首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation of diarylethane structures by Pseudomonas fluorescens biovar I   总被引:2,自引:0,他引:2  
Pseudomonas fluorescens biovar I was isolated from a pulp mill effluent based on its ability to grow on synthetic media containing 1,2-diarylethane structures as the sole carbon and energy source. Analysis of samples taken from cultures of this strain in benzoin or 4,4-dimethoxybenzoin (anisoin), showed that cleavage between the two aliphatic carbons takes place prior to ring fission. Intermonomeric cleavage was also obtained with crude extracts. Substrates of this reaction were only those 1,2-diarylethane compounds that supported growth of the bacterium. The purification and partial characterization of an enzyme that catalyzes the NADH-dependent reduction of the carbonyl group of benzoin and anisoin is also reported.  相似文献   

2.
The lipopolysaccharide (LPS) preparation isolated from the bacterial mass of Pseudomonas fluorescens IMV 2366 (biovar III) by Westphal's method and purified by repeated ultracentrifugation was characterized by the presence of the S- and R-forms of molecules. The following structural portions of the LPS molecule were obtained in the individual state and characterized: lipid A, core oligosaccharide, and O-specific polysaccharide. The main components of the lipid A hydrophobic moiety were 3-hydoxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, and hexadecanoic fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic moiety. Rhamnose, glucose, galactose, glucosamine, galactosamine, alanine, phosphoethanolamine, phosphorus, 2-keto-3-desoxyoctulosonic acid (KDO), as well as 2-amino-2,6-didesoxygalactose (FucN) and 3-amino-3,6-didesoxyglucose (Qui3N), were revealed in the composition of the core oligosaccharide fractions. O-specific polysaccharide chains were established to be composed of repeating trisaccharide units consisting of residues of L-rhamnose (L-Rha), 2-acetamido-2,6-didesoxy-D-galactose (D-FucNAc), and 3-acylamido-3,6-didesoxy-D-glucose (D-Qui3NAcyl), where Acyl = 3-hydroxy-2,3-dimethyl-5-hydroxyprolyl. Neither double immunodiffusion in agar not the immunoenzyme assay revealed serological relations between the strain studied and the P. fluorescens strains studied earlier.  相似文献   

3.
The results of the study of the Pseudomonas fluorescens IMV 247 (biovar II) lipopolysaccharide (LPS) isolated from the dry bacterial mass by Westphal's method and purified by repeated ultracentrifugation are presented. The macromolecular organization of the LPS is characterized by the presence of S and R forms of LPS molecules in a 1:1 ratio. The structural components of the LPS molecule--lipid A, the core oligosaccharide, and the O-specific polysaccharide--were isolated and characterized. 3-Hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, and dodecanoic acids proved to be the main lipid A fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic portion. Glucose, galactose, arabinose, rhamnose, glucosamine, alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulonate (KDO) were revealed in the heterogeneous fraction of the core oligosaccharide. The O-specific polysaccharide chain was composed of repeating tetrasaccharide units consisting of L-rhamnose (L-Rha), 3,6-dideoxy-3-[(S)-3-hydroxybutyramido]-D-glucose (D-Qui3NHb), 2-acetamido-2,4,6-trideoxy-4[(S)-3-hydroxybutyramido-D-glucose (D-QuiNAc4NHb), and 2-acetamido-2-deoxy-D-galacturonic acid (D-GalNAcA) residues. A peculiarity of the O-specific polysaccharide was that it released, upon partial acid hydrolysis, the nonreducing disaccharide GalNAcA-->QuiNAc4NHb with a 3-hydroxybutyryl group glycosylated intramolecularly with a QuiN4N residue. Double immunodiffusion in agar and lipopolysaccharide precipitation reactions revealed no serological interrelationship between the strain studied and the P. fluorescens strains studied earlier.  相似文献   

4.
Pseudomonas fluorescens biovar I can grow on benzoin as the sole carbon and energy source. This ability is due to benzaldehyde lyase, a new type of enzyme that irreversibly cleaves the acyloin linkage of benzoin, producing two molecules of benzaldehyde. Benzaldehyde lyase was purified 70-fold and found to require catalytic amounts of thiamine PPi (TPP) and a divalent cation as cofactors. Optimal activity was obtained with a 1.0 mM concentration of Mn2+, Mg2+, or Ca2+. Gel permeation chromatography indicated a native molecular weight of 80,000, whereas the enzyme migrated in sodium dodecyl sulfate-containing polyacrylamide gels as a single polypeptide with a molecular weight of 53,000. Benzaldehyde lyase is highly specific; of a variety of structurally related compounds tested, only benzoin and anisoin (4,4'-dimethoxybenzoin) acted as substrates, their apparent Kms being 9.0 x 10(-3) and 3.25 x 10(-2) mM, respectively. A catalytic mechanism for the enzyme is proposed.  相似文献   

5.
Results of studies of the structurally unique O-chains of lipopolysaccharides, which were isolated from the dry biomass of Pseudomonas fluorescens IMB 2108 (biovar II) and IMB 2111 (biovar IV) by the Westphal technique and purified by repeated ultracentrifugation, are reported. The bulk of the lipopolysaccharide preparations contained S- and R-molecules at an average molar ratio of 1: 2. The main components of the hydrophobic moiety of lipid A were 3-hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, hexadecanoic, and octadecanoic acids, as well as hexadecenoic and octadecenoic acids. Glucosamine and phosphoethanolamine were identified as components of the hydrophilic moiety of lipid A. The degree of lipid A phosphorylation amounted to 3-4%. Fractions of the core oligosaccharide contained glucose, galactose, mannose, rhamnose, arabinose, glucosamine (only in strain IMB 2108), alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulosonic acid (KDO). Heptose was present in trace amounts. O-specific polysaccharide chains were represented by a linear polymer of D-glucose units, which were linked together via alpha-(1,4) glycoside bonds. The existence of P. fluorescens strains that have alpha-1,4-glucan as the O-chain of their lipopolysaccharides has not been described before.  相似文献   

6.
7.
Isolation and purification of a metalloproteinase from Pseudomonas fluorescens Biotype I are described. The molecular mass of the enzyme is 46 kDa, its isoelectric point is 8.1, its activity is trypsin-like. The amino-acid composition of the single chain protein is given. One molecule of the enzyme contains 1 atom of zinc and 9 atoms of calcium.  相似文献   

8.
9.
An O-specific polysaccharide, containing 6-deoxy-L-talose (6dTal), N-acetyl-D-fucosamine (FucNAc), 3-amino-3,6-dideoxy-D-glucose with an unidentified N-acyl substituent (Qui3NR), and O-acetyl groups, was obtained on mild acid degradation of a Pseudomonas fluorescens strain 361 lipopolysaccharide. On the basis of O-deacetylation, acid hydrolysis, methylation, selective solvolysis with anhydrous hydrogen fluoride, and 13C NMR analysis, the polysaccharide is built up of trisaccharide repeating units of the following structure: (Formula: see text).  相似文献   

10.
11.
Several iron-binding pigments (siderochromes) produced by Pseudomonas fluorescens have been isolated and partially characterized. They include ferribactin and various forms of pyoverdine, as well as some previously unreported compounds. In particular, the existence of ferribactin has been independently confirmed for the first time. Column and thin layer chromatographic procedures have been developed to fractionate, purify, and identify the siderochromes. We find ferribactin to contain nine amino acids, one residue each of glutamine, tyrosine, and glycine, and two each of serine, lysine, and N-hydroxyornithine, rather than 10 as earlier reported. Pyoverdine is a peptide with the same composition as ferribactin except for the absence of glutamine and the substitution of a fluorescent chromophore for tyrosine. Paper electrophoresis reveals an extra ionizable group in ferric pyoverdine relative to pyoverdine or ferribactin which provides that complex a definite cathodic mobility at pH 3. Optical spectra of the pyoverdine fluorescent component indicate that, in conjunction with the two hydroxamate groups, it is involved in the metal ion coordination, conferring on pyoverdine a dramatically increased affinity for Fe(III) relative to ferribactin.  相似文献   

12.
Phospholipase C from Pseudomonas fluorescens   总被引:1,自引:0,他引:1  
  相似文献   

13.
The O-specific polysaccharide of P. fluorescens IMV 2366 was studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D gsCOSY, TOCSY, gsNOESY, H-detected 1H,(13)C gsHSQC, HMQC-TOCSY, and gsHMBC experiments. The polysaccharide contains L-rhamnose, 2-acetamido-2,6-dideoxy-D-galactose (D-FucNAc) and 3-acylamido-3,6-dideoxy-D-glucose (D-Qui3NAcyl, where Acyl is 3-hydroxy-2,3-dimethyl-5-oxoprolyl). The structure 1 of the polysaccharide was found to be similar to the structure 2 of a 6-deoxy-L-talose (L-6dTal)-containing O-specific polysaccharide of a non-classified P. fluorescens strain, 361, studied earlier [Khomenko, V. A.; Naberezhnykh, G. A.; Isakov, V. V.; Solov'eva, T. F.; Ovodov, Y. S.; Knirel, Y. A.; Vinogradov, E. V. Bioorg. Khim. 1986, 12, 1641-1648; Naberezhnykh, G. A.; Khomenko, V. A.; Isakov, V. V., El'kin, Y. N.; Solov'eva, T. F.; Ovodov, Y. S. Bioorg. Khim. 1987, 13, 1428-1429]. --> 2)-beta-D-Quip3NAcyl-(1 --> 3)-alpha-L-Rhap-(1 --> 3)-alpha-D-FucpNAc-(1 --> 1. --> 4)-beta-D-Quip3NAcyl-(1 --> 3)-alpha-L-6dTalp4Ac-(1 --> 3)-alpha-D-FucpNAc-(1 -->2.  相似文献   

14.
The glucose dehydrogenase activity of Pseudomonas fluorescens cells grown in iron-depleted synthetic media is strongly decreased (about 80%) by dichlorophenolindophenol (DIP) 2 X 10(-3) M. In those cells, DIP seems not to play the part of an ultimate electron acceptor.  相似文献   

15.
16.
17.
From the biomass of five Pseudomonas fluorescens biovar I strains, including the P. fluorescens type strain IMV 4125 (ATCC 13525), lipopolysaccharides (LPS) were isolated (by extraction with a phenol-water mixture followed by repeated ultracentrifugation), as well as individual structural components of the LPS macromolecule: lipid A, the core oligosaccharide, and O-specific polysaccharide (O-PS). 3-Hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, hexadecanoic, octadecanoic, hexadecenoic, and octadecenoic fatty acids were present in lipid A of the LPS of all the strains studied. Glucosamine, ethanolamine, and phosphoethanolamine were revealed in the lipid A hydrophilic part of all of KDO, a trace amount of heptoses, ethanolamine, phosphoethanolamine, alanine, and phosphorus were identified as the main core components. Interstrain differences in the core oligosaccharide composition were revealed. Structural analysis showed that the O-PS of the type strain, as distinct from that of other strains, is heterogeneous and contains two types of repetitive units, including (1) three L-rhamnose residues (L-Rha), one 3-acetamide-3,6-dideoxy-D-galactose residue (D-Fuc3NAc) as a branching substitute of the L-rhamnan chain and (2) three L-Rha residues and two branching D-Fuc3NAc residues. The type strain is also serologically distinct from other biovar I strains due to the LPS O-chain structure, which is similar to those of the strains of the species Pseudomonas syringae, including the type strain. The data of structural analysis agree well with the results of immunochemical studies of LPS.  相似文献   

18.
Kynureninase [E.C. 3.7.1.3] is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the hydrolytic cleavage of l-kynurenine to anthranilic acid and l-alanine. Sequence alignment with other PLP-dependent enzymes indicated that kynureninase is in subgroup IVa of the aminotransferases, along with nifS, CsdB, and serine-pyruvate aminotransferase, which suggests that kynureninase has an aminotransferase fold. Crystals of Pseudomonas fluorescens kynureninase were obtained, and the structure was solved by molecular replacement using the CsdB coordinates combined with multiple isomorphous heavy atom replacement. The coordinates were deposited in the PDB (ID code 1QZ9). The structure, refined to an R factor of 15.5% to 1.85 A resolution, is dimeric and has the aminotransferase fold. The structure also confirms the prediction from sequence alignment that Lys-227 is the PLP-binding residue in P. fluorescens kynureninase. The conserved Asp-201, expected for an aminotransferase fold, is located near the PLP nitrogen, but Asp-132 is also strictly conserved and at a similar distance from the pyridinium nitrogen. Mutagenesis of both conserved aspartic acids shows that both contribute equally to PLP binding, but Asp-201 has a greater role in catalysis. The structure shows that Tyr-226 donates a hydrogen bond to the phosphate of PLP. Unusual among PLP-dependent enzymes, Trp-256, which is also strictly conserved in kynureninases from bacteria to humans, donates a hydrogen bond to the phosphate through the indole N1-hydrogen.  相似文献   

19.
The inactivation of a metalloproteinase from Pseudomonas fluorescens Biotype I with EDTA was investigated at 22 degrees C and 37 degrees C. At 22 degrees C proteolytic activity decreases linearly with time and an inactive apoenzyme is obtained by dialysis. Proteolytic activity can be restored with several metal-ions, Ca2+, Zn2+, Mg2+, Sr2+ and co2+ give the best results. Activity and substrate specificity are influenced by the metal-ions. Reactivation depends on the concentration of the metal-ions, optimum concentration is 1 mM for Ca2+ and 50 microM for Zn2+. The isoelectric point of the apoenzyme is around 8.0, this is about 0.3 pH-units lower than the isoelectric point of the native proteinase. At 37 degrees C inactivation follows first order kinetics and is irreversible because of autolysis as shown by a gel filtration-experiment.  相似文献   

20.
Information was obtained on the general properties and specificity of orthophosphite-nicotinamide adenine dinucleotide oxidoreductase. The enzyme was extracted from Pseudomonas fluorescens 195 grown in medium containing orthophosphite as the sole source of phosphorus. An enzyme preparation suitable for characterization was obtained from crude extracts by use of high-speed centrifugation, protamine sulfate precipitation, ammonium sulfate fractionation, and Sephadex gel filtration. The enzyme exhibited maximal activity at pH 7.0, and was inactivated within 6 min at 37 C. Arsenite, hypophosphite, nitrite, selenite, and tellurite were not oxidized by the enzyme. Sulfite inhibited the enzymatic oxidation of orthophosphite in an apparent competitive manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号