population isolation in geographic refuges and further by local adaptation to particular environments.  相似文献   

20.
ABSTRACT The value of egg coloration as crypsis, once accepted as a general principle, has recently been questioned because most experiments have failed to show that egg coloration deters predation. The nest‐crypsis hypothesis postulates that, among species that build conspicuous nests, selection for egg crypsis is relaxed or absent because visually searching predators detect nests prior to eggs. I tested the nest‐crypsis hypothesis using the large, relatively conspicuous nests of American Robins (Turdus migratorius), and eggs that differed markedly in color that were collected from the nests of Red‐winged Blackbirds (Agelaius phoeniceus), Brewer's Blackbirds (Euphagus cyanocephalus), and Yellow‐headed Blackbirds (Xanthocephalus xanthocephalus). Each nest (N= 22) received a clutch of each species during three sequential predation trials that were 16 d in duration. The order of clutch presentation was randomized for each nest. Survival trends for Brewer's and Yellow‐headed Blackbirds were similar, and higher than those for clutches of Red‐winged Blackbirds. By the end of trials, overall survival of the three clutch types was roughly equivalent. However, clutches of Red‐winged Blackbird eggs, the most conspicuous egg type to the human eye, were discovered sooner by predators. Because the experimental design controlled for effects of nest crypsis, nest location, and nest size, this difference in egg survival can be attributed to differences in egg pigmentation. Thus, my results support a role for egg coloration as camouflage in conspicuous nests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号